Chapter 4: Cube and Cube Roots Exercise: 4A Page Number: 64 Question 1. (i) **Solution:** $(8)^3 = 8 \times 8 \times 8 = 512$ (ii) **Solution:** $(15)^3 = 15 \times 15 \times 15 = 3375$ (iii) **Solution:** $(21)^3 = 21 \times 21 \times 21 = 9261$ (iv) **Solution:** $(60)^3 = 60 \times 60 \times 60 = 512000$ **Question 2.** (i) **Solution:** $(1.2)^3 = 1.2 \times 1.2 \times 1.2 = 1.728$ (ii) **Solution:** $(1.2)^3 = 1.2 \times 1.2 \times 1.2 = 1.728$ (iii) **Solution:** $(0.8)^3 = 0.8 \times 0.8 \times 0.8 = 0.512$ (iv) **Solution:** $(0.05)^3 = 0.05 \times 0.05 \times 0.05 = 0.000125$

Question 3.

(i)

Solution:
$$\left(\frac{4}{7}\right)^3 = \frac{4}{7} \times \frac{4}{7} \times \frac{4}{7} = \frac{64}{343}$$

(ii)

Solution: $\left(\frac{10}{11}\right)^3 = \frac{10}{11} \times \frac{10}{11} \times \frac{10}{11} = \frac{1000}{1331}$

(iii)

Solution:
$$\left(\frac{1}{15}\right)^3 = \frac{1}{15} \times \frac{1}{15} \times \frac{1}{15} = \frac{1}{3375}$$

(iv)

Solution:
$$\left(1\frac{3}{10}\right) = \left(\frac{13}{10}\right)^3 = \frac{13}{10} \times \frac{13}{10} \times \frac{13}{10} = \frac{2197}{1000}$$

Question 4.

(i)

Solution: Prime factorization of 125 is 5,5,5.

By making triplets, one triplet of 5 is found. Therefore cube root of 125 is 5

(ii)

Solution: Prime factorization of 243 is 3,3,3,3,3.

By making triplets, one triplet of 3 is found but two factors are still left. Therefore 243 is not a perfect cube.

(iii)

Solution: Prime factorization of 343 is7,7,7.

By making triplets, one triplet of 7 is found. Therefore cube root of 343 is 7

(iv)

Solution: Prime factorization of 256 is 2,2,2,2,2,2,2,2.

By making triplets, two triplets of 2 are found but two factors are still left. Therefore 256 is not a perfect cube.

(v)

Solution: Prime factorization of 8000 is 2,2,2,2,2,5,5,5.

By making triplets, one triplet of 5 and 2 triplets of 2 are found. Therefore cube root of 8000 is $2 \times 2 \times 5 = 20$

(**vi**)

Solution: Prime factorization of 9261 is 3,3,3,7,7,7.

By making triplets, one triplet of 3 and 1 triplet of 7 is found. Therefore cube root of 9261 is $3 \times 7 = 21$

(vii)

Solution: Prime factorization of 5324 is 2,2,11,11,11.

By making triplets, one triplet of 11is found but two factors are still left. Therefore 5324 is not a perfect cube.

(viii)

Solution: Prime factorization of 3375 is 3,3,3,5,5,5.

By making triplets, one triplet of 5 and one triplet of 3 is found. Therefore cube root of 3375 is $3 \times 5 = 15$

Question 5.

```
Solution: Cube of even numbers are 216, 512, 1000
```

Ouestion 6.

Solution: Cube of odd numbers are 125, 343, 9261.

Question 7.

Solution: Prime factorization of 1323 is 3,3,3,7,7

By making triplets, one triplet of 3 is found and only one 7 is missing from the triplet of 7

Therefore the least number by which 1323 must be multiplied so that product is perfect is cube is 7.

Question 8.

Solution: Prime factorization of 2560 is 2.2.2.2.2.2.2.5

By making triplets, three triplet of 2 are found and only two 5's is missing from the triplet of 5

Therefore the least number by which 2560 must be multiplied so that product is perfect is cube is 25.

Question 9.

Solution: Prime factorization of 1600 is 2,2,2,2,2,5,5.

By making triplets, two triplets of 2 is found and only two 5's are extra from the triplet of 5

Therefore the least number by which 1323 must be divided so that quotient is perfect is cube is 25.

Question 10.

Solution: Prime factorization of 8788 is 2,2,13,13,13.

By making triplets, one triplet of 13 is found and only two 2's are extra from the triplet of 2

Therefore the least number by which 1323 must be divided so that quotient is perfect is cube is 4.

Question 2.

Solution: Here, a = 4 and b = 7

$$a^{3}, (3a^{2} \times b), (3a \times b^{2}) and b^{3}$$

 $a^{3} = 64$
 $3a^{2} \times b = 336$
 $3b^{2} \times a = 588$
 $b^{3} = 343$

$$(47)^3 = 103823$$

Question 3.

Solution: Here, a = 6 and b = 8

$$a^{3}, (3a^{2} \times b), (3a \times b^{2}) and b^{3}$$

 $a^{3} = 216$
 $3a^{2} \times b = 864$
 $3b^{2} \times a = 1152$
 $b^{3} = 512$
 $(68)^{3} = 314432$

Question 4.

Solution: Here, a = 8 and b = 4

Solution: Here,
$$a = 8$$
 and $b = 4$
 $a^{3}, (3a^{2} \times b), (3a \times b^{2}) and b^{3}$
 $a^{3} = 512$
 $3a^{2} \times b = 768$
 $3b^{2} \times a = 384$
 $b^{3} = 64$
 $(84)^{3} = 592704$

Chapter 4: Cube and Cube Roots Exercise: 4C Page Number: 67

Question 1. Solution: $\sqrt[3]{64} = \sqrt[3]{4 \times 4 \times 4} = 4$

Question 2. Solution: $\sqrt[3]{343} = \sqrt[3]{7 \times 7 \times 7} = 7$

Question 3. Solution: $\sqrt[3]{729} = \sqrt[3]{9 \times 9 \times 9} = 9$

Question 4. Solution: $\sqrt[3]{1728} = \sqrt[3]{12 \times 12 \times 12} = 12$ **Question 5. Solution:** $\sqrt[3]{9261} = \sqrt[3]{21 \times 21 \times 21} = 21$ **Question 6. Solution:** $\sqrt[3]{4096} = \sqrt[3]{16 \times 16 \times 16} = 16$ **Question 7. Solution:** $\sqrt[3]{8000} = \sqrt[3]{20 \times 20 \times 20} = 20$ **Question 8. Solution:** $\sqrt[3]{3375} = \sqrt[3]{15 \times 15 \times 15} = 15$ **Question 9.** $-\sqrt{512} = -\sqrt[3]{8 \times 8 \times 8} = -8$ Question 11. Solution: $\sqrt[3]{-1331} = -\sqrt[3]{1331} = -\sqrt[3]{11 \times 11 \times 11} = -11$ Question 12. Solution: $\sqrt[3]{\frac{27}{64}} = \sqrt[3]{\frac{3 \times 3 \times 3}{4 \times 4 \times 4}} = \frac{3}{4}$ Puestion 13. Jution: $\sqrt{12^{5}}$ **Solution:** $\sqrt[3]{\frac{125}{216}} = \sqrt[3]{\frac{5 \times 5 \times 5}{6 \times 6 \times 6}} = \frac{5}{6}$ **Question 14.** Solution: $\sqrt[3]{\frac{-27}{125}} = -\sqrt[3]{\frac{27}{125}} = -\sqrt[3]{\frac{3 \times 3 \times 3}{5 \times 5 \times 5}} = -\frac{3}{5}$ Question 15. Solution: $\sqrt[3]{\frac{-64}{343}} = -\sqrt[3]{\frac{64}{343}} = -\sqrt[3]{\frac{4 \times 4 \times 4}{7 \times 7 \times 7}} = -\frac{4}{7}$

Question 16.

Solution:
$$\sqrt[3]{64 \times 729} = \sqrt[3]{64} \times \sqrt[3]{729} = 4 \times 9 = 36$$

Question 17.

Solution: ³	729 _ 3	9×9×9	_ 9
	1000 [–] V	10×10×10	$-\frac{10}{10}$

Question 18.

Solution: ³	-512	5123	8×8×8	8
	343 - 1	$\frac{1}{343} = \sqrt{10}$	$\overline{7\times7\times7}^{}$	7

- **Chapter 4: Cube and Cube Roots Exercise: 4D**
- Page Number: 68 Question 1. **Solution:** (c) 216 Question 2. **Solution**: (b) 1331 Question 3. Solution: (c) 8 **Question 4.**

Solution: (c) 20

Question 5.

Solution: (b) $\frac{4}{7}$

Question 6.

Solution: (b) $\frac{-8}{9}$

Question 7.

Solution: (c) 9

Question 8.

Solution: (c) 9

Question 9.

Solution: (c) $2\frac{197}{1000}$

Question 10.

Solution: (c) 0.512

Chapter 4: Cube and Cube Roots

Test Paper - 4

Page Number: 70

A. Question 1.

Set Paper - 4
ge Number: 70
Question 1.
Solution:
$$\left(1\frac{2}{5}\right) = \left(\frac{7}{5}\right)^3 = \frac{7}{5} \times \frac{7}{5} \times \frac{7}{5} = \frac{343}{125}$$

Question 2.
Solution: $\sqrt[3]{4096} = \sqrt[3]{16 \times 16 \times 16} = 16$

Question 2.

Solution: $\sqrt[3]{4096} = \sqrt[3]{16 \times 16 \times 16} = 16$

Question 3.

Solution: $\sqrt[3]{216 \times 343} = \sqrt[3]{216} \times \sqrt[3]{343}$ $6 \times 7 = 42$

Question 4.

Solution:
$$\sqrt[3]{\frac{-64}{125}} = -\sqrt[3]{\frac{64}{125}} = -\sqrt[3]{\frac{4 \times 4 \times 4}{5 \times 5 \times 5}} = -\frac{4}{5}$$

B. Question 5.

Solution: (c)
$$5\frac{27}{64}$$

Question 6.

Solution: (d) 216

Question 7.

Solution: (c) 24

Question 8.

Solution: (b) $\frac{-7}{9}$ **Question 9.** Solution: (d) 18 Question 10. **Solution:** (c) $\frac{2}{5}$ Question 11. Solution: (c) 343

C. Question 12.

