Q1 :

Find the coordinates of the point which divides the line segment joining the points $(-2,3,5)$ and $(1,-4,6)$ in the ratio (i) 2:3 internally, (ii) 2:3 externally.

Answer :

(i) The coordinates of point R that divides the line segment joining points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ internally in the ratio m : n are
$\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right)$.
Let $\mathrm{R}(x, y, z)$ be the point that divides the line segment joining points $\left(\hat{a} \epsilon^{\prime \prime} 2,3,5\right)$ and ($1, \hat{a} \neq{ }^{\prime \prime} 4,6$) internally in the ratio 2:3
$x=\frac{2(1)+3(-2)}{2+3}, y=\frac{2(-4)+3(3)}{2+3}$, and $z=\frac{2(6)+3(5)}{2+3}$
i.e., $x=\frac{-4}{5}, y=\frac{1}{5}$, and $z=\frac{27}{5}$

Thus, the coordinates of the required point are
(ii) The coordinates of point R that divides the line segment joining points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}, z_{2}\right)$ externally in the ratio m : n are
$\left(\frac{m x_{2}-n x_{1}}{m-n}, \frac{m y_{2}-n y_{1}}{m-n}, \frac{m z_{2}-n z_{1}}{m-n}\right)$
Let $\mathrm{R}(x, y, z)$ be the point that divides the line segment joining points(â€" $2,3,5$) and (1 , â€" 4,6) externally in the ratio 2:3
$x=\frac{2(1)-3(-2)}{2-3}, y=\frac{2(-4)-3(3)}{2-3}$, and $z=\frac{2(6)-3(5)}{2-3}$
i.e., $x=-8, y=17$, and $z=3$

Thus, the coordinates of the required point are (â€" $8,17,3$).

Answer :

Let point $Q(5,4, \hat{a} €$ " 6$)$ divide the line segment joining points $P\left(3,2, \hat{a} €{ }^{\prime \prime} 4\right)$ and $R\left(9,8, a ̂ €^{\prime \prime} 10\right)$ in the ratio $k: 1$.
Therefore, by section formula,
$(5,4,-6)=\left(\frac{k(9)+3}{k+1}, \frac{k(8)+2}{k+1}, \frac{k(-10)-4}{k+1}\right)$
$\Rightarrow \frac{9 k+3}{k+1}=5$
$\Rightarrow 9 k+3=5 k+5$
$\Rightarrow 4 k=2$
$\Rightarrow k=\frac{2}{4}=\frac{1}{2}$
Thus, point Q divides PR in the ratio 1:2.

Q3 :

Find the ratio in which the YZ-plane divides the line segment formed by joining the points (-2, 4, 7) and (3, -5 , 8).

Answer:

Let the YZ planedivide the line segment joining points (â€" $2,4,7$) and $\left(3, \hat{a ̂}{ }^{\prime \prime} 5,8\right)$ in the ratio $k: 1$.
Hence, by section formula, the coordinates of point of intersection are given by
$\left(\frac{k(3)-2}{k+1}, \frac{k(-5)+4}{k+1}, \frac{k(8)+7}{k+1}\right)$
On the $Y Z$ plane, the x-coordinate of any point is zero.

$$
\begin{aligned}
& \frac{3 k-2}{k+1}=0 \\
& \Rightarrow 3 k-2=0 \\
& \Rightarrow k=\frac{2}{3}
\end{aligned}
$$

Thus, the YZ plane divides the line segment formed by joining the given points in the ratio 2:3.

Using section formula, show that the points $\mathrm{A}\left(2, \hat{a} \notin{ }^{\prime \prime} 3,4\right), \mathrm{B}\left(\hat{a} €{ }^{\prime \prime} 1,2,1\right)$ and $C\left(0, \frac{1}{3}, 2\right)$ are collinear.

Answer :

The given points are A $\left(2, \hat{a} €{ }^{\prime} 3,4\right), \mathrm{B}(\hat{a ̂} \neq " 1,2,1)$, and $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$
Let P be a point that divides AB in the ratio $k: 1$.
Hence, by section formula, the coordinates of P are given by
$\left(\frac{k(-1)+2}{k+1}, \frac{k(2)-3}{k+1}, \frac{k(1)+4}{k+1}\right)$
Now, we find the value of k at which point P coincides with point C.
By taking $\frac{-k+2}{k+1}=0$, we obtain $k=2$.
For $k=2$, the coordinates of point P are $\left(0, \frac{1}{3}, 2\right)$
i.e., $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$
is a point that divides $A B$ externally in the ratio $2: 1$ and is the same as point P.
Hence, points A, B, and C are collinear.

Q5 :

Find the coordinates of the points which trisect the line segment joining the points $P(4,2,-6)$ and $Q(10,-16$, 6).

Answer :

Let A and B be the points that trisect the line segment joining points $P(4,2, \hat{a} \notin " 6)$ and $Q(10, \hat{a} \notin " 16,6)$

Point A divides PQ in the ratio 1:2. Therefore, by section formula, the coordinates of point A are given by
$\left(\frac{1(10)+2(4)}{1+2}, \frac{1(-16)+2(2)}{1+2}, \frac{1(6)+2(-6)}{1+2}\right)=(6,-4,-2)$
Point B divides $P Q$ in the ratio 2:1. Therefore, by section formula, the coordinates of point B are given by

$$
\left(\frac{2(10)+1(4)}{2+1}, \frac{2(-16)+1(2)}{2+1}, \frac{2(6)-1(6)}{2+1}\right)=(8,-10,2)
$$

Thus, $(6, \hat{a ̂} €$ " $4, \hat{a} €$ " 2$)$ and $(8, a ̂ \notin " 10,2)$ are the points that trisect the line segment joining points $P(4,2, a ̂ \notin " 6)$ and Q (10, â€"16, 6).

