Exercise 9B

1.

Sol:

We prepare the cumulative frequency table, as shown below:

Age (in years)	Number of patients $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative Frequency (cf)
$0-15$	5	5
$15-30$	20	25
$30-45$	40	65
$45-60$	50	115
$60-75$	25	140
Total	$\mathrm{N}=\sum f_{i}=140$	

Now, $\mathrm{N}=140 \Rightarrow \frac{N}{2}=70$.
The cumulative frequency just greater than 70 is 115 and the corresponding class is $45-$ 60.

Thus, the median class is $45-60$.
$\therefore l=45, \mathrm{~h}=15, \mathrm{f}=50, \mathrm{~N}=140$ and $\mathrm{cf}=65$.
Now,

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h} \\
& =45+\left(\frac{\frac{140}{2}-65}{50}\right) \times 15 \\
& =45+\left(\frac{70-65}{50}\right) \times 15 \\
& =45+1.5 \\
& =46.5
\end{aligned}
$$

Hence, the median age is 46.5 years.
2.

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$0-7$	3	3
$7-14$	4	7
$14-21$	7	14
$21-28$	11	25
$28-35$	0	25
$35-42$	16	41
$42-49$	9	50
	$\mathrm{~N}=\sum f=50$	

Now, $\mathrm{N}=50 \Rightarrow \frac{N}{2}=25$.
The cumulative frequency just greater than 25 is 41 and the corresponding class is $35-42$.
Thus, the median class is $35-42$.
$\therefore l=35, \mathrm{~h}=7, \mathrm{f}=16$, cf $=$ c.f. of preceding class $=25$ and $\frac{N}{2}=25$.
Now,

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h} \\
& =35+7 \times\left(\frac{25-25}{16}\right) \\
& =35+0 \\
& =35
\end{aligned}
$$

Hence, the median age is 46.5 years.

3.

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$0-100$	40	40
$100-200$	32	72
$200-300$	48	120
$300-400$	22	142
$400-500$	8	150
	$\mathrm{~N}=\sum f=150$	

Now, $\mathrm{N}=150$
$\Rightarrow \frac{N}{2}=75$.
The cumulative frequency just greater than 75 is 120 and the corresponding class is 200 300.

Thus, the median class is $200-300$.
$\therefore l=200, \mathrm{~h}=100, \mathrm{f}=48, \mathrm{cf}=$ c.f. of preceding class $=72$ and $\frac{N}{2}=75$.
Now,
Median, $\mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\}$

$$
\begin{aligned}
& =200+\left\{100 \times\left(\frac{75-72}{48}\right)\right\} \\
& =200+6.25 \\
& =206.25
\end{aligned}
$$

Hence, the median daily wage income of the workers is Rs 206.25.

4.

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$5-10$	5	5
$10-15$	6	11
$15-20$	15	26
$20-25$	10	36
$25-30$	5	41
$30-35$	4	45
$35-40$	2	47
$40-45$	2	49
	$\mathrm{~N}=\sum f=49$	

Now, N = 49
$\Rightarrow \frac{N}{2}=24.5$.
The cumulative frequency just greater than 24.5 is 26 and the corresponding class is 15 20.

Thus, the median class is $15-20$.
$\therefore l=15, \mathrm{~h}=5, \mathrm{f}=15, \mathrm{cf}=$ c.f. of preceding class $=11$ and $\frac{N}{2}=24.5$.
Now,
Median, $\mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\}$

$$
=15+\left\{5 \times\left(\frac{24.5-11}{15}\right)\right\}
$$

$$
\begin{aligned}
& =15+4.5 \\
& =19.5
\end{aligned}
$$

Hence, the median $=19.5$.
5.

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$65-85$	4	4
$85-105$	5	9
$105-125$	13	22
$125-145$	20	42
$145-165$	14	56
$165-185$	7	63
$185-205$	4	67
	$\mathrm{~N}=\sum f=67$	

Now, $\mathrm{N}=67$
$\Rightarrow \frac{N}{2}=33.5$.
The cumulative frequency just greater than 33.5 is 42 and the corresponding class is 125 145.

Thus, the median class is $125-145$.
$\therefore l=125, \mathrm{~h}=20, \mathrm{f}=20, \mathrm{cf}=$ c.f. of preceding class $=22$ and $\frac{N}{2}=33.5$.
Now,
Median, $\mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\}$

$$
\begin{aligned}
& =125+\left\{20 \times\left(\frac{33.5-22}{20}\right)\right\} \\
& =125+11.5 \\
& =136.5
\end{aligned}
$$

Hence, the median $=136.5$.
6.

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$135-140$	6	6
$140-145$	10	16
$145-150$	18	34
$150-155$	22	56
$155-160$	20	76
$160-165$	15	91
$165-170$	6	97
$170-175$	3	100
	$\mathrm{~N}=\sum f=100$	

Now, $\mathrm{N}=100$
$\Rightarrow \frac{N}{2}=50$.
The cumulative frequency just greater than 50 is 56 and the corresponding class is 150 155.

Thus, the median class is $150-155$.
$\therefore l=150, \mathrm{~h}=5, \mathrm{f}=22$, cf $=$ c.f. of preceding class $=34$ and $\frac{N}{2}=50$.
Now,

$$
\begin{aligned}
\text { Median, } & \mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\} \\
= & 150+\left\{5 \times\left(\frac{50-34}{22}\right)\right\} \\
= & 150+3.64 \\
= & 153.64
\end{aligned}
$$

Hence, the median $=153.64$.
7.

Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative Frequency (cf)
$0-10$	5	5
$10-20$	25	30
$20-30$	x	$\mathrm{x}+30$
$30-40$	18	$\mathrm{x}+48$
$40-50$	7	$\mathrm{x}+55$

Median is 24 which lies in $20-30$
\therefore Median class $=20-30$
Let the unknown frequency be x .

Here, $l=20, \frac{n}{2}=\frac{x+55}{2}$, c.f. of the preceding class $=\mathrm{c} . \mathrm{f}=30, \mathrm{f}=\mathrm{x}, \mathrm{h}=10$
Now,
Median, $\mathrm{M}=l+\frac{\frac{n}{2}-c f}{f} \times \mathrm{h}$

$$
\begin{aligned}
& \Rightarrow 24=20+\frac{\frac{x+55}{2}-30}{x} \times 10 \\
& \Rightarrow 24=20+\frac{\frac{x+55-60}{2}}{x} \times 10 \\
& \Rightarrow 24=20+\frac{x-5}{2 x} \times 10 \\
& \Rightarrow 24=20+\frac{5 x-25}{x} \\
& \Rightarrow 24=\frac{20+5 x-25}{x} \\
& \Rightarrow 24 \mathrm{x}=25 \mathrm{x}-25 \\
& \Rightarrow-\mathrm{x}=-25 \\
& \Rightarrow \mathrm{x}=25
\end{aligned}
$$

Hence, the unknown frequency is 25 .
8.

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$0-5$	12	12
$5-10$	a	$12+\mathrm{a}$
$10-15$	12	$24+\mathrm{a}$
$15-20$	15	$39+\mathrm{a}$
$20-25$	b	$39+\mathrm{a}+\mathrm{b}$
$25-30$	6	$45+\mathrm{a}+\mathrm{b}$
$30-35$	6	$51+\mathrm{a}+\mathrm{b}$
$35-40$	4	$55+\mathrm{a}+\mathrm{b}$
Total	$\mathrm{N}=\sum f_{i}=70$	

Let a and b be the missing frequencies of class intervals $5-10$ and $20-25$ respectively.
Then, $55+\mathrm{a}+\mathrm{b}=70 \Rightarrow \mathrm{a}+\mathrm{b}=15$.
Median is 16 , which lies in $15-20$. So, the median class is $15-20$.
$\therefore l=15, \mathrm{~h}=5, \mathrm{~N}=70, \mathrm{f}=15$ and $\mathrm{cf}=24+\mathrm{a}$
Now,
Median, $\mathrm{M}=l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h}$

$$
\begin{aligned}
& \Rightarrow 16=15+\left(\frac{\frac{70}{2}-(24+a)}{15}\right) \times 5 \\
& \Rightarrow 16=15+\left(\frac{35-24-a}{3}\right) \\
& \Rightarrow 16=15+\left(\frac{11-a}{3}\right) \\
& \Rightarrow 16-15=\frac{11-a}{3} \\
& \Rightarrow 1 \times 3=11-\mathrm{a} \\
& \Rightarrow \mathrm{a}=11-3 \\
& \Rightarrow \mathrm{a}=8
\end{aligned}
$$

$\therefore \mathrm{b}=15-\mathrm{a} \quad$ [From (1)]
$\Rightarrow \mathrm{b}=15-8$
$\Rightarrow \mathrm{b}=7$
Hence, $\mathrm{a}=8$ and $\mathrm{b}=7$.
9.

Sol:

We prepare the cumulative frequency table, as shown below:

Runs scored	Number of batsman $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative Frequency (cf)
$2500-3500$	5	5
$3500-4500$	x	$5+\mathrm{x}$
$4500-5500$	y	$5+\mathrm{x}+\mathrm{y}$
$5500-6500$	12	$17+\mathrm{x}+\mathrm{y}$
$6500-7500$	6	$23+\mathrm{x}+\mathrm{y}$
$7500-8500$	2	$25+\mathrm{x}+\mathrm{y}$
Total	$\mathrm{N}=\sum f_{i}=60$	

Let x and y be the missing frequencies of class intervals $3500-4500$ respectively. Then,
$25+x+y=60 \Rightarrow x+y=35$
Median is 5000, which lies in $4500-5500$. So, the median class is $4500-5500$.
$\therefore l=4500, \mathrm{~h}=1000, \mathrm{~N}=60, \mathrm{f}=\mathrm{y}$ and $\mathrm{cf}=5+\mathrm{x}$
Now,
Median, $\mathrm{M}=l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h}$

$$
\begin{aligned}
& \Rightarrow 5000=4500+\left(\frac{\frac{60}{2}-(5+x)}{y}\right) \times 1000 \\
& \Rightarrow 5000-4500=\left(\frac{30-5-x}{y}\right) \times 1000 \\
& \Rightarrow 500=\left(\frac{25-x}{y}\right) \times 1000 \\
& \Rightarrow \mathrm{y}=50-2 \mathrm{x} \\
& \Rightarrow 35-\mathrm{x}=50-2 \mathrm{x} \quad[\text { From (1)] } \\
& \Rightarrow 2 \mathrm{x}-\mathrm{x}=50-35 \\
& \Rightarrow \mathrm{x}=15
\end{aligned}
$$

$\therefore \mathrm{y}=35-\mathrm{x} \quad[$ From (1)]
$\Rightarrow y=35-15$
$\Rightarrow \mathrm{y}=20$
Hence, $\mathrm{x}=15$ and $\mathrm{y}=20$.
10.

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$0-10$	f_{1}	f_{1}
$10-20$	5	$\mathrm{f}_{1}+5$
$20-30$	9	$\mathrm{f}_{1}+14$
$30-40$	12	$\mathrm{f}_{1}+26$
$40-50$	f_{2}	$\mathrm{f}_{1}+\mathrm{f}_{2}+26$
$50-60$	3	$\mathrm{f}_{1}+\mathrm{f}_{2}+29$
$60-70$	2	$\mathrm{f}_{1}+\mathrm{f}_{2}+31$
	$\mathrm{~N}=\sum f=40$	

Now, $\mathrm{f}_{1}+\mathrm{f}_{2}+31=40$
$\Rightarrow \mathrm{f}_{1}+\mathrm{f}_{2}=9$
$\Rightarrow \mathrm{f}_{2}=9-\mathrm{f}_{1}$
The median is 32.5 which lies in $30-40$.
Hence, median class $=30-40$
Here, $l=30, \frac{N}{2}=\frac{40}{2}=20, \mathrm{f}=12$ and $\mathrm{cf}=14+\mathrm{f}_{1}$
Now, median $=32.5$
$\Rightarrow l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h}=32.5$
$\Rightarrow 30+\left(\frac{20-\left(14+f_{1}\right)}{12}\right) \times 10=32.5$
$\Rightarrow \frac{6-f_{1}}{12} \times 10=2.5$
$\Rightarrow \frac{60-10 f_{1}}{12}=2.5$
$\Rightarrow 60-10 f_{1}=30$
$\Rightarrow 10 f_{1}=30$
$\Rightarrow f_{1}=3$
From equation (i), we have:
$\mathrm{f}_{2}=9-3$
$\Rightarrow \mathrm{f}_{2}=6$
11.

Sol: First, we will convert the data into exclusive form.

Class	Frequency (f)	Cumulative Frequency (cf)
$18.5-25.5$	35	35
$25.5-32.5$	96	131
$32.5-39.5$	68	199
$39.5-46.5$	102	301
$46.5-53.5$	35	336
$53.5-60.5$	4	340
	$\mathrm{~N}=\sum f=340$	

Now, $\mathrm{N}=340$
$\Rightarrow \frac{N}{2}=70$.
The cumulative frequency just greater than 170 is 199 and the corresponding class is 32.5 39.5 .

Thus, the median class is $32.5-39.5$.
$\therefore l=32.5, \mathrm{~h}=7, \mathrm{f}=68, \mathrm{cf}=$ c.f. of preceding class $=131$ and $\frac{N}{2}=170$.
\therefore Median, $\mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\}$

$$
\begin{aligned}
& =32.5+\left\{7 \times\left(\frac{170-131}{68}\right)\right\} \\
& =32.5+4.01 \\
& =36.51
\end{aligned}
$$

Hence, the median $=36.51$.
12.

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$60.5-70.5$	5	5
$70.5-80.5$	15	20
$80.5-90.5$	20	40
$90.5-100.5$	30	70
$100.5-110.5$	20	90
$110.5-120.5$	8	98
	$\mathrm{~N}=\sum f=98$	

Now, N = 98
$\Rightarrow \frac{N}{2}=49$.
The cumulative frequency just greater than 49 is 70 and the corresponding class is 90.5 100.5.

Thus, the median class is $90.5-100.5$.
Now, $l=90.5, \mathrm{~h}=10, \mathrm{f}=30, \mathrm{cf}=$ c.f. of preceding class $=40$ and $\frac{N}{2}=49$.

$$
\begin{aligned}
& \therefore \text { Median, } \mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\} \\
& \quad=90.5+\left\{10 \times\left(\frac{49-40}{30}\right)\right\} \\
& \quad=90.5+3 \\
& \quad=93.5
\end{aligned}
$$

Hence, median wages $=$ Rs. 93.50.
13.

Sol:

Converting into exclusive form, we get:

Class	Frequency (f)	Cumulative Frequency (cf)
$0.5-5.5$	7	7
$5.5-10.5$	10	17
$10.5-15.5$	16	33
$15.5-20.5$	32	65
$20.5-25.5$	24	89
$25.5-30.5$	16	105
$30.5-35.5$	11	116

$35.5-40.5$	5	121
$40.5-45.5$	2	123
	$\mathrm{~N}=\sum f=123$	

Now, $\mathrm{N}=123$
$\Rightarrow \frac{N}{2}=61.5$.
The cumulative frequency just greater than 61.5 is 65 and the corresponding class is 15.5 20.5 .

Thus, the median class is $15.5-20.5$.
$\therefore l=15.5, \mathrm{~h}=5, \mathrm{f}=32, \mathrm{cf}=$ c.f. of preceding class $=33$ and $\frac{N}{2}=61.5$.

$$
\begin{aligned}
& \therefore \text { Median, } \mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\} \\
& \quad=15.5+\left\{5 \times\left(\frac{61.5-33}{32}\right)\right\} \\
& \quad=15.5+4.45 \\
& \quad=19.95
\end{aligned}
$$

Hence, median $=19.95$.
14.

Sol:

Class	Cumulative frequency (cf)	Frequency (f)
$0-10$	12	12
$10-20$	32	20
$20-30$	57	25
$30-40$	80	23
$40-50$	92	12
$50-60$	116	24
$60-70$	164	48
$70-80$	200	36
		$\mathrm{~N}=\sum f=200$

Now, $\mathrm{N}=200$
$\Rightarrow \frac{N}{2}=100$.

The cumulative frequency just greater than 100 is 116 and the corresponding class is $50-$ 60.

Thus, the median class is $50-60$.
$\therefore l=50, \mathrm{~h}=10, \mathrm{f}=24, \mathrm{cf}=$ c.f. of preceding class $=92$ and $\frac{N}{2}=100$.
\therefore Median, $\mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\}$

$$
\begin{aligned}
& =50+\left\{10 \times\left(\frac{100-92}{24}\right)\right\} \\
& =50+3.33 \\
& =53.33
\end{aligned}
$$

Hence, median $=53.33$.

