Exercise 9A

1. If the mean of 5 observation $x, x+2, x+4, x+6$ and $x+8$, find the value of x.

Sol:

Mean of given observations $=\frac{\text { sum of given observations }}{\text { total number of observations }}$
$\therefore 11=\frac{x+(x+2)+(x+4)+(x+6)+(x+8)}{5}$
$\Rightarrow 55=5 \mathrm{x}+20$
$\Rightarrow 5 \mathrm{x}=55-20$
$\Rightarrow 5 \mathrm{x}=35$
$\Rightarrow \mathrm{x}=\frac{35}{5}$
$\Rightarrow \mathrm{x}=7$
Hence, the value of x is 7 .
2. If the mean of 25 observations is 27 and each observation is decreased by 7 , what will be new mean?

Sol:

Mean of given observations $=\frac{\text { sum of given observations }}{\text { total number of observations }}$
Mean of 25 observations $=27$
\therefore Sum of 25 observations $=27 \times 25=675$
If 7 is subtracted from every number, then the sum $=675-(25 \times 7)$

$$
\begin{aligned}
& =675-175 \\
& =500
\end{aligned}
$$

Then, new mean $=\frac{500}{25}=20$
Thus, the new mean will be 20 .
3. Compute the mean for following data:

Class	$1-3$	$3-5$	$5-7$	$7-9$
Frequency	12	22	27	19

Sol:
The given data is shown as follows:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$1-3$	12	2	24
$3-5$	22	4	88
$5-7$	27	6	162
$7-9$	19	8	152
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=80$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=426$

The mean of given data is given by

$$
\begin{aligned}
\bar{x} & =\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}} \\
& =\frac{426}{80} \\
& =5.325
\end{aligned}
$$

Thus, the mean of the following data is 5.325.
4. Find the mean using direct method:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	7	5	6	12	8	2

Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \times \mathrm{x}_{\mathrm{i}}$
$0-10$	7	5	35
$10-20$	5	15	75
$20-30$	6	25	150
$30-40$	12	35	420
$40-50$	8	45	360
$50-60$	2	55	110
	$\sum \mathrm{f}_{\mathrm{i}}=40$		$\sum\left(f_{i} \times x_{i}\right)=1150$

\therefore Mean, $\bar{x}=\frac{\sum\left(f_{i} \times x_{i}\right)}{\sum f_{i}}$

$$
=\frac{1150}{40}
$$

$$
=28.75
$$

$$
\therefore \bar{x}=28.75
$$

5. Find the mean of the following data, using direct method:

Class	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$
Frequency	6	10	8	12	4

Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{x}_{\mathrm{i}}\right)$
$25-35$	6	30	180
$35-45$	10	40	400
$45-55$	8	50	400
$55-65$	12	60	720
$65-75$	4	70	280
	$\Sigma \mathrm{f}_{\mathrm{i}}=40$		$\sum\left(f_{i} \times x_{i}\right)=1980$

\therefore Mean, $\bar{x}=\frac{\sum\left(f_{i} \times x_{i}\right)}{\sum f_{i}}$
$=\frac{1980}{40}$
$=49.5$
$\therefore \bar{x}=49.5$
6. Find the mean of the following data, using direct method:

Class	$0-100$	$100-200$	$200-300$	$300-400$	$400-500$
Frequency	6	9	15	12	8

Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{x}_{\mathrm{i}}\right)$
$0-100$	6	50	300
$100-200$	9	150	1350
$200-300$	15	250	3750
$300-400$	12	350	4200
$400-500$	8	450	3600
	$\Sigma \mathrm{f}_{\mathrm{i}}=50$		$\sum\left(f_{i} \times x_{i}\right)=13200$

\therefore Mean, $\bar{x}=\frac{\sum\left(f_{i} \times x_{i}\right)}{\sum f_{i}}$

$$
\begin{gathered}
=\frac{13200}{50} \\
=264
\end{gathered}
$$

$\therefore \bar{x}=264$
7. Using an appropriate method, find the mean of the following frequency distribution:

Class	$84-90$	$90-96$	$96-102$	$102-108$	$108-114$	$114-120$
Frequency	8	10	16	23	12	11

Which method did you use and why?

Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\left(\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)$
$84-90$	8	87	696
$90-96$	10	93	930
$96-102$	16	99	1584
$102-108$	23	105	2415
$108-114$	12	111	1332
$114-120$	11	117	1287
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=80$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=8244$

The mean of the data is given by,

$$
\begin{aligned}
\bar{x} & =\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}} \\
& =\frac{8244}{80} \\
& =103.05
\end{aligned}
$$

Thus, the mean of the following data is 103.05 .
8. If the mean of the following frequency distribution is 24 , find the value of p.

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	3	4	P	3	2

Sol:

The given data is shown as follows:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\left(\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)$
$0-10$	3	5	15
$10-20$	4	15	60
$20-30$	p	25	25 p
$30-40$	3	35	105
$40-50$	2	45	90
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=12+\mathrm{p}$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=270+25 \mathrm{p}$

The mean of the given data is given by,
$\bar{x}=\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}}$
$\Rightarrow 24=\frac{270+25 p}{12+p}$
$\Rightarrow 24(12+\mathrm{p})=270+25 \mathrm{p}$
$\Rightarrow 288+24 \mathrm{p}=270+25 \mathrm{p}$
$\Rightarrow 25 \mathrm{p}-24 \mathrm{p}=288-270$
$\Rightarrow \mathrm{p}=18$
Hence, the value of p is 18 .
9. The following distribution shows the daily pocket allowance of children of a locality. If the mean pocket allowance is ₹ 18 , find the missing frequency f .

Daily pocket allowance (in ₹)	$11-13$	$13-15$	$15-17$	$17-19$	$19-21$	$21-23$	$23-25$

Number of children	7	6	9	13	f	5	4

Sol:

The given data is shown as follows:

Daily pocket allowance (in ₹)	Number of children $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark ($\left.\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$11-13$	7	12	84
$13-15$	6	14	84
$15-17$	9	16	144
$17-19$	13	18	234
$19-21$	f	20	20 f
$21-23$	5	22	110
$23-25$	4	24	96
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=44+\mathrm{f}$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=752+20 \mathrm{f}$

The mean of the given data is given by,

$$
\begin{aligned}
& \bar{x}=\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}} \\
& \Rightarrow 18=\frac{750+20 f}{44+f} \\
& \Rightarrow 18(44+\mathrm{f})=752+20 \mathrm{f} \\
& \Rightarrow 792+18 \mathrm{f}=752+20 \mathrm{f} \\
& \Rightarrow 20 \mathrm{f}-18 \mathrm{f}=792-752 \\
& \Rightarrow 2 \mathrm{f}=40 \\
& \Rightarrow \mathrm{f}=20
\end{aligned}
$$

Hence, the value of f is 20 .
10. The mean of following frequency distribution is 54 . Find the value of p.

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Frequency	7	p	10	9	13

Sol:

The given data is shown as follows:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$0-20$	7	10	70
$20-40$	p	30	30 p
$40-60$	10	50	500
$60-80$	9	70	630
$80-100$	13	90	1170
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=39+\mathrm{p}$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=2370+30 \mathrm{p}$

The mean of the given data is given by,

$$
\begin{aligned}
& \bar{x}=\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}} \\
& \Rightarrow 54=\frac{2370+30 p}{39+p} \\
& \Rightarrow 54(39+\mathrm{p})=2370+30 \mathrm{p} \\
& \Rightarrow 2106+54 \mathrm{p}=2370-2106 \\
& \Rightarrow 24 \mathrm{p}=264 \\
& \Rightarrow \mathrm{p}=11
\end{aligned}
$$

Hence, the value of p is 11 .
11. The mean of the following frequency data is 42 , Find the missing frequencies x and y if the sum of frequencies is 100.

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency	7	10	x	13	y	10	14	9

Find x and y.

Sol:

The given data is shown as follows:

Class interval	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$0-10$	7	5	35
$10-20$	10	15	150
$20-30$	x	25	25 x
$30-40$	13	35	455
$40-50$	y	45	45 y
$50-60$	10	55	550
$60-70$	14	65	910
$70-80$	9	75	675
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=63+\mathrm{x}+\mathrm{y}$		$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=2775+25 \mathrm{x}+45 \mathrm{y}$

Sum of the frequencies $=100$
$\Rightarrow \sum_{i} f_{i}=100$
$\Rightarrow 63+x+y=100$
$\Rightarrow x+y=100-63$
$\Rightarrow \mathrm{x}+\mathrm{y}=37$
$\Rightarrow \mathrm{y}=37-\mathrm{x}$
Now, the mean of the given data is given by,
$\bar{x}=\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}}$
$\Rightarrow 42=\frac{2775+25 x+45 y}{100}$
$\Rightarrow 4200=2775+25 x+45 y$
$\Rightarrow 4200-2775=25 x+45 y$
$\Rightarrow 1425=25 \mathrm{x}+45(37-\mathrm{x}) \quad[$ from (1)]
$\Rightarrow 1425=25 \mathrm{x}+1665-45 \mathrm{x}$
$\Rightarrow 20 \mathrm{x}=1665-1425$
$\Rightarrow 20 \mathrm{x}=240$
$\Rightarrow \mathrm{x}=12$
If $x=12$, then $y=37-12=25$
Thus, the value of x is 12 and y is 25 .
12. The daily expenditure of 100 families are given below. Calculate f_{1} and f_{2} if the mean daily expenditure is ₹ 188 .

Expenditure (in ₹)	$140-160$	$160-180$	$180-200$	$200-220$	$220-240$
Number of families	5	25	f_{1}	f_{2}	5

Sol:

The given data is shown as follows:

Expenditure (in ₹)	Number of families $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$140-160$	5	150	750
$160-180$	25	170	4250
$180-200$	f_{1}	190	$190 f_{1}$
$200-220$	f_{2}	210	$210 f_{2}$
$220-240$	5	230	1150
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=35+f_{1}+f_{2}$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=6150+190 f_{1}+$
			$210 f_{2}$

Sum of the frequencies $=100$
$\Rightarrow \sum_{i} f_{i}=100$
$\Rightarrow 35+f_{1}+f_{2}=100$
$\Rightarrow f_{1}+f_{2}=100-35$
$\Rightarrow f_{1}+f_{2}=65$
$\Rightarrow f_{2}=65-f_{1}$
Now, the mean of the given data is given by,
$\bar{x}=\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}}$
$\Rightarrow 188=\frac{6150+190 f_{1}+210 f_{2}}{100}$
$\Rightarrow 18800=6150+190 f_{1}+210 f_{2}$
$\Rightarrow 18800-6150=190 f_{1}+210 f_{2}$
$\Rightarrow 12650=190 f_{1}+210\left(65-f_{1}\right) \quad[$ from (1)]
$\Rightarrow 12650=190 f_{1}-210 f_{1}+13650$
$\Rightarrow 20 f_{1}=13650-12650$
$\Rightarrow 20 f_{1}=1000$
$\Rightarrow f_{1}=50$
If $f_{1}=50$, then $f_{2}=65-50=15$
Thus, the value of f_{1} is 50 and f_{2} is 15 .
13. Find the mean of the following frequency distribution is 57.6 and the total number of observation is 50 .

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	7	f_{1}	12	f_{2}	8	5

Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{x}_{\mathrm{i}}\right)$
$0-20$	7	10	70
$20-40$	f_{1}	30	$30 f_{1}$
$40-60$	12	50	600
$60-80$	$18-f_{1}$	70	$1260-70 f_{1}$
$80-100$	8	90	720
$100-120$	5	110	550
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=50$		$\Sigma\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{x}_{\mathrm{i}}\right)=3200-40 f_{1}$

We have:
$7+f_{1}+12+f_{2}+8+5=50$
$\Rightarrow f_{1}+f_{2}=18$
$\Rightarrow f_{2}=18-f_{1}$
\therefore Mean, $\bar{x}=\frac{\sum_{i}\left(f_{i} \times x_{i}\right)}{\sum_{i} f_{i}}$
$\Rightarrow 57.6=\frac{3200-40 f_{1}}{50}$
$\Rightarrow 40 f_{1}=320$
$\therefore f_{1}=8$
And $f_{2}=18-8$
$\Rightarrow f_{2}=10$
\therefore The missing frequencies are $f_{1}=8$ and $f_{2}=10$.
14. During a medical check-up, the number of heartbeats per minute of 30 patients were recorded and summarized as follows:

Number of heartbeats per minute	$65-68$	$68-71$	$71-74$	$74-77$	$77-80$	$80-83$	$83-86$
Number of patients	2	4	3	8	7	4	2

Find the mean heartbeats per minute for these patients, choosing a suitable method.

Sol:

Using Direct method, the given data is shown as follows:

Number of heartbeats per minute	Number of patients $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$65-68$	2	66.5	133
$68-71$	4	69.5	278
$71-74$	3	72.5	217.5
$74-77$	8	75.5	604
$77-80$	7	78.5	549.5
$80-83$	4	81.5	326
$83-86$	2	84.5	169
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=30$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=2277$

The mean of the data is given by,

$$
\begin{aligned}
\bar{x} & =\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}} \\
& =\frac{2277}{30} \\
& =75.9
\end{aligned}
$$

Thus, the mean heartbeats per minute for these patients is 75.9.
15. Find the mean marks per student, using assumed-mean method:

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Number of Students	12	18	27	20	17	6

Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	Deviation $\left(\mathrm{d}_{\mathrm{i}}\right)$ $\mathrm{d}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-25\right)$	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{d}_{\mathrm{i}}\right)$
$0-10$	12	5	-20	-240
$10-20$	18	15	-10	-180
$20-30$	27	$25=\mathrm{A}$	0	0
$30-40$	20	35	10	200
$40-50$	17	45	20	340
$50-60$	6	55	30	180
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=100$			$\Sigma\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{d}_{\mathrm{i}}\right)=300$

Let $\mathrm{A}=25$ be the assumed mean. Then we have:

$$
\begin{aligned}
& \text { Mean, } \bar{x}=A+\frac{\sum\left(f_{i} \times d_{i}\right)}{\sum f_{i}} \\
& \quad=25+\frac{300}{100} \\
& \quad=28
\end{aligned}
$$

$$
\therefore \bar{x}=28
$$

16. Find the mean of the following frequency distribution, using the assumed-mean method:

Class	$100-120$	$120-140$	$140-160$	$160-180$	$180-200$
Frequency	10	20	30	15	5

Sol:

Class	Frequency ($\left.\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	Deviation $\left(\mathrm{d}_{\mathrm{i}}\right)$ $\mathrm{d}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-150\right)$	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{d}_{\mathrm{i}}\right)$
$100-120$	10	110	-40	-400
$120-140$	20	130	-20	-400
$140-160$	30	$150=\mathrm{A}$	0	0
$160-180$	15	170	20	300
$180-200$	5	190	40	200
	$\Sigma \mathrm{f}_{\mathrm{i}}=80$			$\Sigma\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{d}_{\mathrm{i}}\right)=-300$

Let $\mathrm{A}=150$ be the assumed mean. Then we have:
Mean, $\bar{x}=A+\frac{\sum\left(f_{i} \times d_{i}\right)}{\sum f_{i}}$

$$
\begin{aligned}
& =150-\frac{300}{80} \\
& =150-3.75 \\
\therefore & \bar{x}=146.25
\end{aligned}
$$

17. Find the mean of the following data, using assumed-mean method:

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$
Frequency	20	35	52	44	38	31

Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	Deviation $\left(\mathrm{d}_{\mathrm{i}}\right)$ $\mathrm{d}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}-50\right)$	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{d}_{\mathrm{i}}\right)$
$0-20$	20	10	-40	-800
$20-40$	35	30	-20	-700
$40-60$	52	$50=\mathrm{A}$	0	0
$60-80$	44	70	20	880
$80-100$	38	90	40	1520
$100-120$	31	110	60	1860
	$\Sigma \mathrm{f}_{\mathrm{i}}=220$			$\Sigma\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{d}_{\mathrm{i}}\right)=$
				2760

Let $\mathrm{A}=50$ be the assumed mean. Then we have:
Mean, $\bar{x}=A+\frac{\sum\left(f_{i} \times d_{i}\right)}{\sum f_{i}}$

$$
=50+\frac{2760}{220}
$$

$$
=50+12.55
$$

$\therefore \bar{x}=62.55$
18. The following table gives the literacy rate (in percentage) in 40 cities. Find the mean literacy rate, choosing a suitable method.

Literacy rate $(\%)$	$45-55$	$55-65$	$65-75$	$75-85$	$85-95$
Number of cities	4	11	12	9	4

Sol:

Using Direct method, the given data is shown as follows:

Literacy rate $(\%)$	Number of cities $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\left(\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)$
$45-55$	4	50	200
$55-65$	11	60	660
$65-75$	12	70	840
$75-85$	9	80	720
$85-95$	4	90	360
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=40$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=2780$

The mean of the data is given by,
$\bar{x}=\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}} \mathrm{~s}$

$$
\begin{aligned}
& =\frac{2780}{40} \\
& =69.5
\end{aligned}
$$

Thus, the mean literacy rate is 69.5%.
19. Find the mean of the following frequency distribution using step-deviation method.

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	7	10	15	8	10

Sol:
Let us choose $\mathrm{a}=25, \mathrm{~h}=10$, then $\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-25$ and $\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-25}{10}$
Using step-deviation method, the given data is shown as follows:

Class	Frequency ($\left.\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-25$	$\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-25}{10}$	$\left(\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)$
$0-10$	7	5	-20	-2	-14
$10-20$	10	15	-10	-1	-10
$20-30$	15	25	0	0	0
$30-40$	8	35	10	1	8
$40-50$	10	45	20	2	20
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=50$				$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=4$

The mean of the data is given by,

$$
\begin{aligned}
\bar{x} & =\mathrm{a}+\left(\frac{\sum_{i} f_{i} u_{i}}{\sum_{i} f_{i}}\right) \times h \\
& =25+\frac{4}{50} \times 10 \\
& =25+\frac{4}{5} \\
& =\frac{125+4}{5} \\
& =\frac{129}{5} \\
& =25.8
\end{aligned}
$$

Thus, the mean is 25.8 .
20. Find the mean of the following data, using step-deviation method:

Class	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$
Frequency	6	10	16	15	24	8	7

Sol:
Let us choose $\mathrm{a}=40, \mathrm{~h}=10$, then $\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-40$ and $\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-40}{10}$
Using step-deviation method, the given data is shown as follows:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-40$	$\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-40}{10}$	$\left(\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)$
$5-15$	6	10	-30	-3	-18
$15-25$	10	20	-20	-2	-20
$25-35$	16	30	-10	-1	-16

$35-45$	15	40	0	0	0
$45-55$	24	50	10	1	24
$55-65$	8	60	20	2	16
$65-75$	7	70	30	3	21
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=86$				$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=7$

The mean of the data is given by,

$$
\begin{aligned}
\bar{x} & =a+\left(\frac{\sum_{i} f_{i} u_{i}}{\sum_{i} f_{i}}\right) \times h \\
& =40+\frac{7}{86} \times 10 \\
& =40+\frac{70}{86} \\
& =40+0.81 \\
& =40.81
\end{aligned}
$$

21. The weights of tea in 70 packets are shown in the following table:

Weight	$200-$	$201-$	$202-$	$203-$	$204-$	$205-$
	201	202	203	204	205	206
Number of packets	13	27	18	10	1	1

Find the mean weight of packets using step deviation method.

Sol:

Let us choose $\mathrm{a}=202.5, \mathrm{~h}=1$, then $\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-202.5$ and $\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-202.5}{1}$
Using step-deviation method, the given data is shown as follows:

Weight	Number of packets $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-$ 202.5	$\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-202.5}{1}$	$\left(\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)$
$200-201$	13	200.5	-2	-2	-26
$201-202$	27	201.5	-1	-1	-27
$202-203$	18	202.5	0	0	0
$203-204$	10	203.5	1	1	10
$204-205$	1	204.5	2	2	2
$205-206$	1	205.5	3	3	3
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=70$				$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-38$

The mean of the given data is given by,

$$
\begin{aligned}
\bar{x} & =a+\left(\frac{\sum_{i} f_{i} u_{i}}{\sum_{i} f_{i}}\right) \times h \\
& =202.5+\left(\frac{-38}{70}\right) \times 1 \\
& =202.5-0.542 \\
& =201.96
\end{aligned}
$$

Hence, the mean is 201.96 g .
22. Find the mean of the following frequency distribution table using a suitable method:

Class	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	25	40	42	33	10

Sol:
Let us choose $\mathrm{a}=45, \mathrm{~h}=10$, then $\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-45$ and $\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-45}{10}$
Using step-deviation method, the given data is shown as follows:

Weight	Number of packets $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark ($\left.\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-45$	$\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-45}{10}$	$\left(\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)$
$20-30$	25	35	-20	-2	-50
$30-40$	40	35	-10	-1	-40
$40-50$	42	45	0	0	0
$50-60$	33	55	10	1	33
$60-70$	10	65	20	2	20
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=150$				$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-37$

The mean of the given data is given by,

$$
\begin{aligned}
& \bar{x} a+\left(\frac{\sum_{i} f_{i} u_{i}}{\sum_{i} f_{i}}\right) \times h \\
&=45-\left(\frac{37}{150}\right) \times 10 \\
&=45-\frac{37}{15} \\
&=45-2.466 \\
&=42.534
\end{aligned}
$$

Hence, the mean is 42.534 .
23. In an annual examination, marks (out of 90) obtained by students of Class X in mathematics are given below:

Marks Obtained	$0-15$	$15-30$	$30-45$	$45-60$	$60-75$	$75-90$
Number of students	2	4	5	20	9	10

Find the mean marks.

Sol:

Let us choose $\mathrm{a}=52.5, \mathrm{~h}=15$, then $\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-52.5$ and $\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-52.5}{15}$
Using step-deviation method, the given data is shown as follows:

Weight	Number of students $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-37.5$	$\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-52.5}{15}$	$\left(\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)$
$0-15$	2	7.5	-45	-3	-6
$15-30$	4	22.5	-30	-2	-8
$30-45$	5	37.5	-15	-1	-5

$45-60$	20	52.5	0	0	0
$60-75$	9	67.5	15	1	9
$75-90$	10	82.5	30	2	20
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=50$				$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=10$

The mean of the given data is given by,

$$
\begin{aligned}
\bar{x} & =a+\left(\frac{\sum_{i} f_{i} u_{i}}{\sum_{i} f_{i}}\right) \times h \\
& =52.5+\left(\frac{10}{50}\right) \times 15 \\
& =52.5+3 \\
& =55.5
\end{aligned}
$$

Thus, the mean is 55.5 .
24. Find the arithmetic mean of the following frequency distribution using step-deviation method:

Age (in years)	$18-24$	$24-30$	$30-36$	$36-42$	$42-48$	$48-54$
Number of workers	6	8	12	8	4	2

Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{u}_{\mathrm{i}}=\frac{\left(x_{i}-A\right)}{h}$ $=\frac{\left(x_{i}-33\right)}{6}$	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{u}_{\mathrm{i}}\right)$
$18-24$	6	21	-2	-12
$24-30$	8	27	-1	-8
$30-36$	12	$33=\mathrm{A}$	0	0
$36-42$	8	39	1	8
$42-48$	4	45	2	8
$48-54$	2	51	3	6
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=40$			$\Sigma\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{u}_{\mathrm{i}}\right)=2$

Now, $\mathrm{A}=33, \mathrm{~h}=6, \Sigma \mathrm{f}_{\mathrm{i}}=40$ and $\Sigma\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{u}_{\mathrm{i}}\right)=2$
\therefore Mean, $\bar{x}=A+\left\{h \times \frac{\sum\left(f_{i} \times u_{i}\right)}{\sum f_{i}}\right\}$
$=33+\left\{6 \times \frac{2}{40}\right\}$
$=33+0.3$
$=33.3$
$\therefore \bar{x}=33.3$ years
25. Find the mean of the following data using step-deviation method:

Class	$500-520$	$520-540$	$540-560$	$560-580$	$580-600$	$600-620$
Frequency	14	9	5	4	3	5

Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{u}_{\mathrm{i}}=\frac{\left(x_{i}-A\right)}{h}$ $=\frac{\left(x_{i}-550\right)}{20}$	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{u}_{\mathrm{i}}\right)$
$500-520$	14	510	-2	-28
$520-540$	9	530	-1	-9
$540-560$	5	$550=\mathrm{A}$	0	0
$560-580$	4	570	1	4
$580-600$	3	590	2	6
$600-620$	5	610	3	15
	$\Sigma \mathrm{f}_{\mathrm{i}}=40$			$\Sigma\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{u}_{\mathrm{i}}\right)=-12$

Now, $\mathrm{A}=550, \mathrm{~h}=20, \Sigma \mathrm{f}_{\mathrm{i}}=40$ and $\Sigma\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{u}_{\mathrm{i}}\right)=-12$
\therefore Mean, $\bar{x}=A+\left\{h \times \frac{\sum\left(f_{i} \times u_{i}\right)}{\sum f_{i}}\right\}$
$=550+\left\{20 \times \frac{(-12)}{40}\right\}$
$=550-6$
$=544$
$\therefore \bar{x}=544$
26. Find the mean age from the following frequency distribution:

Age (in years)	$25-29$	$30-34$	$35-39$	$40-44$	$45-49$	$50-54$	$55-59$
Number of persons	4	14	22	16	6	5	3

Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{u}_{\mathrm{i}}=\frac{\left(x_{i}-A\right)}{h}$ $=\frac{\left(x_{i}-42\right)}{5}$	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{u}_{\mathrm{i}}\right)$
$24.5-29.5$	4	27	-3	-12
$29.5-34.5$	14	32	-2	-28
$34.5-39.5$	22	37	-1	-22
$39.5-44.5$	16	$42=\mathrm{A}$	0	0
$44.5-49.5$	6	47	1	6
$49.5-54.5$	5	52	2	10
$54.5-59.5$	3	57	3	9
	$\Sigma \mathrm{f}_{\mathrm{i}}=70$			$\Sigma\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{u}_{\mathrm{i}}\right)=-37$

Now, $A=42, h=5, \Sigma f_{i}=70$ and $\Sigma\left(f_{i} \times u_{i}\right)=-37$

$$
\begin{aligned}
\therefore & \text { Mean, } \bar{x}=A+\left\{h \times \frac{\sum\left(f_{i} \times u_{i}\right)}{\sum f_{i}}\right\} \\
& =42+\left\{5 \times \frac{(-37)}{70}\right\} \\
& =42-2.64 \\
& =39.36
\end{aligned}
$$

$\therefore \bar{x}=39.36$
\therefore Mean age $=39.36$ years.
27. The following table shows the age distribution of patients of malaria in a village during a particular month:

Age (in years)	$5-14$	$15-24$	$25-34$	$35-44$	$45-54$	$55-64$
No. of cases	6	11	21	23	14	5

Find the average age of the patients.
Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Mid values $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{u}_{\mathrm{i}}=\frac{\left(x_{i}-A\right)}{h}$ $=\frac{\left(x_{i}-29.5\right)}{10}$	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{u}_{\mathrm{i}}\right)$
$4.5-14.5$	6	9.5	-2	
$14.5-24.5$	11	19.5	-1	-12
$24.5-34.5$	21	$29.5=\mathrm{A}$	0	0
$34.5-44.5$	23	39.5	1	23
$44.5-54.5$	14	49.5	2	28
$54.5-64.5$	5	59.5	3	15
	$\Sigma \mathrm{f}_{\mathrm{i}}=80$			$\Sigma\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{u}_{\mathrm{i}}\right)=43$

Now, $A=29.5, h=10, \Sigma f_{i}=80$ and $\Sigma\left(f_{i} \times u_{i}\right)=43$
\therefore Mean, $\bar{x}=A+\left\{h \times \frac{\sum\left(f_{i} \times u_{i}\right)}{\sum f_{i}}\right\}$

$$
=29.5+\left\{10 \times \frac{43}{80}\right\}
$$

$$
=29.5+5.375
$$

$$
=34.875
$$

$\therefore \bar{x}=34.875$
\therefore The average age of the patients is 34.87 years.
28. Weight of 60 eggs were recorded as given below:

Weight (in grams)	$75-79$	$80-84$	$85-89$	$90-94$	$95-99$	$100-104$	$105-109$
No. of eggs	4	9	13	17	12	3	2

Calculate their mean weight to the nearest gram.

Sol:

Let us choose $\mathrm{a}=92, \mathrm{~h}=5$, then $\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-92$ and $\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-92}{5}$
Using step-deviation method, the given data is shown as follows:

Weight (in grams)	Number of eggs $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-92$	$\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-92}{5}$	$\left(\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)$
$74.5-79.5$	4	77	-15	-3	-12
$79.5-84.5$	9	82	-10	-2	-18
$84.5-89.5$	13	87	-5	-1	-13
$89.5-94.5$	17	92	0	0	0
$94.5-99.5$	12	97	5	1	12
$99.5-104.5$	3	102	10	2	6
$104.5-109.5$	2	107	15	3	6
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=60$				$\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-19$

The mean of the given data is given by,

$$
\begin{aligned}
\bar{x} & =a+\left(\frac{\sum_{i} f_{i} u_{i}}{\sum_{i} f_{i}}\right) \times h \\
& =92+\left(\frac{-19}{60}\right) \times 5 \\
& =92-1.58 \\
& =90.42 \\
& \approx 90
\end{aligned}
$$

Thus, the mean weight to the nearest gram is 90 g .
29. The following table shows the marks scored by 80 students in an examination:

Marks	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
No. of students	3	10	25	49	65	73	78	80

Sol:

Let us choose $\mathrm{a}=17.5, \mathrm{~h}=5$, then $\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-17.5$ and $\mathrm{u}_{\mathrm{i}}=\frac{x_{i}-17.5}{5}$
Using step-deviation method, the given data is shown as follows:

Marks	Number of students (cf)	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-$ 17.5	$\mathrm{u}_{\mathrm{i}}=$ $x_{i}-17.5$	$\left(\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right)$
$0-5$	3	3	2.5	-15	-3	-9
$5-10$	10	7	7.5	-10	-2	-14
$10-15$	25	15	12.5	-5	-1	-15
$15-20$	49	24	17.5	0	0	0
$20-25$	65	16	22.5	5	1	16
$25-30$	73	8	27.5	10	2	16
$30-35$	78	5	32.5	15	3	15
$35-40$	80	2	37.5	20	4	8

Total		$\Sigma \mathrm{f}_{\mathrm{i}}=80$				
$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=17$						

The mean of the given data is given by,

$$
\begin{aligned}
\bar{x} & =a+\left(\frac{\sum_{i} f_{i} u_{i}}{\sum_{i} f_{i}}\right) \times h \\
& =17.5+\left(\frac{17}{80}\right) \times 5 \\
& =17.5+1.06 \\
& =18.56
\end{aligned}
$$

Thus, the mean marks correct to 2 decimal places is 18.56 .

Exercise 9B

1. In a hospital, the ages of diabetic patients were recorded as follows. Find the median age.

Age (in years)	$0-15$	$15-30$	$30-45$	$45-60$	$60-75$
No. of patients	5	20	40	50	25

Sol:

We prepare the cumulative frequency table, as shown below:

Age (in years)	Number of patients $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative Frequency (cf)
$0-15$	5	5
$15-30$	20	25
$30-45$	40	65
$45-60$	50	115
$60-75$	25	140
Total	$\mathrm{N}=\sum f_{i}=140$	

Now, $\mathrm{N}=140 \Rightarrow \frac{N}{2}=70$.
The cumulative frequency just greater than 70 is 115 and the corresponding class is 45 60.

Thus, the median class is $45=60$.
$\therefore l=45, \mathrm{~h}=15, \mathrm{f}=50, \mathrm{~N}=140$ and $\mathrm{cf}=65$.
Now,

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h} \\
& =45+\left(\frac{\frac{140}{2}-65}{50}\right) \times 15 \\
& =45+\left(\frac{70-65}{50}\right) \times 15 \\
& =45+1.5 \\
& =46.5
\end{aligned}
$$

Hence, the median age is 46.5 years.
2. Compute mean from the following data:

Marks	$0-7$	$7-14$	$14-21$	$21-28$	$28-35$	$35-42$	$42-49$
Number of Students	3	4	7	11	0	16	9

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$0-7$	3	3
$7-14$	4	7
$14-21$	7	14
$21-28$	11	25
$28-35$	0	25
$35-42$	16	41
$42-49$	9	50
	$\mathrm{~N}=\sum f=50$	

Now, $\mathrm{N}=50 \Rightarrow \frac{N}{2}=25$.
The cumulative frequency just greater than 25 is 41 and the corresponding class is $35-42$.
Thus, the median class is $35-42$.
$\therefore l=35, \mathrm{~h}=7, \mathrm{f}=16, \mathrm{cf}=$ c.f. of preceding class $=25$ and $\frac{N}{2}=25$.
Now,

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h} \\
& =35+7 \times\left(\frac{25-25}{16}\right) \\
& =35+0 \\
& =35
\end{aligned}
$$

Hence, the median age is 46.5 years.
3. The following table shows the daily wages of workers in a factory:

Daily wages in $(₹)$	$0-100$	$100-200$	$200-300$	$300-400$	$400-500$
Number of workers	40	32	48	22	8

Find the median daily wage income of the workers.

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$0-100$	40	40
$100-200$	32	72
$200-300$	48	120
$300-400$	22	142
$400-500$	8	150
	$\mathrm{~N}=\sum f=150$	

Now, $\mathrm{N}=150$
$\Rightarrow \frac{N}{2}=75$.
The cumulative frequency just greater than 75 is 120 and the corresponding class is 200 300.

Thus, the median class is $200-300$.
$\therefore l=200, \mathrm{~h}=100, \mathrm{f}=48, \mathrm{cf}=$ c.f. of preceding class $=72$ and $\frac{N}{2}=75$.
Now,
Median, $\mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\}$

$$
\begin{aligned}
& =200+\left\{100 \times\left(\frac{75-72}{48}\right)\right\} \\
& =200+6.25 \\
& =206.25
\end{aligned}
$$

Hence, the median daily wage income of the workers is Rs 206.25.
4. Calculate the median from the following frequency distribution table:

Class	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$	$40-45$
Frequency	5	6	15	10	5	4	2	2

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$5-10$	5	5
$10-15$	6	11
$15-20$	15	26
$20-25$	10	36
$25-30$	5	41
$30-35$	4	45
$35-40$	2	47
$40-45$	2	49
	$\mathrm{~N}=\sum f=49$	

Now, N = 49
$\Rightarrow \frac{N}{2}=24.5$.
The cumulative frequency just greater than 24.5 is 26 and the corresponding class is 15 -
20.

Thus, the median class is $15-20$.
$\therefore l=15, \mathrm{~h}=5, \mathrm{f}=15, \mathrm{cf}=$ c.f. of preceding class $=11$ and $\frac{N}{2}=24.5$.
Now,
Median, $\mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\}$
$=15+\left\{5 \times\left(\frac{24.5-11}{15}\right)\right\}$

$$
\begin{aligned}
& =15+4.5 \\
& =19.5
\end{aligned}
$$

Hence, the median $=19.5$.
5. Given below is the number of units of electricity consumed in a week in a certain locality:

Class	$65-85$	$85-105$	$105-125$	$125-145$	$145-165$	$165-185$	$185-200$
Frequency	4	5	13	20	14	7	4

Calculate the median.
Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$65-85$	4	4
$85-105$	5	9
$105-125$	13	22
$125-145$	20	42
$145-165$	14	56
$165-185$	7	63
$185-205$	4	67
	$\mathrm{~N}=\sum f=67$	

Now, $\mathrm{N}=67$
$\Rightarrow \frac{N}{2}=33.5$.
The cumulative frequency just greater than 33.5 is 42 and the corresponding class is 125 145.

Thus, the median class is $125-145$.
$\therefore l=125, \mathrm{~h}=20, \mathrm{f}=20, \mathrm{cf}=$ c.f. of preceding class $=22$ and $\frac{N}{2}=33.5$.
Now,
Median, $\mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\}$

$$
\begin{aligned}
& =125+\left\{20 \times\left(\frac{33.5-22}{20}\right)\right\} \\
& =125+11.5 \\
& =136.5
\end{aligned}
$$

Hence, the median $=136.5$.
6. Calculate the median from the following data:

Height(in $\mathrm{cm})$	$135-$ 140	$140-$ 145	$145-$ 150	$150-$ 155	$155-$ 160	$160-$ 165	$165-$ 170	$170-$ 175
Frequency	6	10	18	22	20	15	6	3

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$135-140$	6	6
$140-145$	10	16
$145-150$	18	34
$150-155$	22	56
$155-160$	20	76
$160-165$	15	91
$165-170$	6	97
$170-175$	3	100
	$\mathrm{~N}=\sum f=100$	

Now, $\mathrm{N}=100$
$\Rightarrow \frac{N}{2}=50$.
The cumulative frequency just greater than 50 is 56 and the corresponding class is 150 155.

Thus, the median class is $150-155$.
$\therefore l=150, \mathrm{~h}=5, \mathrm{f}=22, \mathrm{cf}=$ c.f. of preceding class $=34$ and $\frac{N}{2}=50$.
Now,

$$
\begin{aligned}
& \text { Median, } \mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\} \\
&= 150+\left\{5 \times\left(\frac{50-34}{22}\right)\right\} \\
&= 150+3.64 \\
&=153.64
\end{aligned}
$$

Hence, the median $=153.64$.
7. Calculate the missing frequency from the following distribution, it being given that the median of distribution is 24 .

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	5	25	$?$	18	7

Sol:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative Frequency (cf)
$0-10$	5	5
$10-20$	25	30
$20-30$	x	$\mathrm{x}+30$
$30-40$	18	$\mathrm{x}+48$
$40-50$	7	$\mathrm{x}+55$

Median is 24 which lies in $20-30$
\therefore Median class $=20-30$
Let the unknown frequency be x.

Here, $l=20, \frac{n}{2}=\frac{x+55}{2}$, c.f. of the preceding class $=\mathrm{c} . \mathrm{f}=30, \mathrm{f}=\mathrm{x}, \mathrm{h}=10$
Now,
Median, $\mathrm{M}=l+\frac{\frac{n}{2}-c f}{f} \times \mathrm{h}$
$\Rightarrow 24=20+\frac{\frac{x+55}{2}-30}{x} \times 10$
$\Rightarrow 24=20+\frac{\frac{x+55-60}{2}}{x} \times 10$
$\Rightarrow 24=20+\frac{x-5}{2 x} \times 10$
$\Rightarrow 24=20+\frac{5 x-25}{x}$
$\Rightarrow 24=\frac{20+5 x-25}{x}$
$\Rightarrow 24 \mathrm{x}=25 \mathrm{x}-25$
$\Rightarrow-\mathrm{x}=-25$
$\Rightarrow \mathrm{x}=25$
Hence, the unknown frequency is 25 .
8. The median of the following data is 16 . Find the missing frequencies a and b if the total of frequencies is 70 .

Class	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$
Frequency	12	a	12	15	b	6	6	4

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$0-5$	12	12
$5-10$	a	$12+\mathrm{a}$
$10-15$	12	$24+\mathrm{a}$
$15-20$	15	$39+\mathrm{a}$
$20-25$	b	$39+\mathrm{a}+\mathrm{b}$
$25-30$	6	$45+\mathrm{a}+\mathrm{b}$
$30-35$	6	$51+\mathrm{a}+\mathrm{b}$
$35-40$	4	$55+\mathrm{a}+\mathrm{b}$
Total	$\mathrm{N}=\sum f_{i}=70$	

Let a and b be the missing frequencies of class intervals $5-10$ and $20-25$ respectively.
Then, $55+\mathrm{a}+\mathrm{b}=70 \Rightarrow \mathrm{a}+\mathrm{b}=15 \ldots .$. (1)
Median is 16 , which lies in $15-20$. So, the median class is $15-20$.
$\therefore l=15, \mathrm{~h}=5, \mathrm{~N}=70, \mathrm{f}=15$ and $\mathrm{cf}=24+\mathrm{a}$
Now,
Median, $\mathrm{M}=l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h}$

$$
\begin{aligned}
& \Rightarrow 16=15+\left(\frac{\frac{70}{2}-(24+a)}{15}\right) \times 5 \\
& \Rightarrow 16=15+\left(\frac{35-24-a}{3}\right) \\
& \Rightarrow 16=15+\left(\frac{11-a}{3}\right) \\
& \Rightarrow 16-15=\frac{11-a}{3} \\
& \Rightarrow 1 \times 3=11-\mathrm{a} \\
& \Rightarrow \mathrm{a}=11-3 \\
& \Rightarrow \mathrm{a}=8
\end{aligned}
$$

$\therefore \mathrm{b}=15-\mathrm{a} \quad$ [From (1)]
$\Rightarrow \mathrm{b}=15-8$
$\Rightarrow \mathrm{b}=7$
Hence, $\mathrm{a}=8$ and $\mathrm{b}=7$.
9. In the following data the median of the runs scored by 60 top batsmen of the world in oneday international cricket matches is 5000 . Find the missing frequencies x and y

Runs scored	$2500-$ 3500	$3500-$ 4500	$4500-$ 5500	$5500-$ 6500	$6500-$ 7500	$7500-$ 8500
Number of batsman	5	x	y	12	6	2

Sol:

We prepare the cumulative frequency table, as shown below:

Runs scored	Number of batsman $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative Frequency (cf)
$2500-3500$	5	5
$3500-4500$	x	$5+\mathrm{x}$
$4500-5500$	y	$5+\mathrm{x}+\mathrm{y}$
$5500-6500$	12	$17+\mathrm{x}+\mathrm{y}$
$6500-7500$	6	$23+\mathrm{x}+\mathrm{y}$
$7500-8500$	2	$25+\mathrm{x}+\mathrm{y}$
Total	$\mathrm{N}=\sum f_{i}=60$	

Let x and y be the missing frequencies of class intervals $3500-4500$ respectively. Then,
$25+x+y=60 \Rightarrow x+y=35$
Median is 5000, which lies in $4500-5500$. So, the median class is $4500-5500$.
$\therefore l=4500, \mathrm{~h}=1000, \mathrm{~N}=60, \mathrm{f}=\mathrm{y}$ and $\mathrm{cf}=5+\mathrm{x}$
Now,
Median, $\mathrm{M}=l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h}$

$$
\begin{aligned}
& \Rightarrow 5000=4500+\left(\frac{\frac{60}{2}-(5+x)}{y}\right) \times 1000 \\
& \Rightarrow 5000-4500=\left(\frac{30-5-x}{y}\right) \times 1000 \\
& \Rightarrow 500=\left(\frac{25-x}{y}\right) \times 1000 \\
& \Rightarrow \mathrm{y}=50-2 \mathrm{x} \\
& \Rightarrow 35-\mathrm{x}=50-2 \mathrm{x} \quad \text { [From (1)] } \\
& \Rightarrow 2 \mathrm{x}-\mathrm{x}=50-35 \\
& \Rightarrow \mathrm{x}=15
\end{aligned}
$$

$\therefore \mathrm{y}=35-\mathrm{x} \quad[$ From (1)]
$\Rightarrow y=35-15$
$\Rightarrow \mathrm{y}=20$
Hence, $\mathrm{x}=15$ and $\mathrm{y}=20$.
10. If the median of the following frequency distribution is 32.5 , find the values of f_{1} and f_{2}.

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	Total
Frequency	f_{1}	5	9	12	f_{2}	3	2	40

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$0-10$	f_{1}	f_{1}
$10-20$	5	$\mathrm{f}_{1}+5$
$20-30$	9	$\mathrm{f}_{1}+14$
$30-40$	12	$\mathrm{f}_{1}+26$
$40-50$	f_{2}	$\mathrm{f}_{1}+\mathrm{f}_{2}+26$
$50-60$	3	$\mathrm{f}_{1}+\mathrm{f}_{2}+29$
$60-70$	2	$\mathrm{f}_{1}+\mathrm{f}_{2}+31$
	$\mathrm{~N}=\sum f=40$	

Now, $\mathrm{f}_{1}+\mathrm{f}_{2}+31=40$
$\Rightarrow \mathrm{f}_{1}+\mathrm{f}_{2}=9$
$\Rightarrow \mathrm{f}_{2}=9-\mathrm{f}_{1}$
The median is 32.5 which lies in $30-40$.
Hence, median class $=30-40$
Here, $l=30, \frac{N}{2}=\frac{40}{2}=20, \mathrm{f}=12$ and $\mathrm{cf}=14+\mathrm{f}_{1}$
Now, median $=32.5$
$\Rightarrow l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h}=32.5$
$\Rightarrow 30+\left(\frac{20-\left(14+f_{1}\right)}{12}\right) \times 10=32.5$
$\Rightarrow \frac{6-f_{1}}{12} \times 10=2.5$
$\Rightarrow \frac{60-10 f_{1}}{12}=2.5$
$\Rightarrow 60-10 f_{1}=30$
$\Rightarrow 10 f_{1}=30$
$\Rightarrow f_{1}=3$
From equation (i), we have:
$\mathrm{f}_{2}=9-3$
$\Rightarrow \mathrm{f}_{2}=6$
11. Calculate the median for the following data:

Class	$19-25$	$26-32$	$33-39$	$40-46$	$47-53$	$54-60$
Frequency	35	96	68	102	35	4

Sol: First, we will convert the data into exclusive form.

Class	Frequency (f)	Cumulative Frequency (cf)
$18.5-25.5$	35	35
$25.5-32.5$	96	131
$32.5-39.5$	68	199
$39.5-46.5$	102	301
$46.5-53.5$	35	336
$53.5-60.5$	4	340
	$\mathrm{~N}=\sum f=340$	

Now, N = 340
$\Rightarrow \frac{N}{2}=70$.
The cumulative frequency just greater than 170 is 199 and the corresponding class is 32.5 39.5 .

Thus, the median class is $32.5-39.5$.
$\therefore l=32.5, \mathrm{~h}=7, \mathrm{f}=68, \mathrm{cf}=$ c.f. of preceding class $=131$ and $\frac{N}{2}=170$.
\therefore Median, $\mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\}$

$$
\begin{aligned}
& =32.5+\left\{7 \times\left(\frac{170-131}{68}\right)\right\} \\
& =32.5+4.01 \\
& =36.51
\end{aligned}
$$

Hence, the median $=36.51$.
12. Find the median wages for the following frequency distribution:

Wages per day (in ₹)	$61-70$	$71-80$	$81-90$	$91-100$	$101-110$	$111-120$
No. of women workers	5	15	20	30	20	8

Sol:

Class	Frequency (f)	Cumulative Frequency (cf)
$60.5-70.5$	5	5
$70.5-80.5$	15	20
$80.5-90.5$	20	40
$90.5-100.5$	30	70
$100.5-110.5$	20	90
$110.5-120.5$	8	98
	$\mathrm{~N}=\sum f=98$	

Now, N = 98
$\Rightarrow \frac{N}{2}=49$.
The cumulative frequency just greater than 49 is 70 and the corresponding class is 90.5 100.5.

Thus, the median class is $90.5-100.5$.
Now, $l=90.5, \mathrm{~h}=10, \mathrm{f}=30, \mathrm{cf}=$ c.f. of preceding class $=40$ and $\frac{N}{2}=49$.

$$
\begin{aligned}
& \therefore \text { Median, } \mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\} \\
& \quad=90.5+\left\{10 \times\left(\frac{49-40}{30}\right)\right\} \\
& \quad=90.5+3 \\
& \quad=93.5
\end{aligned}
$$

Hence, median wages $=$ Rs. 93.50.
13. Find the median from the following data:

Class	1-5	6-10	$\begin{gathered} 11- \\ 15 \end{gathered}$	$\begin{gathered} 16- \\ 20 \end{gathered}$	$\begin{gathered} 21- \\ 25 \end{gathered}$	$\begin{gathered} 26- \\ 30 \end{gathered}$	$\begin{gathered} 31- \\ 35 \end{gathered}$	$\begin{gathered} 35- \\ 40 \end{gathered}$	$\begin{gathered} 40- \\ 45 \end{gathered}$
Frequency	7	10	16	32	24	16	11	5	2

Sol:

Converting into exclusive form, we get:

Class	Frequency (f)	Cumulative Frequency (cf)
$0.5-5.5$	7	7
$5.5-10.5$	10	17
$10.5-15.5$	16	33
$15.5-20.5$	32	65
$20.5-25.5$	24	89
$25.5-30.5$	16	105
$30.5-35.5$	11	116

$35.5-40.5$	5	121
$40.5-45.5$	2	123
	$\mathrm{~N}=\sum f=123$	

Now, $\mathrm{N}=123$
$\Rightarrow \frac{N}{2}=61.5$.
The cumulative frequency just greater than 61.5 is 65 and the corresponding class is 15.5 20.5 .

Thus, the median class is $15.5-20.5$.
$\therefore l=15.5, \mathrm{~h}=5, \mathrm{f}=32$, cf $=$ c.f. of preceding class $=33$ and $\frac{N}{2}=61.5$.

$$
\begin{aligned}
& \therefore \text { Median, } \mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\} \\
& \quad=15.5+\left\{5 \times\left(\frac{61.5-33}{32}\right)\right\} \\
& \quad=15.5+4.45 \\
& \quad=19.95
\end{aligned}
$$

Hence, median $=19.95$.
14. Find the median from the following data:

Marks	No of students
Below 10	12
Below 20	32
Below 30	57
Below 40	80
Below 50	92
Below 60	116
Below 70	164
Below 80	200

Sol:

Class	Cumulative frequency (cf)	Frequency (f)
$0-10$	12	12
$10-20$	32	20
$20-30$	57	25
$30-40$	80	23
$40-50$	92	12
$50-60$	116	24
$60-70$	164	48
$70-80$	200	36
		$\mathrm{~N}=\sum f=200$

Now, $\mathrm{N}=200$
$\Rightarrow \frac{N}{2}=100$.

The cumulative frequency just greater than 100 is 116 and the corresponding class is 50 60.

Thus, the median class is $50-60$.
$\therefore l=50, \mathrm{~h}=10, \mathrm{f}=24, \mathrm{cf}=$ c.f. of preceding class $=92$ and $\frac{N}{2}=100$.
\therefore Median, $\mathrm{M}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c f}{f}\right)\right\}$
$=50+\left\{10 \times\left(\frac{100-92}{24}\right)\right\}$
$=50+3.33$
$=53.33$
Hence, median $=53.33$.

Exercise 9C

1. Find the mode of the following distribution:

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	12	35	45	25	13

Sol:

Here, the maximum class frequency is 45 , and the class corresponding to this frequency is $30-40$. So, the modal class is $30-40$.
Now,
Modal class $=30-40$, lower limit (l) of modal class $=30$, class size $(h)=10$,
frequency $\left(f_{1}\right)$ of the modal class $=45$,
frequency $\left(\mathrm{f}_{0}\right)$ of class preceding the modal class $=35$,
frequency $\left(\mathrm{f}_{2}\right)$ of class succeeding the modal class $=25$
Now, let us substitute these values in the formula:

$$
\begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =30+\left(\frac{45-35}{90-35-45}\right) \times 10 \\
& =30+\left(\frac{10}{30}\right) \times 10 \\
& =30+3.33 \\
& =33.33
\end{aligned}
$$

Hence, the mode is 33.33 .
2. Compute the mode of the following data:

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Frequency	25	16	28	20	5

Sol:

Here, the maximum class frequency is 28 , and the class corresponding to this frequency is $40-60$. So, the modal class is $40-60$.

Now,
Modal class $=40-60$, lower limit (l) of modal class $=40$, class size $(h)=20$, frequency $\left(f_{1}\right)$ of the modal class $=28$,
frequency (f_{0}) of class preceding the modal class $=16$,
frequency $\left(\mathrm{f}_{2}\right)$ of class succeeding the modal class $=20$
Now, let us substitute these values in the formula:

$$
\begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =40+\left(\frac{28-16}{56-16-20}\right) \times 20 \\
& =40+\left(\frac{12}{20}\right) \times 20 \\
& =40+12 \\
& =52
\end{aligned}
$$

Hence, the mode is 52 .
3. Heights of students of class X are givee in the flowing frequency distribution

Height (in cm)	$150-155$	$155-160$	$160-165$	$165-170$	$170-175$
Number of students	15	8	20	12	5

Find the modal height.
Also, find the mean height. Compared and interpret the two measures of central tendency.
Sol:
Here, the maximum class frequency is 20, and the class corresponding to this frequency is $160-165$. So, the modal class is $160-165$.
Now,
Modal class $=160-165$, lower limit (l) of modal class $=160$, class size $(h)=5$,
frequency $\left(f_{1}\right)$ of the modal class $=20$,
frequency (f_{0}) of class preceding the modal class $=8$,
frequency (f_{2}) of class succeeding the modal class $=12$
Now, let us substitute these values in the formula:

$$
\begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =160+\left(\frac{20-8}{40-8-12}\right) \times 5 \\
& =160+\left(\frac{12}{20}\right) \times 5 \\
& =160+3 \\
& =163
\end{aligned}
$$

Hence, the mode is 163 .
It represents that the height of maximum number of students is 163 cm .
Now, to find the mean let us put the data in the table given below:

Height (in cm)	Number of students $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$150-155$	15	152.5	2287.5
$155-160$	8	157.5	1260
$160-165$	20	162.5	3250
$165-170$	12	167.5	2010
$170-175$	5	172.5	862.5
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=60$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=9670$

Mean $=\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}}$

$$
\begin{aligned}
& =\frac{9670}{60} \\
& =161.17
\end{aligned}
$$

Thus, mean of the given data is 161.17 .
It represents that on an average, the height of a student is 161.17 cm .
4. Find the mode of the following distribution:

Class interval	$10-14$	$14-18$	$18-22$	$22-26$	$26-30$	$30-34$	$34-38$	$38-42$
Frequency	8	6	11	20	25	22	10	4

Sol:

As the class $26-30$ has the maximum frequency, it is the modal class.
Now, $\mathrm{x}_{\mathrm{k}}=26, \mathrm{~h}=4, \mathrm{f}_{\mathrm{k}}=25, \mathrm{f}_{\mathrm{k}-1}=20, \mathrm{f}_{\mathrm{k}+1}=22$
\therefore Mode, $\mathrm{M}_{0}=\mathrm{x}_{\mathrm{k}}+\left\{h \times \frac{\left(f_{k}-f_{k-1}\right)}{\left(2 f_{k}-f_{k-1}-f_{k+1}\right)}\right\}$
$=26+\left\{4 \times \frac{(25-20)}{(2 \times 25-20-22)}\right\}$
$=26+\left\{4 \times \frac{5}{8}\right\}$
$=(26+2.5)$
$=28.5$
5. Given below is the distribution of total household expenditure of 200 manual workers in a city:

Expenditure (in Rs)	Number of manual workers
$1000-1500$	24
$1500-2000$	40
$2000-2500$	31
$2500-3000$	28
$3000-3500$	32
$3500-4000$	23
$4000-4500$	17
$4500-5000$	5

Find the average expenditure done by maximum number of manual workers.

Sol:

As the class 1500-2000 has the maximum frequency, it is the modal class.
Now, $\mathrm{x}_{\mathrm{k}}=1500, \mathrm{~h}=500, \mathrm{f}_{\mathrm{k}}=40, \mathrm{f}_{\mathrm{k}-1}=24, \mathrm{f}_{\mathrm{k}+1}=31$
\therefore Mode, $\mathrm{M}_{0}=\mathrm{x}_{\mathrm{k}}+\left\{h \times \frac{\left(f_{k}-f_{k-1}\right)}{\left(2 f_{k}-f_{k-1}-f_{k+1}\right)}\right\}$
$=1500+\left\{500 \times \frac{(40-24)}{(2 \times 40-24-31)}\right\}$
$=1500+\left\{500 \times \frac{16}{25}\right\}$
$=(1500+320)$
$=1820$
Hence, mode $=$ Rs 1820
6. Calculate the mode from the following data:

Monthly salary (in Rs)	No of employees
$0-5000$	90
$5000-10000$	150
$10000-15000$	100
$15000-20000$	80
$20000-25000$	70
$25000-30000$	10

Sol:

As the class 5000-10000 has the maximum frequency, it is the modal class.
Now, $\mathrm{x}_{\mathrm{k}}=5000, \mathrm{~h}=5000, \mathrm{f}_{\mathrm{k}}=150, \mathrm{f}_{\mathrm{k}-1}=90, \mathrm{f}_{\mathrm{k}+1}=100$
\therefore Mode, $\mathrm{M}_{0}=\mathrm{x}_{\mathrm{k}}+\left\{h \times \frac{\left(f_{k}-f_{k-1}\right)}{\left(2 f_{k}-f_{k-1}-f_{k+1}\right)}\right\}$
$=5000+\left\{5000 \times \frac{(150-90)}{(2 \times 150-90-100)}\right\}$
$=5000+\left\{5000 \times \frac{60}{110}\right\}$
$=(5000+2727.27)$
$=7727.27$
Hence, mode = Rs 7727.27
7. Compute the mode from the following data:

Age (in years)	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$
No of patients	6	11	18	24	17	13	5

Sol:

As the class $15-20$ has the maximum frequency, it is the modal class.
Now, $\mathrm{x}_{\mathrm{k}}=15, \mathrm{~h}=5, \mathrm{f}_{\mathrm{k}}=24, \mathrm{f}_{\mathrm{k}-1}=18, \mathrm{f}_{\mathrm{k}+1}=17$
\therefore Mode, $\mathrm{M}_{0}=\mathrm{x}_{\mathrm{k}}+\left\{h \times \frac{\left(f_{k}-f_{k-1}\right)}{\left(2 f_{k}-f_{k-1}-f_{k+1}\right)}\right\}$
$=15+\left\{5 \times \frac{(24-18)}{(2 \times 24-18-17)}\right\}$
$=15+\left\{5 \times \frac{6}{13}\right\}$
$=(15+2.3)$
$=17.3$
Hence, mode $=17.3$ years
8. Compute the mode from the following series:

Size	$45-55$	$55-65$	$65-75$	$75-85$	$85-95$	$95-105$	$105-115$
Frequency	7	12	17	30	32	6	10

Sol:

As the class $85-95$ has the maximum frequency, it is the modal class.
Now, $\mathrm{x}_{\mathrm{k}}=85, \mathrm{~h}=10, \mathrm{f}_{\mathrm{k}}=32, \mathrm{f}_{\mathrm{k}-1}=30, \mathrm{f}_{\mathrm{k}+1}=6$
\therefore Mode, $\mathrm{M}_{0}=\mathrm{x}_{\mathrm{k}}+\left\{h \times \frac{\left(f_{k}-f_{k-1}\right)}{\left(2 f_{k}-f_{k-1}-f_{k+1}\right)}\right\}$
$=85+\left\{10 \times \frac{(32-30)}{(2 \times 32-30-6)}\right\}$
$=85+\left\{10 \times \frac{2}{28}\right\}$
$=(85+0.71)$
$=85.71$
Hence, mode $=85.71$
9. Compute the mode from the following data:

Class	$1-$	$6-$	$11-$	$16-$	21	$26-$	$31-$	$36-$	$41-$	$46-$
interval	5	10	15	20	25	30	35	40	45	50
Frequency	3	8	13	18	28	20	13	8	6	4

Sol:
Clearly, we have to find the mode of the data. The given data is an inclusive series. So, we will convert it to an exclusive form as given below:

Class	$0.5-$	$5.5-$	$10.5-$	$15.5-$	$20.5-$	$25.5-$	$30.5-$	$35.5-$	$40.5-$	$45.5-$
interval	5.5	10.5	15.5	20.5	25.5	30.5	35.5	40.5	45.5	50.5
Frequency	3	8	13	18	28	20	13	8	6	4

As the class 20.5-25.5 has the maximum frequency, it is the modal class.
Now, $\mathrm{x}_{\mathrm{k}}=20.5, \mathrm{~h}=5, \mathrm{f}_{\mathrm{k}}=28, \mathrm{f}_{\mathrm{k}-1}=18, \mathrm{f}_{\mathrm{k}+1}=20$
\therefore Mode, $\mathrm{M}_{0}=\mathrm{x}_{\mathrm{k}}+\left\{h \times \frac{\left(f_{k}-f_{k-1}\right)}{\left(2 f_{k}-f_{k-1}-f_{k+1}\right)}\right\}$
$=20.5+\left\{5 \times \frac{(28-18)}{(2 \times 28-18-20)}\right\}$
$=20.5+\left\{5 \times \frac{10}{18}\right\}$
$=(20.5+2.78)$
$=23.28$
Hence, mode $=23.28$
10. The agewise participation of students in the annual function of a school is shown in the following distribution.

Age (in years)	$5-7$	$7-9$	$9-11$	$11-13$	$13-15$	$15-17$	$17-19$
Number of students	x	15	18	30	50	48	x

Find the missing frequencies when the sum of frequencies is 181 . Also find the mode of the data.

Sol:

It is given that the sum of frequencies is 181.
$\therefore \mathrm{x}+15+18+30+50+48+\mathrm{x}=181$
$\Rightarrow 2 \mathrm{x}+161=181$
$\Rightarrow 2 \mathrm{x}=181-161$
$\Rightarrow 2 \mathrm{x}=20$
$\Rightarrow \mathrm{x}=10$
Thus, $\mathrm{x}=10$
Here, the maximum class frequency is 50 , and the class corresponding to this frequency is $13-15$. So, the modal class is $13-15$.
Now,
Modal class $=13-15$, lower limit (l) of modal class $=13$, class size $(h)=2$,
frequency $\left(\mathrm{f}_{1}\right)$ of the modal class $=50$,
frequency $\left(\mathrm{f}_{0}\right)$ of class preceding the modarclass $=30$,
frequency (f_{2}) of class succeeding the modal class $=48$
Now, let us substitute these values in the formula:

$$
\begin{aligned}
\text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
& =13+\left(\frac{50-30}{100-30-48}\right) \times 2 \\
& =13+\left(\frac{20}{22}\right) \times 2 \\
& =13+1.82 \\
& =14.82
\end{aligned}
$$

Hence, the mode is 14.82 .

Exercise 9D

1. Find the mean, median and mode of the following data:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	4	4	7	10	12	8	5

Sol:

To find the mean let us put the data in the table given below:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$0-10$	4	5	20
$10-20$	4	15	60
$20-30$	7	25	175
$30-40$	10	35	350
$40-50$	12	45	540
$50-60$	8	55	440
$60-70$	5	65	325
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=50$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=1910$

$$
\begin{aligned}
\text { Mean } & =\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}} \\
& =\frac{1910}{50} \\
& =38.2
\end{aligned}
$$

Thus, the mean of the given data is 38.2 .
Now, to find the median let us put the data in the table given below:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative Frequency (cf)
$0-10$	4	4
$10-20$	4	8
$20-30$	7	15
$30-40$	10	25
$40-50$	12	37
$50-60$	8	45
$60-70$	5	50
Total	$\mathrm{N}=\sum f_{i}=50$	

Now, $\mathrm{N}=50 \Rightarrow \frac{N}{2}=25$.
The cumulative frequency just greater than 25 is 37 and the corresponding class is $40-50$.
Thus, the median class is $40-50$.
$\therefore l=40, \mathrm{~h}=10, \mathrm{~N}=50, \mathrm{f}=12$ and $\mathrm{cf}=25$.
Now,
Median $=l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h}$

$$
\begin{aligned}
& =40+\left(\frac{25-25}{12}\right) \times 10 \\
& =40
\end{aligned}
$$

Thus, the median is 40 .
We know that,
Mode $=3($ median $)-2($ mean $)$

$$
\begin{aligned}
& =3 \times 40-2 \times 38.2 \\
& =120-76.4 \\
& =43.6
\end{aligned}
$$

Hence, Mean $=38.2$, Median $=40$ and Mode $=43.6$
2. Find the mean, median and mode of the following data:

Class	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$	$100-120$	$120-140$
Frequency	6	8	10	12	6	5	3

Sol:

To find the mean let us put the data in the table given below:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$0-20$	6	10	60
$20-40$	8	30	240
$40-60$	10	50	500
$60-80$	12	70	840
$80-100$	6	90	540
$100-120$	5	110	550
$120-140$	3	130	390
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=50$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=3120$

Mean $=\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}}$
$=\frac{3120}{50}$
$=62.4$
Thus, the mean of the given data is 62.4.
Now, to find the median let us put the data in the table given below:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative Frequency (cf)
$0-20$	6	6
$20-40$	8	14
$40-60$	10	24
$60-80$	12	36
$80-100$	6	42
$100-120$	5	47
$120-140$	3	50
Total	$\mathrm{N}=\sum f_{i}=50$	

Now, $\mathrm{N}=50 \Rightarrow \frac{N}{2}=25$.
The cumulative frequency just greater than 25 is 36 and the corresponding class is $60-80$.
Thus, the median class is $60-80$.
$\therefore l=60, \mathrm{~h}=20, \mathrm{~N}=50, \mathrm{f}=12$ and $\mathrm{cf}=24$.
Now,

$$
\begin{aligned}
\text { Median } & =l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h} \\
& =60+\left(\frac{25-24}{12}\right) \times 20 \\
& =60+1.67 \\
& =61.67
\end{aligned}
$$

Thus, the median is 61.67 .
We know that,

$$
\begin{aligned}
\text { Mode } & =3(\text { median })-2(\text { mean }) \\
& =3 \times 61.67-2 \times 62.4 \\
& =185.01-124.8 \\
& =60.21
\end{aligned}
$$

Hence, Mean $=62.4$, Median $=61.67$ and Mode $=60.21$
3. Find the mean, median and mode of the following data:

Class	$0-50$	$50-100$	$100-150$	$150-200$	$200-250$	$250-300$	$300-350$
Frequency	2	3	5	6	5	3	1

Sol:

To find the mean let us put the data in the table given below:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$0-50$	2	25	50
$50-100$	3	75	225
$100-150$	5	125	625
$150-200$	6	175	1050
$200-250$	5	225	1125
$250-300$	3	275	825
$300-350$	1	325	325
Total	$\Sigma \mathrm{f}_{\mathrm{i}}=25$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=4225$

$$
\begin{aligned}
\text { Mean } & =\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}} \\
& =\frac{4225}{25} \\
& =169
\end{aligned}
$$

Thus, mean of the given data is 169 .

Now, to find the median let us put the data in the table given below:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative Frequency (cf)
$0-50$	2	2
$50-100$	3	5
$100-150$	5	10
$150-200$	6	16
$200-250$	5	21
$250-300$	3	24
$300-350$	1	25
Total	$\mathrm{N}=\sum f_{i}=25$	

Now, $\mathrm{N}=25 \Rightarrow \frac{N}{2}=12.5$.
The cumulative frequency just greater than 12.5 is 16 and the corresponding class is 150 200.

Thus, the median class is $150-200$.
$\therefore l=150, \mathrm{~h}=50, \mathrm{~N}=25, \mathrm{f}=6$ and $\mathrm{cf}=10$.
Now,
Median $=l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h}$

$$
\begin{aligned}
& =150+\left(\frac{12.5-10}{6}\right) \times 50 \\
& =150+20.83 \\
& =170.83
\end{aligned}
$$

Thus, the median is 170.83 .
We know that,
Mode $=3($ median $)-2($ mean $)$

$$
=3 \times 170.83-2 \times 169
$$

$$
=512.49-338
$$

$$
=174.49
$$

Hence, Mean $=169$, Median $=170.83$ and Mode $=174.49$
4. Find the mean, median and mode of the following data:

Marks obtained	$25-35$	$35-45$	$45-55$	$55-65$	$65-75$	$75-85$
No. of students	7	31	33	17	11	1

Sol:

To find the mean let us put the data in the table given below:

Marks obtained	Number of students (f_{i})	Class mark (x_{i})	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$
$25-35$	7	30	210
$35-45$	31	40	1240

$45-55$	33	50	1650
$55-65$	17	60	1020
$65-75$	11	70	770
$75-85$	1	80	80
Total	$\sum \mathrm{f}_{\mathrm{i}}=100$		$\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=4970$

| Mean |
| :--- |$=\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}}$

$=\frac{4970}{100}$
$=49.7$

Thus, mean of the given data is 49.7 .
Now, to find the median let us put the data in the table given below:

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative Frequency (cf)
$25-35$	7	7
$35-45$	31	38
$45-55$	33	71
$55-65$	17	88
$65-75$	11	99
$75-85$	1	100
Total	$\mathrm{N}=\sum f_{i}=100$	

Now, $\mathrm{N}=100 \Rightarrow \frac{N}{2}=50$.
The cumulative frequency just greater than 50 is 71 and the corresponding class is $45-55$. Thus, the median class is $45-55$.
$\therefore l=45, \mathrm{~h}=10, \mathrm{~N}=100, \mathrm{f}=33$ and $\mathrm{cf}=38$.
Now,
Median $=l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times \mathrm{h}$

$$
\begin{aligned}
& =45+\left(\frac{50-38}{33}\right) \times 10 \\
& =45+3.64 \\
& =48.64
\end{aligned}
$$

Thus, the median is 48.64 .
We know that,
Mode $=3$ (median) -2 (mean)

$$
\begin{aligned}
& =3 \times 48.64-2 \times 49.70 \\
& =145.92-99.4 \\
& =46.52
\end{aligned}
$$

Hence, Mean $=49.70$, Median $=48.64$ and Mode $=46.52$
5. A survey regarding the heights (in cm) of 50 girls of a class was conducted and the following data was obtained:

Height in cm	$120-130$	$130-140$	$140-150$	$150-160$	$160-170$
No. of girls	2	8	12	20	8

Find the mean, median and mode of the above data.
Sol: We have the following

Height in cm	Mid value $\left(\mathrm{x}_{\mathrm{i}}\right)$	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative frequency	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{x}_{\mathrm{i}}\right)$
$120-130$	125	2	2	250
$130-140$	135	8	10	1080
$140-150$	145	12	22	1740
$150-160$	155	20	42	3100
$160-170$	165	8	50	1320

Mean, $\bar{x}=\frac{\sum\left(f_{i} \times x_{i}\right)}{\sum f_{i}}$

$$
\begin{aligned}
& =\frac{7490}{50} \\
& =149.8
\end{aligned}
$$

Now, $\mathrm{N}=50$
$\Rightarrow \frac{N}{2}=25$.
The cumulative frequency just greater than 25 is 42 and the corresponding class is 150 160.

Thus, the median class is $150-160$.
$\therefore l=150, \mathrm{~h}=10, \mathrm{f}=20, \mathrm{c}=\mathrm{cf}$ of preceding class $=22$ and $\frac{N}{2}=25$
Now,

$$
\begin{aligned}
\text { Median, } & \mathrm{M}_{\mathrm{e}}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-\mathrm{c}}{f}\right)\right\} \\
= & 150+\left\{10 \times\left(\frac{25-22}{20}\right)\right\} \\
= & \left(150+10 \times \frac{3}{20}\right) \\
= & 151.5
\end{aligned}
$$

Mode $=3($ median $)-2($ mean $)$

$$
\begin{aligned}
& =3 \times 151.5-2 \times 149.8 \\
& =154.9
\end{aligned}
$$

6. The following table gives the daily income of 50 workers of a factory:

Daily income (in Rs)	$100-120$	$120-140$	$140-160$	$160-180$	$180-200$
No. of workers	12	14	8	6	10

Find the mean, median and mode of the above data.

Sol:

We have the following:

Daily income	Mid value $\left(\mathrm{x}_{\mathrm{i}}\right)$	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative frequency	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{x}_{\mathrm{i}}\right)$
$100-120$	110	12	12	1320
$120-140$	130	14	26	1820
$140-160$	150	8	34	1200
$160-180$	170	6	40	1020
$180-200$	190	10	50	1900
		$\Sigma \mathrm{f}_{\mathrm{i}}=50$		$\sum \mathrm{f}_{\mathrm{i}} \times \mathrm{x}_{\mathrm{i}}=7260$

Mean, $\bar{x}=\frac{\sum_{i} f_{i} \times x_{i}}{\sum_{i} f_{i}}$

$$
\begin{aligned}
& =\frac{7260}{50} \\
& =145.2
\end{aligned}
$$

Now, $\mathrm{N}=50$
$\Rightarrow \frac{N}{2}=25$.
The cumulative frequency just greater than 25 is 26 and the corresponding class is 120 140.

Thus, the median class is $120-140$.
$\therefore l=120, \mathrm{~h}=20, \mathrm{f}=14, \mathrm{c}=\mathrm{cf}$ of preceding class $=12$ and $\frac{N}{2}=25$
Now,

$$
\begin{aligned}
\text { Median, } & \mathrm{M}_{\mathrm{e}}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c}{f}\right)\right\} \\
= & 120+\left\{20 \times\left(\frac{25-12}{14}\right)\right\} \\
= & \left(120+20 \times \frac{13}{14}\right) \\
= & 138.57
\end{aligned}
$$

Mode $=3($ median $)-2($ mean $)$
$=3 \times 138.57-2 \times 145.2$
$=125.31$
7. The table below shows the daily expenditure on food of 30 households in a locality:

Daily expenditure (in Rs)	Number of households
$100-150$	6
$150-200$	7
$200-250$	12
$250-300$	3
$300-350$	2

Find the mean and median daily expenditure on food.

Sol:

We have the following:

Daily expenditure (in Rs)	Mid value $\left(\mathrm{x}_{\mathrm{i}}\right)$	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Cumulative frequency	$\left(\mathrm{f}_{\mathrm{i}} \times \mathrm{x}_{\mathrm{i}}\right)$
$100-150$	125	6	6	750
$150-200$	175	7	13	1225
$200-250$	225	12	25	2700
$250-300$	275	3	28	825
$300-350$	325	2	30	650
		$\Sigma \mathrm{f}_{\mathrm{i}}=30$		$\Sigma \mathrm{f}_{\mathrm{i}} \times \mathrm{x}_{\mathrm{i}}=6150$

Mean, $\bar{x}=\frac{\sum_{i} f_{i} \times x_{i}}{\sum_{i} f_{i}}$

$$
\begin{aligned}
& =\frac{6150}{30} \\
& =205
\end{aligned}
$$

Now, $\mathrm{N}=30$
$\Rightarrow \frac{N}{2}=15$.
The cumulative frequency just greater than 15 is 25 and the corresponding class is 200 250.

Thus, the median class is $200-250$.
$\therefore l=200, \mathrm{~h}=50, \mathrm{f}=12, \mathrm{c}=\mathrm{cf}$ of preceding class $=13$ and $\frac{N}{2}=15$
Now,

$$
\begin{aligned}
\text { Median, } & \mathrm{M}_{\mathrm{e}}=l+\left\{\mathrm{h} \times\left(\frac{\frac{N}{2}-c}{f}\right)\right\} \\
= & 200+\left\{50 \times\left(\frac{15-13}{12}\right)\right\} \\
= & \left(200+50 \times \frac{2}{12}\right) \\
= & 200+8.33 \\
= & 208.33
\end{aligned}
$$

Exercise 9E

30. Find the median of the following data by making a 'less than ogive'.

Marks	$0-$ 10	$10-$ 20	$20-$ 30	$30-$ 40	$40-$ 50	$50-$ 60	$60-$ 70	$70-$ 80	$80-$ 90	$90-$ 100
Number of Students	5	3	4	3	3	4	7	9	7	8

Sol:

The frequency distribution table of less than type is given as follows:

Marks (upper class limits)	Cumulative frequency (cf)
Less than 10	5
Less than 20	$5+3=8$
Less than 30	$8+4=12$
Less than 40	$12+3=15$
Less than 50	$15+3=18$
Less than 60	$18+4=22$
Less than 70	$22+7=29$
Less than 80	$29+9=38$
Less than 90	$38+7=45$
Less than 100	$45+8=53$

Taking upper class limits of class intervals on x -axis and their respective frequencies on y axis, its ogive can be drawn as follows:
Here, $\mathrm{N}=53 \Rightarrow \frac{N}{2}=26.5$.
Mark the point A whose ordinate is 26.5 and its x -coordinate is 66.4.

Thus, median of the data is 66.4.
31. The given distribution shows the number of wickets taken by the bowlers in one-day international cricket matches:

Number of Wickets	Less than 15	Less than 30	Less than 45	Less than 60	Less than 75	Less than 90	Less than 105	Less than 120
Number of bowlers	2	5	9	17	39	54	70	80

Draw a 'less than type' ogive from the above data. Find the median.
Sol:
Taking upper class limits of class intervals on x -axis and their respective frequencies on y axis, its ogive can be drawn as follows:

Here, $\mathrm{N}=80 \Rightarrow \frac{N}{2}=40$.
Mark the point A whose ordinate is 40 and its x -coordinate is 76 .

Thus, median of the data is 76 .
32. Draw a 'more than' ogive for the data given below which gives the marks of 100 students.

Marks	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No of Students	4	6	10	10	25	22	18	5

Sol:
The frequency distribution table of more than type is as follows:

Marks (upper class limits)	Cumulative frequency (cf)
More than 0	$96+4=100$
More than 10	$90+6=96$
More than 20	$80+10=90$
More than 30	$70+10=80$
More than 40	$45+25=70$
More than 50	$23+22=45$
More than 60	$18+5=23$
More than 70	5

Taking lower class limits of on x-axis and their respective cumulative frequencies on y-axis, its ogive can be drawn as follows:

33. The heights of 50 girls of Class X of a school are recorded as follows:

Height (in cm)	$135-140$	$140-145$	$145-150$	$150-155$	$155-160$	$160-165$
No of Students	5	8	9	12	14	2

Draw a 'more than type' ogive for the above data.

Sol:

The frequency distribution table of more than type is as follows:

Height (in cm) (lower class limit)	Cumulative frequency (cf)
More than 135	$5+45=50$
More than 140	$8+37=45$
More than 145	$9+28=37$
More than 150	$12+16=28$
More than 155	$14+2=16$
More than 160	2

Taking lower class limits of on x-axis and their respective cumulative frequencies on y-axis, its ogive can be drawn as follows:

34. The monthly consumption of electricity (in units) of some families of a locality is given in the following frequency distribution:

Monthly Consumption (in units)	$140-$ 160	$160-$ 180	$180-$ 200	$200-$ 220	$220-$ 240	$240-$ 260	$260-$ 280
Number of Families	3	8	15	40	50	30	10

Prepare a 'more than type' ogive for the given frequency distribution.

Sol:

The frequency distribution table of more than type is as follows:

Height (in cm) (lower class limit)	Cumulative frequency (cf)
More than 140	$3+153=156$
More than 160	$8+145=153$
More than 180	$15+130=145$
More than 200	$40+90=130$
More than 220	$50+40=90$
More than 240	$30+10=40$
More than 260	10

Taking the lower class limits of on x -axis and their respective cumblative frequencies on y-axis, its ogive can be drawn as follows:

35. The following table gives the production yield per hectare of wheat of 100 farms of a village.

Production Yield (kg/ha)	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$
Number of farms	2	8	12	24	238	16

Change the distribution to a 'more than type' distribution and draw its ogive. Using ogive, find the median of the given data.
Sol:
The frequency distribution table of more than type is as follows:

Production yield (kg/ha) (lower class limits)	Cumulative frequency (cf)
More than 50	$2+98=100$
More than 55	$8+90=98$
More than 60	$12+78=90$
More than 65	$24+54=78$
More than 70	$38+16=54$
More than 75	16

Taking the lower class limits on x-axis and their respective cumulative on y-axis, its ogive can be drawn as follows:

Here, $\mathrm{N}=100 \Rightarrow \frac{N}{2}=50$.
Mark the point A whose ordinate is 50 and its x -coordinate is 70.5 .

Thus, median of the data is 70.5 .
36. The table given below shows the weekly expenditures on food of some households in a locality

Weekly expenditure (in ₹)	Number of house holds
$100-200$	5
$200-300$	6
$300-400$	11
$400-500$	13
$500-600$	5
$600-700$	4
$700-800$	3
$800-900$	2

Draw a 'less than type ogive' and a 'more than type ogive' for this distribution.
Sol:
The frequency distribution table of less than type is as follows:

Weekly expenditure (in ₹) (upper class limits)	Cumulative frequency (cf)
Less than 200	5
Less than 300	$5+6=11$
Less than 400	$11+11=22$
Less than 500	$22+13=35$
Less than 600	$35+5=40$
Less than 700	$40+4=44$
Less than 800	$44+3=47$
Less than 900	$47+2=49$

Taking the lower class limits on x -axis and their respective cumulative frequencies on y -axis, its ogive can be obtained as follows

Now,
The frequency distribution table of more than type is as follows:

Weekly expenditure (in ₹) (lower class limits)	Cumulative frequency (cf)
More than 100	$44+5=49$
More than 200	$38+6=44$
More than 300	$27+11=38$
More than 400	$14+13=27$
More than 500	$9+5=14$
More than 600	$5+4=9$
More than 700	$2+3=5$
More than 800	2

Taking the lower class limits on x -axis and their respective cumulative frequencies on y-axis, its ogive can be obtained as follows:

37. From the following frequency, prepare the 'more than' ogive.

Score	Number of candidates
$400-450$	20
$450-500$	35
$500-550$	40
$550-600$	32
$600-650$	24
$650-700$	27
$700-750$	18
$750-800$	34
Total	230

Also, find the median.

Sol:

From the given table, we may prepare than 'more than' frequency table as shown below:

Score	Number of candidates
More than 750	34
More than 700	52
More than 650	79
More than 600	103
More than 550	135
More than 500	175
More than 450	210
More than 400	230

We plot the points $\mathrm{A}(750,34), \mathrm{B}(700,52)$, $\mathrm{C}(650,79), \mathrm{D}(600,103), \mathrm{E}(550,135), \mathrm{F}(500,175)$, $\mathrm{G}(450,210)$ and $\mathrm{H}(400,230)$.
Join AB, BC, CD, DE, EF, FG, GH and HA with
a free hand to get the curve representing the 'more than type' series.

Here, $\mathrm{N}=230$
$\Rightarrow \frac{N}{2}=115$
From $\mathrm{P}(0,115)$, draw PQ meeting the curve at Q . Draw QM meeting at M .
Clearly, $\mathrm{OM}=590$ units
Hence, median $=590$ units.
38. The marks obtained by 100 students of a class in an examination are given below:

Marks	Number of students
$0-5$	2
$5-10$	5
$10-15$	6
$15-20$	8
$20-25$	10

$25-30$	25
$30-35$	20
$35-40$	18
$40-45$	4
$45-50$	2

Draw cumulative frequency curves by using (i) 'less than' series and (ii) 'more than' series. Hence, find the median.

Sol:

(i) From the given table, we may prepare the 'less than' frequency table as shown below:

Marks	Number of students
Less than 5	2
Less than 10	7
Less than 15	13
Less than 20	21
Less than 25	31
Less than 30	56
Less than 35	76
Less than 40	94
Less than 45	98
Less than 50	100

We plot the points $\mathrm{A}(5,2), \mathrm{B}(10,7), \mathrm{C}(15,13), \mathrm{D}(20,21), \mathrm{E}(25,31), \mathrm{F}(30,56), \mathrm{G}(35,76)$ and $\mathrm{H}(40,94), \mathrm{I}(45,98)$ and $\mathrm{J}(50,100)$.
Join AB, BC, CD, DE, EF, FG, GH, HI, IJ and JA with a free hand to get the curve representing the 'less than type' series.
(ii) More than series:

Marks	Number of students
More than 0	100
More than 5	98
More than 10	93
More than 15	87
More than 20	79
More than 25	69
More than 30	44
More than 35	24
More than 40	6
More than 45	2

Now, on the same graph paper, we plot the points $(0,100),(5,98),(10,94),(15,76),(20$, $56),(25,31),(30,21),(35,13),(40,6)$ and $(45,2)$.
Join with a free hand to get the 'more than type' series.

The two curves intersect at point L . Draw $L M \perp O X$ cutting the x -axis at M .
Clearly, $\mathrm{M}=29.5$
Hence, Median = 29.5
39. From the following data, draw the two types of cumulative frequency curves and determine the median:

Marks	Frequency
$140-144$	3
$144-148$	9
$148-152$	24
$152-156$	31
$156-160$	42
$160-164$	64
$164-168$	75
$168-172$	82
$172-176$	86
$176-180$	34

Sol:

(i) Less than series:

Marks	Number of students
Less than 144	3
Less than 148	12
Less than 152	36
Less than 156	67
Less than 160	109
Less than 164	173
Less than 168	248

Less than 172	230
Less than 176	416
Less than 180	450

We plot the points $\mathrm{A}(144,3), \mathrm{B}(148,12), \mathrm{C}(152,36), \mathrm{D}(156,67), \mathrm{E}(160,109), \mathrm{F}(164,173)$, $\mathrm{G}(168,248)$ and $\mathrm{H}(172,330), \mathrm{I}(176,416)$ and $\mathrm{J}(180,450)$.
Join AB, BC, CD, DE, EF, FG, GH, HI, IJ and JA with a free hand to get the curve representing the 'less than type' series.
(ii) More than series:

Marks	Number of students
More than 140	450
More than 144	447
More than 148	438
More than 152	414
More than 156	383
More than 160	341
More than 164	277
More than 168	202
More than 172	120
More than 176	34

Now, on the same graph paper, we plot the points $\mathrm{A}_{1}(140,450), \mathrm{B}_{1}(144,447), \mathrm{C}_{1}(148,438)$, $\mathrm{D}_{1}(152,414), \mathrm{E}_{1}(156,383), \mathrm{F}_{1}(160,277), \mathrm{H}_{1}(168,202), \mathrm{I}_{1}(172,120)$ and $\mathrm{J}_{1}(176,34)$.
Join $A_{1} B_{1}, B_{1} C_{1}, C_{1} D_{1}, D_{1} E_{1}, E_{1} F_{1}, F_{1} G_{1}, G_{1} H_{1}, H_{1} I_{1}$ and $I_{1} J_{1}$ with a free hand to get the 'more than type' series.

The two curves intersect at point L . Draw $\mathrm{LM} \perp \mathrm{OX}$ cutting the x -axis at M . Clearly, $\mathrm{M}=$ 166 cm
Hence, median $=166 \mathrm{~cm}$

Exercise 9F

1. Write the median class of the following distribution:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	4	4	8	10	12	8	4

Sol:

To find median let us put the data in the table given below:

Class	Frequency $\left(f_{i}\right)$	Cumulative frequency (cf)
$0-10$	4	4
$10-20$	4	8
$20-30$	8	16
$30-40$	10	26
$40-50$	12	38
$50-60$	8	46
$60-70$	4	50
Total	$\mathrm{N}=\Sigma f_{i}=50$	

Now, $N=50 \Rightarrow \frac{N}{2}=25$
The cumulative frequency just greater than 25 is 26 , and the corresponding class is 30-40. Thus, the median class is $30-40$.
2. What is the lower limit of the modal class of the following frequency distribution?

Age (in years)	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Number of patients	16	13	6	11	27	18

Sol:

Here the maximum class frequency is 27 , and the class corresponding to this frequency is 40-50 So the modal class is 40-50.
Now,
Modal class $=40-50$, lower limit $(/)$ of modal class $=40$.
Thus, lower limit (/) of modal class is 40
3. The monthly pocket money of 50 students of a class are given in the following distribution:

Monthly pocket money (in ₹)	$0-50$	$50-100$	$100-150$	$150-200$	$200-250$	$250-300$
Number of Students	2	7	8	30	12	1

Find the modal class and give class mark of the modal class.

Sol:

Here the maximum class frequency is 30 , and the class corresponding to the frequency is $150-200$. So, the modal class is $150-200$.

Also, class mark of the modal class is $\frac{150+200}{2}=175$.
4. A data has 25 observations arranged in a descending order. Which observation represents the median?

Sol:

If the number of observations is odd, then the median is $\left(\frac{n+1}{2}\right) t h$ observation.
Thus, $\left(\frac{25+1}{2}\right)=13$ th observation represents the median.
5. For a certain distribution, mode and median were found to be 1000 and 1250 respectively. Find mean for this distribution using an empirical relation.
Sol:
There is an empirical relationship between the three measures of central tendency:
3 median $=$ mode +2 Mean
\Rightarrow Mean $=\frac{3 \text { Median }- \text { Mode }}{2}$
$=\frac{3(1250)-1000}{2}$
$=1375$
Thus, the mean is 1375 .
6. In a class test, 50 students obtained marks as follows:

Marks obtained	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Number of Students	4	6	25	10	5

Find the modal class and the median class.

Sol:

Here the maximum class frequency is 25 , and the class corresponding to this frequency is 40-60.
So, the modal class is 40-60.
Now, to find the median class let us put the data in the table given below:

Marks Obtained	Number of students $\left(f_{i}\right)$	Cumulative frequency (cf)
$0-20$	4	4
$20-40$	6	10
$40-60$	25	35
$60-80$	10	45
$80-100$	5	50
Total	$\mathrm{N}=\Sigma f_{i}=50$	

Now, $N=50 \Rightarrow \frac{N}{2}=25$.
The cumulative frequency just greater than 25 is 35 , and the corresponding class is 40-60. Thus, the median class is $40-60$.
7. Find the class marks of classes $10-25$ and $35-55$.

Sol:

Class mark $=\frac{\text { Upper limit }+ \text { Lower limit }}{2}$
\therefore class mark of 10-25 $=\frac{10+25}{2}$

$$
=17.5
$$

And class mark of $35-55=\frac{35+55}{2}$

$$
=45
$$

8. While calculating the mean of a given data by the assumed-mean method, the following values were obtained.
$\mathrm{A}=25, \sum f_{i} d_{i}=110, \sum f_{i}=50$
Find the mean.

Sol:

According to assumed-mean method,
$\bar{x}=A+\frac{\sum_{i} f_{i} d_{i}}{\sum_{i} f_{i}}$
$=25+\frac{110}{50}$
$=25+2.2$
$=27.2$
Thus, mean is 27.2.
9. The distribution X and Y with total number of observations 36 and 64 , and mean 4 and 3 respectively are combined. What is the mean of the resulting distribution $\mathrm{X}+\mathrm{Y}$?

Sol:

According to the question,
$4=\frac{X}{36}$ and $3=\frac{Y}{64}$
$\Rightarrow X=4 \times 36$ and $Y=3 \times 64$
$\Rightarrow X=144$ and $Y=192$
Now, $X+Y=144+192=336$
And total number of observations $=36+64=100$
Thus, mean $=\frac{336}{100}=3.36$.
10. In a frequency distribution table with 12 classes, the class-width is 2.5 and the lowest class boundary is 8.1 , then what is the upper class boundary of the highest class?

Sol:

Upper class boundary $=$ Lowest class boundary + width \times number of classes
$=8.1+2.5 \times 12$
$=8.1+30$
$=38.1$
Thus, upper class boundary of the highest class is 38.1 .
11. The observation $29,32,48,50, x, x+2,72,78,84,95$ are arranged in ascending order. What is the value of x if the median of the data is 63 ?

Sol:

If number of observations is even, then the median will be the average of $\left(\frac{n}{2}\right)$ th and the $\left(\frac{n}{2}+1\right)$ th observations.
In the given case, $n=10 \Rightarrow\left(\frac{n}{2}\right)$ th $=5$ th and $\left(\frac{n}{2}+1\right)$ th $=6$ th observation.
Thus, $63=\frac{x+(x+2)}{2}$
$\Rightarrow 126=2 x+2$
$\Rightarrow 124=2 x$
$\Rightarrow x=62$
Thus, the value of x is 62 .
12. The median of 19 observations is 30 . Two more observation are made and the values of these are 8 and 32 . Find the median of the 21 observations taken together.
Hint Since 8 is less than 30 and 32 is more than 30 , so the value of median (middle value) remains unchanged.

Sol:

Since, 8 is less than 30 and 32 is more than 30 , so the middle value remains unchanged Thus, the median of 21 observations taken together is 30 .
13. If the median of $\frac{x}{5}, \frac{x}{4}, \frac{x}{2}, x$ and $\frac{x}{3}$, where $\mathrm{x}>0$, is 8 , find the value of x .

Hint Arranging the observations in ascending order, we have $\frac{x}{5}, \frac{x}{4}, \frac{x}{3}, \frac{x}{2}, x$ Median $=\frac{x}{3}=8$.
Sol:
Arranging the observations in ascending order, we have
$\frac{x}{5}, \frac{x}{4}, \frac{x}{3}, \frac{x}{2}, x$
Thus, the median is $\frac{x}{3}$
$\Rightarrow \frac{x}{3}=8$
$\Rightarrow x=3 \times 8$
$\Rightarrow x=24$
Thus, the value of x is 24 .
14. What is the cumulative frequency of the modal class of the following distribution?

Class	$3-6$	$6-9$	$9-12$	$12-15$	$15-18$	$18-21$	$21-24$
Frequency	7	13	10	23	54	21	16

Sol:

Here the maximum class frequency is 23 , and the class corresponding to this frequency is 12-15.

So, the modal class is 12.15 .
Now, to find the cumulative frequency let us put the data in the table given below:

Class	Frequency $\left(f_{i}\right)$	Cumulative frequency $(c f)$
$3-6$	7	7
$6-9$	13	20
$9-12$	10	30
$12-15$	23	53
$15-18$	4	57
$18-21$	21	78
$21-24$	16	94
Total	$N=\Sigma f_{i}=94$	

Thus, the cumulative frequency of the modal class is 53 .
15. Find the mode of the given data:

Class Interval	$0-20$	$20-40$	$40-60$	$60-80$
Frequency	15	6	18	10

Sol:

Here the maximum class frequency is 18 , and the class corresponding to this frequency is 40-60.
So, the modal class is 40-60.
Now,
Modal class $=40-60$, lower limit $(/)$ of modal class -40 , class size $(\mathrm{h})=20$,
Frequency $\left(f_{1}\right)$ of the modal class $=18$,
Frequency $\left(f_{0}\right)$ of class preceding the modal class $=6$,
Frequency $\left(f_{2}\right)$ of class succeeding the modal class $=10$.
Now, let us substitute these values in the formula:
Mode $=l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h$
$=40+\left(\frac{18-6}{36-6-10}\right) \times 20$
$=40+\left(\frac{12}{20}\right) \times 20$
$=40+12$
$=52$
Hence, the mode is 52 .
16. The following are the ages of 300 patients getting medical treatment in a hospital on a particular day:

Age (in years)	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Number of patients	6	42	55	70	53	20

Form a 'less than type' cumulative frequency distribution.

Sol:

A 'less than type' cumulative frequency distribution table is given below:

Age (in years)	Cumulative frequency $(c f)$
Less than 20	60
Less than 30	102
Less than 40	157
Less than 50	227
Less than 60	280
Less than 70	300

17. In the following data, find the values of p and q. Also, find the median class and modal class.

Class	Frequency (f)	Cumulative frequency (cf)
$100-200$	11	11
$200-300$	12	P
$300-400$	10	33
$400-500$	Q	46
$500-600$	20	66
$600-700$	14	80

Sol:

Here, $p=11+12=23$
And $33+q=46$
$\Rightarrow q=46-33$
$=13$
Thus, p is 23 and q is 13 .
Now,
Here the maximum class frequency is 20 , and the class corresponding to this frequency is 500-600.
So, the modal class is 500-600.
Also, $\Sigma f=N=80$
$\Rightarrow \frac{N}{2}=40$.
The cumulative frequency just greater than 40 is 46 , and the corresponding class is $400-$ 500.

Thus, the median class is 400-500.
18. The following frequency distribution gives the monthly consumption of electricity ofr 64 consumers of locality.

Monthly consumption (in units)	$65-85$	$85-105$	$105-125$	$125-145$	$145-165$	$165-185$
Number of consumers	4	5	13	20	14	8

Form a ' more than type' cumulative frequency distribution.

Sol:

The cumulative frequency distribution table of more than type is as follows:

Monthly consumption (in units) (lower class limits)	Cumulative frequency (cf)
More than 65	$60+4=64$
More than 85	$55+5=60$
More than 105	$42+13=55$
More than 125	$22+20=42$
More than 145	$8+14=22$
More than 165	8

19. The following table gives the life-time (in days) of 100 electric bulbs of a certain brand.

Life-tine (in days)	Less than 50	Less than 100	Less than 150	Less than 200	Less than 250	Less than 300
Number of Bulbs	7	21	52	79	91	100

Sol:

The frequency distribution is as follows:

Life-time (in days)	Frequency (f)
$0-50$	7
$50-100$	14
$100-150$	31
$150-200$	27
$200-250$	12
$250-300$	9

20. The following table, construct the frequency distribution of the percentage of marks obtained by 2300 students in a competitive examination.

Marks obtained (in percent)	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$	$61-70$	$71-80$
Number of Students	141	221	439	529	495	322	153

(a) Convert the given frequency distribution into the continuous form.
(b) Find the median class and write its class mark.
(c) Find the modal class and write its cumulative frequency.

Sol:
(a) The frequency distribution into the continuous form is as follows:

Marks obtained (in per cent)	Number of students (f)
$10.5-20.5$	141
$20.5-30.5$	221
$30.5-40.5$	439
$40.5-50.5$	529

$50.5-60.5$	495
$60.5-70.5$	322
$70.5-80.5$	153

(b)Now, to find the median class let us put the data in the tale given below:

Marks obtained (in percent)	Number of students (f)	Cumulative frequency (cf)
$10.5-20.5$	141	141
$20.5-30.5$	221	362
$30.5-40.5$	439	801
$40.5-50.5$	529	1330
$50.5-60.5$	495	1825
$60.5-70.5$	322	2147
$70.5-80.5$	153	2300

Now, $N=2300$
$\Rightarrow \frac{N}{2}=1150$
The cumulative frequency just greater than 1150 is 1330 , and the corresponding class is 40.5-50.5.

Thus, the median class is $40.5-50.5$
Now, class mark $=\frac{\text { upper class limit }+ \text { lower class limit }}{2}$
$\frac{40.5+50.5}{2}=\frac{91}{2}=45.5$
Thus, class mark of the median class is 45.5
(c)Here the maximum class frequency is 529 , and the class corresponding to this frequency is 40.5-50.5.
So, the modal class is $40.5-50.5$ and its cumulative frequency is 1330 .
21. If the mean of the following distribution is 27 , find the value of p.

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	8	P	12	13	10

Sol: The given data is shown as follows:

Class	Frequency (f)	Class mark $\left(x_{i}\right)$	$f_{i} x_{i}$
$0-10$	8	5	40
$10-20$	P	15	15 p
$20-30$	12	25	300
$30-40$	13	35	455
$40-50$	10	45	450
Total	$\sum f_{i}=43+p$		$\sum f_{i} x_{i}=1245+15 p$

The mean of given data is given by $\bar{x}=\frac{\sum_{i} f_{i} x_{i}}{\sum_{i} f_{i}}$
$\Rightarrow 27=\frac{1245+15 p}{43+p}$
$\Rightarrow 1161+27 p=1245+15 p$
$\Rightarrow 27 p-15 p=1245-1161$
$\Rightarrow 12 p=84$
$\Rightarrow p=7$
Thus, the value of p is 7 .
22. Calculate the missing frequency form the following distribution, it being given that the median of the distribution is 24 .

Age (in years)	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Number of persons	5	25	$?$	18	7

Sol:
Let the missing frequency be x.
To find the median let us put data in the table given below:

Age (in years)	Number of persons (f)	Cumulative frequency (cf)
$0-10$	5	5
$10-20$	25	30
$20-30$	X	$30+\mathrm{x}$
$30-40$	18	$48+\mathrm{x}$
$40-50$	7	$55+\mathrm{x}$

The given median is 24 ,
\therefore the median class is 20-30.
$\therefore /=20, h=10, N=55+x, f=x$ and $c f=30$
Median $=l+\left(\frac{\frac{N}{2}-c f}{f}\right) \times h$
$\Rightarrow 24=20+\left(\frac{\frac{55+x}{2}-30}{x}\right) \times 10$
$\Rightarrow 24-20=\left(\frac{55+x-60}{2 x}\right) \times 10$
$\Rightarrow 4=\left(\frac{x-5}{2 x}\right) \times 10$
$\Rightarrow 8 x=10 x-50$
$\Rightarrow 2 x=50$
$\Rightarrow x=25$
Thus, the missing frequency is 25 .

Multiple choice questions

1. Which of the following is not a measure of central tendency?
(a) Mean
(b) Mode
(c) Median
(d) Standard Deviation

Answer: (d) Standard Deviation

Sol:

The standard deviation is a measure of dispersion. It is the action or process of distributing thing over a wide area (nothing about central location).
2. Which of the following cannot be determined graphically?
(a) Mean
(b) Median
(c) Mode
(d) None of these

Answer: (a) Mean
Sol:
The mean cannot be determined graphically because the values cannot be summed.
3. Which of the following measures of central tendency is influence by extreme values?
(a) Mean
(b) Median
(c) Mode
(d) None of these

Answer: (a) Mean

Sol:

Mean is influenced by extreme values.
4. The mode of frequency distribution is obtained graphically from
(a) a frequency curve
(b) a frequency polygon
(c) a histogram
(d) an ogive

Answer: (c) a histogram

Sol:

The mode of a frequency distribution can be obtained graphically from a histogram.
5. The medium of a frequency distribution is found graphically with the help of
(a) a histogram
(b) a frequency curve
(c) a frequency polygon
(d) ogives

Answer: (d) ogives

Sol:

This because median of a frequency distribution is found graphically with the help of ogives.
6. The cumulative frequency table is useful is determining the
(a) Mean
(b) Median
(c) Mode
(d) all of these

Answer: (b) Median
Sol:
The cumulative frequency table is useful in determining the median.
7. The abscissa of the point of intersection of the Less Than Type and of the More Than Type cumulative frequency curves of a grouped data gives its
(a) Mean
(b) Median
(c) Mode
(d)None of these

Answer: (b) Median

Sol:

The abscissa of the point of intersection of the 'less than type' and that of the 'more than type' cumulative frequency curves of a grouped data gives its median.
8. If x_{i} 's are the midpoints of the class intervals of a grouped data, $f_{i}{ }^{\prime} s$ are the corresponding frequencies and \bar{x} is the mean then $\sum f_{i}\left(x_{i}-\bar{x}\right)=$?
(a) 1
(b) 0
(c) -1
(d) 2

Answer: (b)0
Sol:
We know that $\bar{x}=\frac{\Sigma \mathrm{f}_{i} x_{i}}{\Sigma \mathrm{f}_{i}}$
$\Rightarrow \bar{x} \Sigma f_{i}=\Sigma f_{i} x_{i} \quad \ldots$ (i)
Now, $\Sigma f_{i}\left(x_{i}-\bar{x}\right)=\Sigma f_{i} x_{i}-\bar{x} \Sigma f_{i}$
$\Rightarrow \Sigma f_{i}\left(x_{i}-\bar{x}\right)=\Sigma f_{i} x_{i}-\Sigma f_{i} x_{i} \quad[U s i n g(i)]$
$\Rightarrow \Sigma f_{i}\left(x_{i}-\bar{x}\right)=0$
9. For the finding the mean by using the formula, $\bar{x}=A+h\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right)$, we have $u_{i}=$?
(a) $\frac{\left(A-x_{i}\right)}{h}$
(b) $\frac{\left(x_{i}-A\right)}{h}$
(c) $\frac{\left(A+x_{i}\right)}{h}$
(d) $h\left(x_{i}-A\right)$

Answer: (b) $u_{i}=\frac{\left(x_{i}-A\right)}{h}$
Sol:
$u_{i}=\frac{\left(x_{i}-A\right)}{h}$
10. In the formula, $\bar{x}=\left\{A+\frac{\sum f_{i} d_{i}}{\sum f_{i}}\right\}$ for the following the mean of the grouped data, the d_{i} 's are the deviations from A of
(a) lower limits of the classes
(b) upper limits of the classes
(c) midpoints of the classes
(d) none of these

Answer: (c) midpoints of the classes

Sol:

The $d_{i}^{\prime} s$ are the deviations from A of midpoints of the classes.
11. While computing the mean of the groue data, we assume that the frequencies are
(a) evenly distributed over the classes
(b) centred at the class marks of the classes
(c) centred at the lower limits of the classes
(d) centred at the upper limits of the classes

Answer: (b) centred at the class marks of the classes

Sol:

While computing the mean of the group data, we assume that the frequencies are centred at the class marks of the classes.
12. The relation between mean, mode and median is
(a) mode $=(3 \times$ mean $)-(2 \times$ median $)$
(b) mode $=(3 \times$ median $)-(2 \times$ mean $)$
(c) median $=(3 \times$ mean $)-(2 \times$ mode $)$
(d) mean $=(3 \times$ median $)-(2 \times$ mode $)$

Answer: (b) mode $=(3 \times$ median $)-(2 \times$ mean $)$
Sol:
mode $=(3 \times$ median $)-(2 \times$ mean $)$
13. If the 'less than type' ogive and 'more than type' ogive intersect each other at $(20.5,15.5)$ then the median of the given data is
(a) 5.5
(b) 15.5
(c) 20.5
(d) 36.0

Answer: (c) 20.5

Sol:

The x - coordinate represents the median of the given data.
Thus, median of the given data is 20.5 .
14. Consider the frequency distribution of the heights of 60 students of a class

Height (in cm)	No. of students	Cumulative frequency
$150-155$	16	16
$155-160$	12	28
$160-165$	9	37
$165-170$	7	44
$170-175$	10	54
$175-180$	6	60

The sum of the lower limit of the modal class and the upper limit of the median class is
(a) 310
(b) 315
(c) 320
(d) 330

Answer: (b) 315

Sol:

The class having the maximum frequency is the modal class.
So, the modal class is $150-155$ and its lower limit is 150 .
Also, $\mathrm{N}=60$
$\Rightarrow \frac{N}{2}=30$
The cumulative frequency just more than 30 is 37 and its class is $160-165$, whose upper limit is 165 .
\therefore Required sum $=(150+165)=315$
15. Consider the following frequency distribution

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	3	9	15	30	18	5

The modal class is
(a) $10-20$
(b) $20-30$
(c) $30-40$
(d) $50-60$

Answer: (c) 30-40
Sol:
The class $30-40$ has the maximum frequency, i.e., 30 .
So, the modal class is $30-40$.
16. \quad Mode $=$?
(a) $\mathrm{x}_{\mathrm{k}}+\mathrm{h}\left\{\frac{f_{k-1}-f_{k}}{2 f_{k}-f_{k-1}-f_{k+1}}\right\}$
(b) $\mathrm{x}_{\mathrm{k}}+\mathrm{h}\left\{\frac{f_{k}-f_{k-1}}{2 f_{k}-f_{k-1}-f_{k+1}}\right\}$
(c) $\mathrm{x}_{\mathrm{k}}+\mathrm{h}\left\{\frac{f_{k}-f_{k-1}}{f_{k}-2 f_{k-1}-f_{k+1}}\right\}$
(d) $\mathrm{x}_{\mathrm{k}}+\mathrm{h}\left\{\frac{f_{k}-f_{k-1}}{f_{k}-f_{k-1}-2 f_{k+1}}\right\}$

Answer: (b) $\mathrm{x}_{\mathrm{k}}+\mathrm{h}\left\{\frac{f_{k}-f_{k-1}}{2 f_{k}-f_{k-1}-f_{k+1}}\right\}$

Sol:

$\mathrm{x}_{\mathrm{k}}+\mathrm{h}\left\{\frac{f_{k^{-}} f_{k-1}}{2 f_{k}-f_{k-1}-f_{k+1}}\right\}$
17. Median $=$?
(a) $l+\left\{h \times \frac{\left(\frac{N}{2}-c f\right)}{f}\right\}$
(b) $l+\left\{h \times \frac{\left(c f-\frac{N}{2}\right)}{f}\right\}$
(c) $l-\left\{h \times \frac{\left(\frac{N}{2}-c f\right)}{f}\right\}$
(d) None of these
Answer: (a) $l+\left\{h \times \frac{\left(\frac{N}{2}-c f\right)}{f}\right\}$

Sol:

$l \times\left\{h \times \frac{\left(\frac{N}{2}-c f\right)}{f}\right\}$
18. If the mean and median of a set of numbers are 8.9 and 9 respectively, then the mode will be
(a) 7.2
(b) 8.2
(c) 9.2
(d) 10.2

Answer: (c) 9.2

Sol:

It is given that the mean and median are 8.9 and 9, respectively,
\therefore Mode $=(3 \times$ Median $)-(2 \times$ Mean $)$
\Rightarrow Mode $=(3 \times 9)-(2 \times 8.9)$
$=27-17.8$
$=9.2$
19. Look at the frequency distribution table given below:

Class interval	$35-45$	$45-55$	$55-65$	$65-75$
Frequency	8	12	20	10

The median of the above distribution is
(a) 56.5
(b) 57.5
(c) 58.5
(d) 59

Answer: (b) 57.5

Sol:

Class interval	$35-45$	$45-55$	$55-65$	$65-75$
Frequency	8	12	20	10
Cumulative frequency	8	20	40	50

Here, $\mathrm{N}=50$
$\Rightarrow \frac{N}{2}=25$, which lies in the class interval of $55-65$.
Now, $\mathrm{cf}=55, \mathrm{f}=20$ and $l=50$
\therefore Median $=l+\left\{h \times \frac{\left(\frac{N}{2}-c f\right)}{f}\right\}$
$=50+\frac{65-55}{20} \times(25-20)$
$=57.5$
20. Consider the following table:

Class interval	$10-14$	$14-18$	$18-22$	$22-26$	$26-30$
Frequency	5	11	16	25	19

The mode of the above data is
(a) 23.5
(b) 24
(c) 24.4
(d) 25

Answer: (c) 24.4
Sol:
The maximum frequency is 25 and the modal class is 22-26.
Now, $\mathrm{x}_{\mathrm{k}}=22, \mathrm{f}_{\mathrm{k}}=25, \mathrm{f}_{\mathrm{k}-1}=16, \mathrm{f}_{\mathrm{k}+1}=19$ and $\mathrm{h}=4$
\therefore Mode $=\mathrm{x}_{\mathrm{k}}+\mathrm{h}\left\{\frac{f_{k}-f_{k-1}}{2 f_{k}-f_{k-1}-f_{k+1}}\right\}$
$=22+4 \times \frac{(25-16)}{(2 \times 25-16-19)}$
$=22+4 \times \frac{(25-16)}{(50-16-19)}$
$=22+4 \times \frac{9}{15}$
$=22+\frac{12}{5}$
$=22+2.4$
$=24.4$
21. The mean and mode of a frequency distribution are 28 and 16 respectively. The median is
(a) 22
(b) 23.5
(c) 24
(d) 24.5

Answer: (c) 24
Sol:
Mode $=(3 \times$ median $)-(2 \times$ mean $)$
$\Rightarrow(3 \times$ median $)=($ mode +2 mean $)$
$\Rightarrow(3 \times$ median $)=16+56$
$\Rightarrow(3 \times$ median $)=72$
\Rightarrow Median $=\frac{72}{3}$
\therefore Median $=24$
22. The median and mode of a frequency distribution are 26 and 29 respectively. Then, the mean is
(a) 27.5
(b) 24.5
(c) 28.4
(d) 25.8

Answer: (b) 24.5

Sol:

Mode $=(3 \times$ median $)-(2 \times$ mean $)$
$\Rightarrow(2 \times$ mean $)=(3 \times$ median $)-$ mode
$\Rightarrow(2 \times$ mean $)=3 \times 26-29$
$\Rightarrow(2 \times$ mean $)=49$
\Rightarrow Mean $=\frac{49}{2}$
\therefore Mean $=24.5$
23. For a symmetrical frequency distribution, we have:
(a) mean $<$ mode $<$ median
(b) mean $>$ mode $>$ median
(c) mean $=$ mode $=$ median
(d) mode $=\frac{1}{2}($ mean + median $)$

Answer: (c) mean $=$ mode $=$ median
Sol:
A symmetric distribution is one where the left and right hand sides of the distribution are roughly equally balanced around the mean.
24. Look at the cumulative frequency distribution table given below:

Monthly income	No. of families
More than ₹ 10000	100
More than ₹ 14000	85
More than ₹ 18000	69
More than ₹ 20000	50
More than ₹ 25000	37
More than ₹ 30000	15

Number of families having income range 20000 to 25000 is
(a) 19
(b) 16
(c) 13
(d) 22

Answer: (c) 13

Sol:

Converting the given data into a frequency table, we get:

Monthly income	No. of families	Frequency
30,000 and above	15	15
$25,000-30,000$	37	$(37-15)=22$
$20,000-25,000$	50	$(50-37)=13$
$18,000-20,000$	69	$(69-50)=19$
$14,000-18,000$	85	$(85-69)=16$
$10,000-14,000$	100	$(100-85)=15$

Hence, the number of families having an income range of Rs. 20,000 - Rs. 25,000 is 13 . The correct option is (c).
25. The median of the first 8 prime numbers is
(a) 7 (b) 9 (c) 11 (d) 13

Answer: (b) 9

Sol:

First 8 prime numbers are $2,3,5,7,11,13,17$ and 19 .
Median of 8 numbers is average of $4^{\text {th }}$ and $5^{\text {th }}$ terms.
i.e., average of 7 and 11

Thus, the median is 9 .
26. The mean of 20 numbers is 0 . OF them, at the most, how many may be greater than zero?

$$
\text { (a) } 0 \text { (b) } 1 \text { (c) } 10 \text { (d) } 19
$$

Answer: (d) 19

Sol:

It is given that mean of 20 numbers is zero.
i.e., average of 20 numbers is zero.
i.e., sum of 20 numbers is zero.

Thus, at most, there can be 19 positive numbers.
(such that if sum of 19 positive numbers is $\mathrm{x}, 20^{\text {th }}$ number will be -x
27. If the median of the data $4,7, x-1, x-3,16,25$, written in ascending order, is 13 then x is equal to
(a) 13
(b) 14 (c) 15 (d) 16

Answer: (c) 15
Sol:
Median of 6 numbers is the average of $3^{\text {rd }}$ and $4^{\text {th }}$ term.
$\therefore 13=\frac{(x-1)+(x-3)}{2}$
$\Rightarrow 26=2 \mathrm{x}-4$
$\Rightarrow 2 \mathrm{x}=30$
$\Rightarrow \mathrm{x}=15$
Thus, x is equal to 15 .
28. The mean of $2,7,6$ and x is 15 and mean of $18,1,6, x$ and y is 10 . What is the value of y ?
(a) 5 (b) 10 (c) -20 (d) 30

Answer: (c) -20
Sol:
Mean $=\frac{\text { sum of observations }}{\text { number of observations }}$
$\Rightarrow 15=\frac{2+7+6+x}{4}$
$\Rightarrow 60=15+\mathrm{x}$
$\Rightarrow \mathrm{x}=45$
Now,
Mean $=\frac{\text { sum of observations }}{\text { number of observations }}$
$\Rightarrow 10=\frac{18+1+6+x+y}{5}$
$\Rightarrow 50=25+x+y$
$\Rightarrow \mathrm{y}=25-\mathrm{x}$
$\Rightarrow \mathrm{y}=25-45 \quad$ [From (1)]
$\Rightarrow \mathrm{y}=-20$
29. Match the following:

Column I	Column II
(a) The most frequent value in a data is known as $\ldots \ldots .$.	(p) standard deviation
(b) which of the following cannot be determined graphically out of mean, mode and median?	(q) median
(c) An ogive is used to determine	(r) mean
(d) out of mean, mode, median and standard deviation, which is not a measure of tendency?	(s) mode

Sol:

Column I	Column II
(a) The most frequent value in a data is known as	(s) mode
(b) which of the following cannot be determined graphically out of mean, mode and median?	(r) mean
(c) An ogive is used to determine	(q) median
(d) out of mean, mode, median and standard deviation, which is not a measure of tendency?	(p) standard deviation

30. Question consists of two statements, namely, Assertion (A) and Reason (R). For selecting the correct answer, use the following code:
(a) Both Assertion (A) and reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
(b) Both Assertion (A) and reason (R) are true and Reason (R) is not a correct explanation of Assertion (A).
(c) Assertion (A) is true and Reason (R) is false.
(d) Assertion (A) is false and Reason (R) is true.

Assertion (A)	Reason (R)
If the median and mode of a frequency distribution are 150 and 154 respectively, then its mean is 148.	Mean, median and mode of a frequency distribution are related as: mode $=(3$ median $)-(2$ mean $)$

The correct answer is: (a) / (b) / (c) / (d)
Sol:
(a) Both Assertion (A) and reason (R) are true and Reason (R) is a correct explanation of Assertion (A).

Clearly, reason (R) is true.
Using the relation in reason (R), we have:
2 mean $=(3 \times$ median $)-$ mode $=(3 \times 150)-154=450-154=296$
\Rightarrow Mean $=148$, which is true.
\therefore This assertion (A) and reason (R) are both true and reason (R) is the correct explanation of assertion (A).
31. Question consists of two statements, namely, Assertion (A) and Reason (R). For selecting the correct answer, use the following code:
(a) Both Assertion (A) and reason (R) are true and Reason (R) is a correct explanation of Assertion (A).
(b) Both Assertion (A) and reason (R) are true and Reason (R) is not a correct explanation of Assertion (A).
(c) Assertion (A) is true and Reason (R) is false.
(c) Assertion (A) is false and Reason (R) is true.

Assertion (A)						Reason (R)
Consider the following frequency distribution:						The value of the variable which occurs most often is the mode.
Class interval	3-6	6-9	9-12	12-15	15-18 18-21	
Frequency	2	5	21	23	10	

The correct answer is: (a) / (b) / (c) / (d)
Sol:
(b) Both assertion (A) and reason (R) are true, but reason (R) is not a correct explanation of assertion (A).
Clearly, reason (R) is true.
The maximum frequency is 23 and the modal class is $12-15$.
Now, $\mathrm{x}_{\mathrm{k}}=12, \mathrm{f}_{\mathrm{k}}=23, \mathrm{f}_{\mathrm{k}-1}=21, \mathrm{f}_{\mathrm{k}+\mathrm{l}}=23$ and $\mathrm{h}=3$
\therefore Mode $=\left\{12+3 \times \frac{(23-21)}{(2 \times 23-21-10)}\right\}$
$=\left(12+3 \times \frac{2}{15}\right)$
$=(12+0.4)$
$=12$
\therefore Assertion (A) is true.
However, reason (R) is not a correct explanation of assertion (A).

