Exercise 12.2 : Solutions of Questions on Page Number : 273
Q1 :
Find the distance between the following pairs of points:
(i) $(2,3,5)$ and $(4,3,1)$ (ii) $(-3,7,2)$ and $(2,4,-1)$
(iii) $(-1,3,-4)$ and (1, $-3,4$) (iv) $(2,-1,3)$ and ($-2,1,3$)

Answer :

The distance between points $\mathrm{P}\left(x_{1}, y_{1}, z_{1}\right)$ and $\mathrm{P}\left(x_{2}, y_{2}, z_{2}\right)$ is given by $\mathrm{PQ}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
(i) Distance between points $(2,3,5)$ and $(4,3,1)$
$=\sqrt{(4-2)^{2}+(3-3)^{2}+(1-5)^{2}}$
$=\sqrt{(2)^{2}+(0)^{2}+(-4)^{2}}$
$=\sqrt{4+16}$
$=\sqrt{20}$
$=2 \sqrt{5}$
(ii) Distance between points (â€" $3,7,2$) and (2,4 , â€" 1)
$=\sqrt{(2+3)^{2}+(4-7)^{2}+(-1-2)^{2}}$
$=\sqrt{(5)^{2}+(-3)^{2}+(-3)^{2}}$
$=\sqrt{25+9+9}$
$=\sqrt{43}$
(iii) Distance between points (â€"1, 3, â€"4) and (1, â€"3, 4)
$=\sqrt{(1+1)^{2}+(-3-3)^{2}+(4+4)^{2}}$
$=\sqrt{(2)^{2}+(-6)^{3}+(8)^{2}}$
$=\sqrt{4+36+64}=\sqrt{104}=2 \sqrt{26}$
(iv) Distance between points ($2, \hat{a} \notin$ " 1,3) and ($\hat{\neq} €^{\prime} 2,1,3$)
$=\sqrt{(-2-2)^{2}+(1+1)^{2}+(3-3)^{2}}$
$=\sqrt{(-4)^{2}+(2)^{2}+(0)^{2}}$
$=\sqrt{16+4}$
$=\sqrt{20}$
$=2 \sqrt{5}$

Q2 :

Show that the points $(-2,3,5),(1,2,3)$ and $(7,0,-1)$ are collinear.

Answer :

Let points (â€" $2,3,5$), (1, 2, 3), and (7,0 , â ${ }^{\prime \prime} 1$) be denoted by P, Q, and R respectively.
Points P, Q, and R are collinear if they lie on a line.

$$
\begin{aligned}
\mathrm{PQ} & =\sqrt{(1+2)^{2}+(2-3)^{2}+(3-5)^{2}} \\
& =\sqrt{(3)^{2}+(-1)^{2}+(-2)^{2}} \\
& =\sqrt{9+1+4} \\
& =\sqrt{14}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{QR} & =\sqrt{(7-1)^{2}+(0-2)^{2}+(-1-3)^{2}} \\
& =\sqrt{(6)^{2}+(-2)^{2}+(-4)^{2}} \\
& =\sqrt{36+4+16} \\
& =\sqrt{56} \\
& =2 \sqrt{14}
\end{aligned}
$$

$$
\begin{aligned}
P R= & \sqrt{(7+2)^{2}+(0-3)^{2}+(-1-5)^{2}} \\
& =\sqrt{(9)^{2}+(-3)^{2}+(-6)^{2}} \\
& =\sqrt{81+9+36} \\
& =\sqrt{126} \\
& =3 \sqrt{14}
\end{aligned}
$$

Here, $\mathrm{PQ}+\mathrm{QR}=\sqrt{14}+2 \sqrt{14}=3 \sqrt{14}=P R$
Hence, points $P\left(\hat{a} \neq{ }^{\prime} 2,3,5\right), Q(1,2,3)$, and $R\left(7,0, \hat{e} \epsilon^{\prime \prime} 1\right)$ are collinear.

Q3 :

Verify the following:
(i) $(0,7,-10),(1,6,-6)$ and $(4,9,-6)$ are the vertices of an isosceles triangle.
(ii) $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ are the vertices of a right angled triangle.
(iii) $(-1,2,1),(1,-2,5),(4,-7,8)$ and $(2,-3,4)$ are the vertices of a parallelogram.

Answer :

(i) Let points $\left(0,7, \hat{a ̂} €^{\prime \prime} 10\right),(1,6, \hat{a} \notin " 6)$, and $(4,9, \hat{a} \neq " 6)$ be denoted by A, B, and C respectively.

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(1-0)^{2}+(6-7)^{2}+(-6+10)^{2}} \\
& =\sqrt{(1)^{2}+(-1)^{2}+(4)^{2}} \\
& =\sqrt{1+1+16} \\
& =\sqrt{18} \\
& =3 \sqrt{2} \\
\mathrm{BC} & =\sqrt{(4-1)^{2}+(9-6)^{2}+(-6+6)^{2}} \\
& =\sqrt{(3)^{2}+(3)^{2}} \\
& =\sqrt{9+9}=\sqrt{18}=3 \sqrt{2} \\
\mathrm{CA} & =\sqrt{(0-4)^{2}+(7-9)^{2}+(-10+6)^{2}} \\
& =\sqrt{(-4)^{2}+(-2)^{2}+(-4)^{2}} \\
& =\sqrt{16+4+16}=\sqrt{36}=6
\end{aligned}
$$

Here, $A B=B C \neq C A$
Thus, the given points are the vertices of an isosceles triangle.
(ii) Let $(0,7,10)$, ($\mathfrak{€} €$ " $1,6,6$), and ($\mathfrak{a ̂} €^{\prime 4} 4,9,6$) be denoted by A, B, and C respectively.

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(-1-0)^{2}+(6-7)^{2}+(6-10)^{2}} \\
& =\sqrt{(-1)^{2}+(-1)^{2}+(-4)^{2}} \\
& =\sqrt{1+1+16}=\sqrt{18} \\
& =3 \sqrt{2}
\end{aligned}
$$

$$
\mathrm{BC}=\sqrt{(-4+1)^{2}+(9-6)^{2}+(6-6)^{2}}
$$

$$
=\sqrt{(-3)^{2}+(3)^{2}+(0)^{2}}
$$

$$
=\sqrt{9+9}=\sqrt{18}
$$

$$
=3 \sqrt{2}
$$

$$
\begin{aligned}
\mathrm{CA} & =\sqrt{(0+4)^{2}+(7-9)^{2}+(10-6)^{2}} \\
& =\sqrt{(4)^{2}+(-2)^{2}+(4)^{2}} \\
& =\sqrt{16+4+16} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

Now, $\mathrm{AB}^{2}+\mathrm{BC}^{2}=(3 \sqrt{2})^{2}+(3 \sqrt{2})^{2}=18+18=36=\mathrm{AC}^{2}$
Therefore, by Pythagoras theorem, ABC is a right triangle.
Hence, the given points are the vertices of a right-angled triangle.
(iii) Let (â€"1, 2, 1), (1, â€" 2,5$),(4, \hat{a} €$ " 7,8$)$, and $(2, ~ a ̂ € " 3,4)$ be denoted by A, B, C, and D respectively.

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{(1+1)^{2}+(-2-2)^{2}+(5-1)^{2}} \\
& =\sqrt{4+16+16} \\
& =\sqrt{36} \\
& =6
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{BC} & =\sqrt{(4-1)^{2}+(-7+2)^{2}+(8-5)^{2}} \\
& =\sqrt{9+25+9}=\sqrt{43}
\end{aligned}
$$

$$
\mathrm{CD}=\sqrt{(2-4)^{2}+(-3+7)^{2}+(4-8)^{2}}
$$

$$
=\sqrt{4+16+16}
$$

$$
=\sqrt{36}
$$

$$
=6
$$

DA $=\sqrt{(-1-2)^{2}+(2+3)^{2}+(1-4)^{2}}$

$$
=\sqrt{9+25+9}=\sqrt{43}
$$

Here, $A B=C D=6, B C=A D=\sqrt{43}$
Hence, the opposite sides of quadrilateral ABCD, whose vertices are taken in order, are equal.
Therefore, $A B C D$ is a parallelogram.
Hence, the given points are the vertices of a parallelogram.

Find the equation of the set of points which are equidistant from the points $(1,2,3)$ and $(3,2,-1)$.

Answer :

Let $\mathrm{P}(x, y, z)$ be the point that is equidistant from points $\mathrm{A}(1,2,3)$ and $\mathrm{B}\left(3,2\right.$, â " $\left.^{\prime} 1\right)$.
Accordingly, $\mathrm{PA}=\mathrm{PB}$
$\Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}$
$\Rightarrow(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=(x-3)^{2}+(y-2)^{2}+(z+1)^{2}$
$\Rightarrow x^{2} \hat{a} €^{\prime \prime} 2 x+1+y^{2} \hat{a ̂} €^{\prime \prime} 4 y+4+z^{2} \hat{a} €^{\prime \prime} 6 z+9=x^{2} \hat{a} €^{\prime \prime} 6 x+9+y^{2} \hat{a} €^{\prime \prime} 4 y+4+z^{2}+2 z+1$
\Rightarrow â€" $2 x$ â€" $4 y$ â€" $6 z+14=$ â€" $6 x$ â€" $4 y+2 z+14$
\Rightarrow â€" $2 x$ â€" $6 z+6 x$ â€" $2 z=0$
$\Rightarrow 4 x$ â€" $8 z=0$
$\Rightarrow x$ â€" $2 z=0$
Thus, the required equation is x â€" $2 z=0$.

Q5 :
Find the equation of the set of points P, the sum of whose distances from $A(4,0,0)$ and $B(-4,0,0)$ is equal to 10.

Answer :

Let the coordinates of P be (x, y, z).
The coordinates of points A and B are $(4,0,0)$ and ($\left.\hat{a} \notin{ }^{\prime \prime} 4,0,0\right)$ respectively.
It is given that $P A+P B=10$.

$$
\begin{aligned}
& \Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}+\sqrt{(x+4)^{2}+y^{2}+z^{2}}=10 \\
& \Rightarrow \sqrt{(x-4)^{2}+y^{2}+z^{2}}=10-\sqrt{(x+4)^{2}+y^{2}+z^{2}}
\end{aligned}
$$

On squaring both sides, we obtain

$$
\begin{aligned}
& \Rightarrow(x-4)^{2}+y^{2}+z^{2}=100-20 \sqrt{(x+4)^{2}+y^{2}+z^{2}}+(x+4)^{2}+y^{2}+z^{2} \\
& \Rightarrow x^{2}-8 x+16+y^{2}+z^{2}=100-20 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}+x^{2}+8 x+16+y^{2}+z^{2} \\
& \Rightarrow 20 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}=100+16 x \\
& \Rightarrow 5 \sqrt{x^{2}+8 x+16+y^{2}+z^{2}}=(25+4 x)
\end{aligned}
$$

On squaring both sides again, we obtain
$25\left(x^{2}+8 x+16+y^{2}+z^{2}\right)=625+16 x^{2}+200 x$
$\Rightarrow 25 x^{2}+200 x+400+25 y^{2}+25 z^{2}=625+16 x^{2}+200 x$
$\Rightarrow 9 x^{2}+25 y^{2}+25 z^{2} \hat{a ̂} €^{\prime \prime} 225=0$
Thus, the required equation is $9 x^{2}+25 y^{2}+25 z^{2}$ â $\epsilon^{\prime \prime} 225=0$.

