Chapter 4: Cube and Cube Roots
Exercise: 4A
Page Number: 64
Question 1.
(i)

Solution: $(8)^{3}=8 \times 8 \times 8=512$
(ii)

Solution: $(15)^{3}=15 \times 15 \times 15=3375$
(iii)

Solution: $(21)^{3}=21 \times 21 \times 21=9261$
(iv)

Solution: $(60)^{3}=60 \times 60 \times 60=512000$

Question 2.

(i)

Solution: $(1.2)^{3}=1.2 \times 1.2 \times 1.2=1.728$
(ii)

Solution: $(1.2)^{3}=1.2 \times 1.2 \times 1.2=1.728$
(iii)

Solution: $(0.8)^{3}=0.8 \times 0.8 \times 0.8=0.512$
(iv)

Solution: $(0.05)^{3}=0.05 \times 0.05 \times 0.05=0.000125$

Question 3.

(i)

Solution: $\left(\frac{4}{7}\right)^{3}=\frac{4}{7} \times \frac{4}{7} \times \frac{4}{7}=\frac{64}{343}$
(ii)

Solution: $\left(\frac{10}{11}\right)^{3}=\frac{10}{11} \times \frac{10}{11} \times \frac{10}{11}=\frac{1000}{1331}$
(iii)

Solution: $\left(\frac{1}{15}\right)^{3}=\frac{1}{15} \times \frac{1}{15} \times \frac{1}{15}=\frac{1}{3375}$
(iv)

Solution: $\left(1 \frac{3}{10}\right)=\left(\frac{13}{10}\right)^{3}=\frac{13}{10} \times \frac{13}{10} \times \frac{13}{10}=\frac{2197}{1000}$

Question 4.

(i)

Solution: Prime factorization of 125 is 5,5,5.
By making triplets, one triplet of 5 is found. Therefore cube root of 125 is 5
(ii)

Solution: Prime factorization of 243 is 3,3,3,3,3.
By making triplets, one triplet of 3 is found but two factors are still left. Therefore 243 is not a perfect cube.
(iii)

Solution: Prime factorization of 343 is $7,7,7$.
By making triplets, one triplet of 7 is found. Therefore cube root of 343 is 7
(iv)

Solution: Prime factorization of 256 is 2,2,2,2,2,2,2,2.
By making triplets, two triplets of 2 are found but two factors are still left. Therefore 256 is not a perfect cube.
(v)

Solution: Prime factorization of 8000 is 2,2,2,2,2,2,5,5,5.
By making triplets, one triplet of 5 and 2 triplets of 2 are found. Therefore cube root of 8000 is $2 \times 2 \times 5=20$

Solution: Prime factorization of 9261 is 3,3,3,7,7,7.
By making triplets, one triplet of 3 and 1 triplet of 7 is found. Therefore cube root of 9261 is $3 \times 7=21$
(vii)

Solution: Prime factorization of 5324 is $2,2,11,11,11$.
By making triplets, one triplet of 11 is found but two factors are still left. Therefore 5324 is not a perfect cube.
(viii)

Solution: Prime factorization of 3375 is 3,3,3,5,5,5.
By making triplets, one triplet of 5 and one triplet of 3 is found. Therefore cube root of 3375 is $3 \times 5=15$

Question 5.

Solution: Cube of even numbers are 216, 512, 1000

Question 6.

Solution: Cube of odd numbers are 125, 343, 9261.

Question 7.

Solution: Prime factorization of 1323 is 3, 3, 3,7,7.
By making triplets, one triplet of 3 is found and only one 7 is missing from the triplet of 7
Therefore the least number by which 1323 must be multiplied so that product is perfect is cube is 7 .

Question 8.

Solution: Prime factorization of 2560 is 2,2,2,2,2,2,2,2,2,5
By making triplets, three triplet of 2 are found and only two 5 's is missing from the triplet of 5

Therefore the least number by which 2560 must be multiplied so that product is perfect is cube is 25 .

Question 9.
Solution: Prime factorization of 1600 is 2,2,2,2,2,2,5,5.

By making triplets, two triplets of 2 is found and only two 5 's are extra from the triplet of 5 Therefore the least number by which 1323 must be divided so that quotient is perfect is cube is 25 .

Question 10.

Solution: Prime factorization of 8788 is $2,2,13,13,13$.
By making triplets, one triplet of 13 is found and only two 2's are extra from the triplet of 2
Therefore the least number by which 1323 must be divided so that quotient is perfect is cube is 4 .

Chapter 4: Cube and Cube Roots
 Exercise: 4B
 Page Number: 66

Question 1.

Solution: Here, $a=2$ and $b=5$
$a^{3},\left(3 a^{2} \times b\right),\left(3 a \times b^{2}\right) a n d b^{3}$
$a^{3}=8$
$3 a^{2} \times b=60$
$3 b^{2} \times a=150$
$b^{3}=125$
$(25)^{3}=15625$

Question 2.

Solution: Here, $a=4$ and $b=7$
$a^{3},\left(3 a^{2} \times b\right),\left(3 a \times b^{2}\right) a n d b^{3}$
$a^{3}=64$
$3 a^{2} \times b=336$
$3 b^{2} \times a=588$
$b^{3}=343$
$(47)^{3}=103823$

Question 3.

Solution: Here, $a=6$ and $b=8$
$a^{3},\left(3 a^{2} \times b\right),\left(3 a \times b^{2}\right) a n d b^{3}$
$a^{3}=216$
$3 a^{2} \times b=864$
$3 b^{2} \times a=1152$
$b^{3}=512$
$(68)^{3}=314432$

Question 4.

Solution: Here, $a=8$ and $b=4$
$a^{3},\left(3 a^{2} \times b\right),\left(3 a \times b^{2}\right) a n d b^{3}$
$a^{3}=512$
$3 a^{2} \times b=768$
$3 b^{2} \times a=384$
$b^{3}=64$
$(84)^{3}=592704$

Chapter 4: Cube and Cube Roots

Exercise: 4C
Page Number: 67
Question 1.
Solution: $\sqrt[3]{64}=\sqrt[3]{4 \times 4 \times 4}=4$

Question 2.

Solution: $\sqrt[3]{343}=\sqrt[3]{7 \times 7 \times 7}=7$

Question 3.

Solution: $\sqrt[3]{729}=\sqrt[3]{9 \times 9 \times 9}=9$

Question 4.

Solution: $\sqrt[3]{1728}=\sqrt[3]{12 \times 12 \times 12}=12$

Question 5.

Solution: $\sqrt[3]{9261}=\sqrt[3]{21 \times 21 \times 21}=21$

Question 6.

Solution: $\sqrt[3]{4096}=\sqrt[3]{16 \times 16 \times 16}=16$

Question 7.

Solution: $\sqrt[3]{8000}=\sqrt[3]{20 \times 20 \times 20}=20$

Question 8.

Solution: $\sqrt[3]{3375}=\sqrt[3]{15 \times 15 \times 15}=15$

Question 9.

Solution: $\sqrt[3]{-216}=-\sqrt[3]{216}=-\sqrt[3]{7 \times 7 \times 7}=-7$

Question 10.

Solution: $\sqrt[3]{-512}=-\sqrt[3]{512}=-\sqrt[3]{8 \times 8 \times 8}=-8$

Question 11.

Solution: $\sqrt[3]{-1331}=-\sqrt[3]{1331}=-\sqrt[3]{11 \times 11 \times 11}=-11$

Question 12.

Solution: $\sqrt[3]{\frac{27}{64}}=\sqrt[3]{\frac{3 \times 3 \times 3}{4 \times 4 \times 4}}=\frac{3}{4}$

Question 13.

Solution: $\sqrt[3]{\frac{125}{216}}=\sqrt[3]{\frac{5 \times 5 \times 5}{6 \times 6 \times 6}}=\frac{5}{6}$

Question 14.

Solution: $\sqrt[3]{\frac{-27}{125}}=-\sqrt[3]{\frac{27}{125}}=-\sqrt[3]{\frac{3 \times 3 \times 3}{5 \times 5 \times 5}}=-\frac{3}{5}$

Question 15.

Solution: $\sqrt[3]{\frac{-64}{343}}=-\sqrt[3]{\frac{64}{343}}=-\sqrt[3]{\frac{4 \times 4 \times 4}{7 \times 7 \times 7}}=-\frac{4}{7}$

Question 16.

Solution: $\sqrt[3]{64 \times 729}=\sqrt[3]{64} \times \sqrt[3]{729}=4 \times 9=36$

Question 17.

Solution: $\sqrt[3]{\frac{729}{1000}}=\sqrt[3]{\frac{9 \times 9 \times 9}{10 \times 10 \times 10}}=\frac{9}{10}$

Question 18.
Solution: $\sqrt[3]{\frac{-512}{343}}=-\sqrt[3]{\frac{512}{343}}=-\sqrt[3]{\frac{8 \times 8 \times 8}{7 \times 7 \times 7}}=-\frac{8}{7}$

Chapter 4: Cube and Cube Roots
Exercise: 4D
Page Number: 68

Question 1.
Solution: (c) 216

Question 2.
Solution: (b) 1331

Question 3.
Solution: (c) 8

Question 4.

Solution: (c) 20

Question 5.
Solution: (b) $\frac{4}{7}$
Question 6.
Solution: (b) $\frac{-8}{9}$
Question 7.

Solution: (c) 9

Question 8.

Solution: (c) 9

Question 9.
Solution: (c) $2 \frac{197}{1000}$
Question 10.
Solution: (c) 0.512

Chapter 4: Cube and Cube Roots

Test Paper - 4

Page Number: 70

A. Question 1.

Solution: $\left(1 \frac{2}{5}\right)=\left(\frac{7}{5}\right)^{3}=\frac{7}{5} \times \frac{7}{5} \times \frac{7}{5}=\frac{343}{125}$

Question 2.

Solution: $\sqrt[3]{4096}=\sqrt[3]{16 \times 16 \times 16}=16$

Question 3.

Solution: $\sqrt[3]{216 \times 343}=\sqrt[3]{216} \times \sqrt[3]{343}=6 \times 7=42$
Question 4.
Solution: $\sqrt[3]{\frac{-64}{125}}=-\sqrt[3]{\frac{64}{125}}=-\sqrt[3]{\frac{4 \times 4 \times 4}{5 \times 5 \times 5}}=-\frac{4}{5}$

B. Question 5.

Solution: (c) $5 \frac{27}{64}$
Question 6.
Solution: (d) 216

Question 7.

Solution: (c) 24

Question 8.

Solution: (b) $\frac{-7}{9}$
Question 9.
Solution: (d) 18

Question 10.
Solution: (c) $\frac{2}{5}$
Question 11.
Solution: (c) 343
C. Question 12.
(i)

Solution: $\sqrt[3]{b}$
(ii)

Solution: $\frac{\sqrt[3]{a}}{\sqrt[3]{b}}$
(iii)

Solution: $-\sqrt[3]{x}$
(iv)

Solution: 0.125

