Exercise 12.2: Solutions of Questions on Page Number: 273

Q1:

Find the distance between the following pairs of points:

- (i) (2, 3, 5) and (4, 3, 1) (ii) (-3, 7, 2) and (2, 4, -1)
- (iii) (-1, 3, -4) and (1, -3, 4) (iv) (2, -1, 3) and (-2, 1, 3)

Answer:

The distance between points $P(x_1, y_1, z_1)$ and $P(x_2, y_2, z_2)$ is given

PQ =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

(i) Distance between points (2, 3, 5) and (4, 3, 1)

$$=\sqrt{(4-2)^2+(3-3)^2+(1-5)^2}$$

$$= \sqrt{(2)^2 + (0)^2 + (-4)^2}$$

$$=\sqrt{4+16}$$

$$=\sqrt{20}$$

$$=2\sqrt{5}$$

(ii) Distance between points (â§"3, 7, 2) and (2, 4, â§"1)

$$= \sqrt{(2+3)^2 + (4-7)^2 + (-1-2)^2}$$

$$= \sqrt{(5)^2 + (-3)^2 + (-3)^2}$$

$$= \sqrt{25+9+9}$$

$$= \sqrt{43}$$

(iii) Distance between points (â€"1, 3, â€"4) and (1, â€"3, 4)

$$= \sqrt{(1+1)^2 + (-3-3)^2 + (4+4)^2}$$
$$= \sqrt{(2)^2 + (-6)^3 + (8)^2}$$
$$= \sqrt{4+36+64} = \sqrt{104} = 2\sqrt{26}$$

(iv) Distance between points (2, â€"1, 3) and (â€"2, 1, 3)

$$= \sqrt{(-2-2)^2 + (1+1)^2 + (3-3)^2}$$

$$= \sqrt{(-4)^2 + (2)^2 + (0)^2}$$

$$= \sqrt{16+4}$$

$$= \sqrt{20}$$

$$= 2\sqrt{5}$$

Q2:

Show that the points (-2, 3, 5), (1, 2, 3) and (7, 0, -1) are collinear.

Answer:

Let points (â€"2, 3, 5), (1, 2, 3), and (7, 0, â€"1) be denoted by P, Q, and R respectively.

Points P, Q, and R are collinear if they lie on a line.

$$PQ = \sqrt{(1+2)^2 + (2-3)^2 + (3-5)^2}$$
$$= \sqrt{(3)^2 + (-1)^2 + (-2)^2}$$
$$= \sqrt{9+1+4}$$
$$= \sqrt{14}$$

$$QR = \sqrt{(7-1)^2 + (0-2)^2 + (-1-3)^2}$$

$$= \sqrt{(6)^2 + (-2)^2 + (-4)^2}$$

$$= \sqrt{36 + 4 + 16}$$

$$= \sqrt{56}$$

$$= 2\sqrt{14}$$

$$PR = \sqrt{(7+2)^{2} + (0-3)^{2} + (-1-5)^{2}}$$

$$= \sqrt{(9)^{2} + (-3)^{2} + (-6)^{2}}$$

$$= \sqrt{81+9+36}$$

$$= \sqrt{126}$$

$$= 3\sqrt{14}$$

Here, PQ + QR = $\sqrt{14} + 2\sqrt{14} = 3\sqrt{14} = PR$

Hence, points P(â€"2, 3, 5), Q(1, 2, 3), and R(7, 0, â€"1) are collinear.

Q3:

Verify the following:

- (i) (0, 7, -10), (1, 6, -6) and (4, 9, -6) are the vertices of an isosceles triangle.
- (ii) (0, 7, 10), (-1, 6, 6) and (-4, 9, 6) are the vertices of a right angled triangle.
- (iii) (-1, 2, 1), (1, -2, 5), (4, -7, 8) and (2, -3, 4) are the vertices of a parallelogram.

Answer:

(i) Let points (0, 7, â€"10), (1, 6, â€"6), and (4, 9, â€"6) be denoted by A, B, and C respectively.

$$AB = \sqrt{(1-0)^2 + (6-7)^2 + (-6+10)^2}$$

$$= \sqrt{(1)^2 + (-1)^2 + (4)^2}$$

$$= \sqrt{1+1+16}$$

$$= \sqrt{18}$$

$$= 3\sqrt{2}$$

BC =
$$\sqrt{(4-1)^2 + (9-6)^2 + (-6+6)^2}$$

= $\sqrt{(3)^2 + (3)^2}$
= $\sqrt{9+9} = \sqrt{18} = 3\sqrt{2}$

$$CA = \sqrt{(0-4)^2 + (7-9)^2 + (-10+6)^2}$$
$$= \sqrt{(-4)^2 + (-2)^2 + (-4)^2}$$
$$= \sqrt{16+4+16} = \sqrt{36} = 6$$

Here, AB = BC ≠ CA

Thus, the given points are the vertices of an isosceles triangle.

(ii) Let (0, 7, 10), (â€"1, 6, 6), and (â€"4, 9, 6) be denoted by A, B, and C respectively.

$$AB = \sqrt{(-1-0)^2 + (6-7)^2 + (6-10)^2}$$

$$= \sqrt{(-1)^2 + (-1)^2 + (-4)^2}$$

$$= \sqrt{1+1+16} = \sqrt{18}$$

$$= 3\sqrt{2}$$

BC =
$$\sqrt{(-4+1)^2 + (9-6)^2 + (6-6)^2}$$

= $\sqrt{(-3)^2 + (3)^2 + (0)^2}$
= $\sqrt{9+9} = \sqrt{18}$
= $3\sqrt{2}$

$$CA = \sqrt{(0+4)^2 + (7-9)^2 + (10-6)^2}$$

$$= \sqrt{(4)^2 + (-2)^2 + (4)^2}$$

$$= \sqrt{16+4+16}$$

$$= \sqrt{36}$$

$$= 6$$

Now,
$$AB^2 + BC^2 = (3\sqrt{2})^2 + (3\sqrt{2})^2 = 18 + 18 = 36 = AC^2$$

Therefore, by Pythagoras theorem, ABC is a right triangle.

Hence, the given points are the vertices of a right-angled triangle.

(iii) Let (â€"1, 2, 1), (1, â€"2, 5), (4, â€"7, 8), and (2, â€"3, 4) be denoted by A, B, C, and D respectively.

$$AB = \sqrt{(1+1)^2 + (-2-2)^2 + (5-1)^2}$$

$$= \sqrt{4+16+16}$$

$$= \sqrt{36}$$

$$= 6$$

BC =
$$\sqrt{(4-1)^2 + (-7+2)^2 + (8-5)^2}$$

= $\sqrt{9+25+9} = \sqrt{43}$

$$CD = \sqrt{(2-4)^2 + (-3+7)^2 + (4-8)^2}$$

$$= \sqrt{4+16+16}$$

$$= \sqrt{36}$$

$$= 6$$

DA =
$$\sqrt{(-1-2)^2 + (2+3)^2 + (1-4)^2}$$

= $\sqrt{9+25+9} = \sqrt{43}$

Here, AB = CD = 6, BC = AD =
$$\sqrt{43}$$

Hence, the opposite sides of quadrilateral ABCD, whose vertices are taken in order, are equal.

Therefore, ABCD is a parallelogram.

Hence, the given points are the vertices of a parallelogram.

Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, -1).

Answer:

Let P (x, y, z) be the point that is equidistant from points A(1, 2, 3) and B(3, 2, $\hat{a} \in 1$).

Accordingly, PA = PB

$$\Rightarrow PA^2 = PB^2$$

$$\Rightarrow (x-1)^2 + (y-2)^2 + (z-3)^2 = (x-3)^2 + (y-2)^2 + (z+1)^2$$

$$\Rightarrow x^2 \, \hat{a} \in 2x + 1 + y^2 \, \hat{a} \in 4y + 4 + z^2 \, \hat{a} \in 6z + 9 = x^2 \, \hat{a} \in 6x + 9 + y^2 \, \hat{a} \in 4y + 4 + z^2 + 2z + 1$$

⇒
$$\hat{a} \in 2x \hat{a} \in 4y \hat{a} \in 6z + 14 = \hat{a} \in 6x \hat{a} \in 4y + 2z + 14$$

⇒
$$\hat{a}$$
€" $2x \hat{a}$ €" $6z + 6x \hat{a}$ €" $2z = 0$

Thus, the required equation is $x \hat{a} \in 2z = 0$.

Q5:

Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (-4, 0, 0) is equal to 10.

Answer:

Let the coordinates of P be (x, y, z).

The coordinates of points A and B are (4, 0, 0) and (â€"4, 0, 0) respectively.

It is given that PA + PB = 10.

$$\Rightarrow \sqrt{(x-4)^2 + y^2 + z^2} + \sqrt{(x+4)^2 + y^2 + z^2} = 10$$

$$\Rightarrow \sqrt{(x-4)^2 + y^2 + z^2} = 10 - \sqrt{(x+4)^2 + y^2 + z^2}$$

On squaring both sides, we obtain

$$\Rightarrow (x-4)^2 + y^2 + z^2 = 100 - 20\sqrt{(x+4)^2 + y^2 + z^2} + (x+4)^2 + y^2 + z^2$$

$$\Rightarrow x^2 - 8x + 16 + y^2 + z^2 = 100 - 20\sqrt{x^2 + 8x + 16 + y^2 + z^2} + x^2 + 8x + 16 + y^2 + z^2$$

$$\Rightarrow 20\sqrt{x^2 + 8x + 16 + y^2 + z^2} = 100 + 16x$$

$$\Rightarrow 5\sqrt{x^2 + 8x + 16 + y^2 + z^2} = (25 + 4x)$$

On squaring both sides again, we obtain

$$25(x^2 + 8x + 16 + y^2 + z^2) = 625 + 16x^2 + 200x$$

$$\Rightarrow 25x^2 + 200x + 400 + 25y^2 + 25z^2 = 625 + 16x^2 + 200x$$

$$\Rightarrow$$
 9x² + 25y² + 25z² â€" 225 = 0

Thus, the required equation is $9x^2 + 25y^2 + 25z^2$ $\mathbf{\hat{a}} \in 225 = 0$.

