EXERCISE 5

1. On the plane of a graph paper draw $X^{\prime} O X$ and YOY' as coordinate axes and plot each of the following points.
(i) $\quad \mathrm{A}(5,3)$
(ii) $\quad \mathrm{B}(6,2)$
(iii) $\quad \mathrm{C}(-5,3)$
(iv) $\quad D(4,-6)$
(v) $\quad \mathrm{E}(-3,-2)$
(vi) $\quad F(-4,4)$
(vii) $\quad \mathbf{G}(\mathbf{3},-4)$
(viii) $\quad \mathbf{H}(5,0)$
(ix) I $(0,6)$
(x) $\quad \mathbf{J}(-3,0)$
(xi) $\quad K(0,-2)$
(xii) $\quad \mathbf{O}(0,0)$

Solution:

2. Write down the coordinates of each of the following points A, B, C, D and E.

Solution:

From the coordinates draw perpendiculars on x -axis namely AF, BG, CH, DI and EJ

For point A

Distance from y-axis $=O F=-6$ units
Distance from x -axis $=\mathrm{AF}=5$ units
Therefore, the coordinates of point A are $(-6,5)$
For point B
Distance from y-axis $=\mathrm{OG}=5$ units
Distance from x -axis $=\mathrm{BG}=4$ units
Therefore, the coordinates of point B are $(5,4)$
For point C
Distance from y -axis $=\mathrm{OH}=-3$ units
Distance from x -axis $=\mathrm{HC}=2$ units
Therefore, the coordinates of point C are $(-3,2)$
For point D
Distance from y-axis $=\mathrm{OI}=2$ units
Distance from x -axis $=\mathrm{ID}=-2$ units
Therefore, the coordinates of point D are $(2,-2)$
For point E
Distance from y-axis $=\mathrm{OJ}=-1$ unit
Distance from x -axis $=\mathrm{JE}=-4$ units
Therefore, the coordinates of point E are ($-1,-4$)
3. For each of the following points, write the quadrant in which it lies.
(i) $(-6,3)$
(ii) $(-5,-3)$
(iii) (11, 6)

(iv)	$(1,-4)$
(v)	$(-7,-4)$
(vi)	$(4,-1)$
(vii)	$(-3,8)$
(viii)	$(3,-8)$
Solution:	

(i) For the coordinate $(-6,3)$
-6 which is the x-coordinate is negative and 3 which is the y-coordinate is positive.
Therefore, $(-6,3)$ lies in the II quadrant.
(ii) For the coordinate $(-5,-3)$
-5 which is the x -coordinate is negative and -3 which is the y -coordinate is negative. Therefore, $(-5,-3)$ lies in the III quadrant.
(iii) For the coordinate $(11,6)$

11 which is the x -coordinate is positive and 6 which is the y -coordinate is positive.
Therefore, $(11,6)$ lies in I quadrant.
(iv) For the coordinate (1, -4)

1 which is the x -coordinate is positive and -4 which is the y -coordinate is negative.
Therefore, (1, -4) lies in the IV quadrant.
(v) For the coordinate (-7, -4)
-7 which is the x-coordinate is negative and -4 which is the y-coordinate is negative. Therefore, ($-7,-4$) lies in the III quadrant.
(vi) For the coordinate (4, -1)

4 which is the x -coordinate is positive and -1 which is the y -coordinate is negative.
Therefore, $(4,-1)$ lies in the IV quadrant.
(vii) For the coordinate $(-3,8)$
-3 which is the x -coordinate is negative and 8 which is the y-coordinate is positive. Therefore, $(-3,8)$ lies in the II quadrant.
(viii) For the coordinate (3, -8)

3 which is the x -coordinate is positive and -8 which is the y -coordinate is negative. Therefore, $(3,-8)$ lies in the IV quadrant.
4. Write the axis on which the given point lies.
(i) $(2,0)$
(ii) $(0,-5)$
(iii) $(-4,0)$
(iv) $(0,-1)$

Solution:
(i) Since the point $(2,0)$ is of the form $(x, 0)$ it lies on the x-axis.
(ii) Since the point $(0,-5)$ is of the form $(0, y)$ it lies on the y-axis.
(iii) Since the point $(-4,0)$ is of the form $(x, 0)$ it lies on the x-axis.
(iv) Since the point $(0,-1)$ is of the form $(0, y)$ it lies on the y-axis.
5. Which of the following points lie on the x-axis?
(i) $\mathrm{A}(0,8)$
(ii) $\quad \mathrm{B}(4,0)$
(iii) $\mathbf{C}(\mathbf{0},-3)$
(iv) $\mathrm{D}(-6,0)$
(v) $\quad \mathrm{E}(2,1)$
(vi) $\quad F(-2,-1)$
(vii) $\quad G(-1,0)$
(viii) $\quad \mathbf{H}(0,-2)$

Solution:
The points which lie on the x -axis are of the form ($\mathrm{x}, 0$)
Therefore, the points which lie on the x -axis are $\mathrm{B}(4,0), \mathrm{D}(-6,0)$ and $\mathrm{G}(-1,0)$.
6. Plot the points $A(2,5), B(-2,2)$ and $C(4,2)$ on a graph paper. Join $A B, B C$ and $A C$. Calculate the area of $\triangle \mathrm{ABC}$.
Solution:

Construct a line AM which is perpendicular to BC
Area of $\triangle \mathrm{ABC}=1 / 2 \times \mathrm{b} \times \mathrm{h}$

$$
=1 / 2 \times \mathrm{BC} \times \mathrm{AM}
$$

So on further calculation we get
Area of $\triangle A B C=1 / 2 \times 6 \times 3$
Area of $\triangle A B C=9$ sq. units
7. Three vertices of a rectangle ABCD are $\mathrm{A}(3,1), \mathrm{B}(-3,-1)$ and $\mathbf{C}(-3,3)$. Plot these points on the graph paper and find the coordinates of the fourth vertex D. Also, find the area of the rectangle ABCD.

Solution:

From the graph
The coordinates of point D are $(3,3)$
Area of rectangle $\mathrm{ABCD}=1 \times \mathrm{b}$

$$
=\mathrm{AB} \times \mathrm{BC}
$$

On further calculation we get
Area of rectangle $\mathrm{ABCD}=6 \times 2$
Area of rectangle $\mathrm{ABCD}=12$ sq. units

