Congruence Of Triangles And Inequalities in a Triangle CHAPTER 9

Exercise - 9 (A)

Answer1)
Given: $A B|\mid C D$
To prove: i) 0 is the midpoint of AD
ii) $\triangle \mathrm{AOB} \cong \triangle \mathrm{DOC}$

Proof:

In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{DOC}$
$\mathrm{OA}=\mathrm{OD}$
$\angle \mathrm{AOB}=\angle \mathrm{COD}$
(Given)
angles)

$\angle \mathrm{OAB}=\angle \mathrm{ODC} \quad$ (alternate angles)
Therefore;
$\triangle \mathrm{AOB} \cong \triangle \mathrm{DOC} \quad$ (A.A.S. criteria)
Hence;
$O B=O C$
(c.p.c.t.)

Hence proved.

Answer2)
Given: $A D=B D$
To prove: $C D$ bisects $A B$ i.e. $O A=O B$
Proof:
In $\triangle B O C$ and $\triangle A O D$

$A D=B C$
(Given)
$\angle \mathrm{OAD}=\angle \mathrm{OBC}=90$ (Given)
$\angle A O D=\angle B O C \quad$ (vertically opp. Angles)
Therefore $\triangle \mathrm{BOC} \cong \triangle \mathrm{AOD}$
(A..A.S criteria)

Hence $0 A=O B$ i.e $C D$ bisects $A B$
Hence proved.

Answer3)

Given: (i) $1 \| m$
(ii) $p \| q$

To prove: $\triangle \mathrm{ABC} \cong \triangle \mathrm{CDA}$

Proof:

Taking l parallel to m AC is the trAnswerversal
$\angle A C B=\angle C A D$
(Alternate angles)
Taking p parallel to q
$\angle \mathrm{BAC}=\angle \mathrm{DCA} \quad$ (Alternate angles)
$\mathrm{AC}=\mathrm{AC}$ (common)

Therefore;
$\Delta \mathrm{ABC} \cong \Delta \mathrm{CDA}$
(ASA ctiteria)
Hence Proved.

Answer4) Given: $A B=A C$
To prove: (i) AD bisects BC (i.e. $\mathrm{BD}=\mathrm{DC}$)

(ii) $A D$ bisects $\angle A$

Prove:

In right angled $\triangle \mathrm{ADB}$ and ADC we have,
Hypotenuse AB=hypotenuse AC
(Given)
$\mathrm{AD}=\mathrm{AD}$
(common)
Therefore $\triangle \mathrm{ADB} \cong \triangle \mathrm{ADC}$
(RHS criteria)
Hence BD=DC
$\angle \mathrm{BAD}=\angle \mathrm{CAD}$
Hence AD bisects $\angle \mathrm{A}$

Answer5)

Given: $B E=C F$
To Prove: i) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
ii) $\mathrm{AB}=\mathrm{AC}$

Proof:

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{ACF}$
$\angle \mathrm{AEB}=\angle \mathrm{AFC}=90$
$\angle \mathrm{BAE}=\angle \mathrm{CAF}$
$B E=C F$
Therefore $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACF}$
$\mathrm{AB}=\mathrm{AC}$
(c.p.c.t)

Answer6)

Given:

(i) $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are two isosceles triangles in which $\mathrm{AB}=\mathrm{AC} \& \mathrm{BD}=\mathrm{DC}$.

To Prove:

(i) $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$
(ii) $\triangle \mathrm{ABE} \cong \triangle \mathrm{ACP}$
(iii) AE bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{D}$.
(iv) AE is the perpendicular bisector of BC .

Proof:

(i) In $\triangle A B D$ and $\triangle A C D$,
$\mathrm{AD}=\mathrm{AD}$ (Common)
$\mathrm{AB}=\mathrm{AC}$ (Given).
$\mathrm{BD}=\mathrm{CD}$ (Given)
Therefore, $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACD}$

$\angle \mathrm{BAD}=\angle \mathrm{CAD}$ (С.P.C.T)
$\angle \mathrm{BAE}=\angle \mathrm{CAE}$
(ii) In $\triangle \mathrm{ABE} \& \triangle \mathrm{ACE}$
$\mathrm{AE}=\mathrm{AE}$ (Common)
$\angle \mathrm{BAE}=\angle \mathrm{CAE}$
(Proved above)
$\mathrm{AB}=\mathrm{AC}$ (Given)
Therefore,
$\triangle \mathrm{ABE} \cong \triangle \mathrm{ACE} \quad$ (SAS criteria).
(iii) $\angle \mathrm{BAD}=\angle \mathrm{CAD}$ (proved in part i)

Hence, $A E$ bisects $\angle A$.
also,
In $\triangle \mathrm{BED}$ and $\triangle \mathrm{CED}$
$\mathrm{ED}=\mathrm{ED}($ Common $)$
$B D=C D$ (Given)
$B E=C E$
$(\triangle \mathrm{ABE} \cong \Delta \mathrm{ACE}$ so by c.p.c.t)
Therefore, $\Delta \mathrm{BED} \cong \Delta \mathrm{CED}$
(SSS criteria)
Thus,
$\angle \mathrm{BDE}=\angle \mathrm{CDE} \quad$ (c.p.c.t)
Hence, we can say that $A E$ bisects $\angle A$ as well as $\angle D$.
(iv) $\angle \mathrm{BED}=\angle \mathrm{CED}$
(by CPCT as $\triangle \mathrm{BED} \cong \triangle \mathrm{CED}$)
Therefore;
$B E=C E$
(c.p.c.t)
$\angle \mathrm{BED}+\angle \mathrm{CED}=180^{\circ}(\mathrm{BC}$ is a straight line $)$
$\Rightarrow 2 \angle B P D=180^{\circ}$
$\Rightarrow \angle \mathrm{BED}=90^{\circ}$
Hence, AE is the perpendicular bisector of BC .

Answer7)

Given: (i) $x=y$
(ii) $\mathrm{AB}=\mathrm{CB}$

To prove: $\mathrm{AE}=\mathrm{CD}$

Proof:

Consider the triangles AEB and CDB.
$\angle E B A=\angle D B C \angle E B A=\angle D B C$ (Common angle) ...(i)

Further, we have:
$\angle B E A=180-y$
$\angle B D C=180-x$

Since $x=y$,
we have:
$180-x=180-y$
$\Rightarrow \angle \mathrm{BEA}=\angle \mathrm{BDC}$
$\mathrm{AB}=\mathrm{CB} \quad$ (Given) ...(iii)
From (i), (ii) and (iii),
we have:
$\triangle \mathrm{BDC} \cong \triangle \mathrm{BEA}$ (AAS criterion)
$\therefore \mathrm{AE}=\mathrm{CD}$ (CPCT)
Hence, proved.

Answer8)

Given: (i) 1 is the bisector of an $\angle A$
(ii) $B P$ and $B Q$ are perpendiculars

To Prove: $\triangle \mathrm{APB} \cong \triangle \mathrm{AQB}$

Proof:

In $\triangle \mathrm{APB}$ and $\triangle \mathrm{AQB}$
$\angle \mathrm{P}=\angle \mathrm{Q}$
(Right angles)
$\angle B A P=\angle B A Q$
(l is the bisector)
$A B=A B$
(Common)
$\triangle A P B \cong \triangle A Q B$
(A.A.S criteria)

Hence, Proved.
(ii) $\mathrm{BP}=\mathrm{BQ}($ By c.p.c.t)

Therefore,
B is equidistant from the arms of $\angle A$

Answer9)

Given: AC bisects angles A and C.

To prove: (i) $A B=A D$
(ii) $\mathrm{CB}=\mathrm{CD}$

Proof:

$\Delta \mathrm{ABC}$ and $\triangle \mathrm{ADC}$,
we have:
$\angle \mathrm{CAB}=\angle \mathrm{CAD}$
$\angle \mathrm{BCA}=\angle \mathrm{DCA}$
$\mathrm{AC}=\mathrm{AC}($ common $)$
$\Delta \mathrm{ABC} \cong \triangle \mathrm{ADC}$

Therefore,
$A D=A B$
(c.p.c.t)
$C D=B C$
(c.p.c.t)

Answer10) Given: $A B=A C$
To prove: $\mathrm{AC}+\mathrm{AD}=\mathrm{BC}$

Proof:

Let $\mathrm{AB}=\mathrm{AC}=\mathrm{a}$ and $\mathrm{AD}=\mathrm{b}$

In a right angled triangle $\mathrm{ABC}, \mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}$
$\mathrm{BC}^{2}=\mathrm{a}^{2}+\mathrm{a}^{2}$

$B C=a \sqrt{2}$

Given $\mathrm{AD}=\mathrm{b}$, we get
$\mathrm{DB}=\mathrm{AB}-\mathrm{AD}$ or $\mathrm{DB}=\mathrm{a}-\mathrm{b}$

We have to prove that $A C+A D=B C$ or $(a+b)=a \sqrt{2}$.

By the angle bisector theorem, we get
$\mathrm{AD} / \mathrm{DB}=\mathrm{AC} / \mathrm{BC}$
$b /(a-b)=a / a \sqrt{2}$
$b /(a-b)=1 / \sqrt{ } 2$
$\mathrm{b}=(\mathrm{a}-\mathrm{b}) / \sqrt{2}$
$b \sqrt{2}=\mathrm{a}-\mathrm{b}$
$b(1+\sqrt{2})=a$
$b=a /(1+\sqrt{2})$
Rationalizing the denominator with $(1-\sqrt{2})$
$b=a(1-\sqrt{2}) /(1+\sqrt{2}) \times(1-\sqrt{2})$
$\mathrm{b}=\mathrm{a}(1-\sqrt{2}) /(-1)$
$\mathrm{b}=\mathrm{a}(\sqrt{2}-1)$
$b=a \sqrt{2}-a$
$b+a=a \sqrt{2}$
or $\mathrm{AD}+\mathrm{AC}=\mathrm{BC}[$ we know that $\mathrm{AC}=\mathrm{a}, \mathrm{AD}=\mathrm{b}$ and $\mathrm{BC}=\mathrm{a} \sqrt{2}$]

Hence it is proved.

Answer11)

Given: (i) $O A=O B$
(ii) $O P=0 Q$

To Prove: (i) $\mathrm{PX}=\mathrm{QX}$
(ii) $A X=B X$

Proof:

In $\triangle \mathrm{PBO}$ and $\triangle \mathrm{AOQ}$
$0 B=0 A$ (Given)
$O P=0 Q$
(Given)
$\angle O=\angle O$ (common)
Therefore;
$\Delta \mathrm{PBO} \cong \Delta \mathrm{QAO}$ (S.A.S criteria)
$\angle B=\angle A$ (C.P.C.T)
In $\Delta \mathrm{BXQ}$ and $\Delta \mathrm{AXP}$
$\angle \mathrm{B}=\angle \mathrm{A}$ (proved above)
$P X=Q X$
(C.P.C.T.)

Hence proved

Answer12)

Given: (i) ABC is an equilateral triangle,
(ii) PQ \|AC
(iii) $\mathrm{CR}=\mathrm{BP}$

To prove: QR bisects PC or $\mathrm{PM}=\mathrm{MC}$

Proof:

Since, $\triangle \mathrm{ABC}$ is equilateral triangle,
$\angle \mathrm{A}=\angle \mathrm{ACB}=60^{\circ}$
Since, $\mathrm{PQ} \| \mathrm{AC}$ and corresponding angles are equal,
$\angle \mathrm{BPQ}=\angle \mathrm{ACB}=60^{\circ}$
In $\triangle \mathrm{BPQ}$,

$\angle \mathrm{B}=\angle \mathrm{ACB}=60^{\circ}$
$\angle \mathrm{BPQ}=60^{\circ}$
Hence, $\triangle \mathrm{BPQ}$ is an equilateral triangle.
$\therefore \mathrm{PQ}=\mathrm{BP}=\mathrm{BQ}$
Since we have BP $=C R$,
We say that $P Q=C R$.

Consider the $\triangle \mathrm{PMQ}$ and $\triangle \mathrm{CMR}$,
$\angle \mathrm{PQM}=\angle \mathrm{CRM}$
(alternate angles)
$\angle \mathrm{PMQ}=\angle \mathrm{CMR}$ (vertically opposite angles)
$P Q=C R \ldots$ from 1
$\Delta \mathrm{PMQ} \cong \Delta \mathrm{CMR}$
(AAS criteria)
$\therefore \mathrm{PM}=\mathrm{MC}$
Hence proved.

Answer13)

Given: (i)AB ll DC
(ii) P is the midpoint of BC .

To Prove : (i) $A B=C Q$
(ii) $\mathrm{DQ}=\mathrm{DC}+\mathrm{AB}$
so, AB ll DQ
so, $\angle \mathrm{BAQ}=\angle \mathrm{DQA}$ (alternate angles)
or $\angle \mathrm{BAP}=\angle \mathrm{CQP}$
Now, in triangle ABP and triangle QCP,
$\angle \mathrm{BAP}=\angle \mathrm{CQP}$ (from (1))
$\angle \mathrm{BPA}=\angle \mathrm{CPQ}$ (vertically opposite angles)
$B P=C P$ (since P is the midpoint of $B C$)
so, triangle ABP congruent triangle QCP (by AAS congruency)
or $\mathrm{AB}=\mathrm{CQ}$ (by CPCT) [proved]
again, $\mathrm{DQ}=\mathrm{DC}+\mathrm{CQ}=\mathrm{DC}+\mathrm{AB}$ (from (2)) [proved]

Answer14)

Given: ABCD is a square and $\mathrm{PB}=\mathrm{PD}$
To prove: CPA is a straight line

Proof:

$\triangle \mathrm{APD}$ and $\triangle \mathrm{APB}$,

DA $=A B . .$.
(as ABCD is square)
$\mathrm{AP}=\mathrm{AP} . .$.
(common side)
$\mathrm{PB}=\mathrm{PD} . .$.
(Given)
$\triangle \mathrm{APD} \cong \triangle \mathrm{APB}$
(SSS criteria)

Hence, we know that, corresponding parts of the congruent triangles are equal $\angle A P D=\angle A P B$

Now consider $\triangle \mathrm{CPD}$ and $\triangle \mathrm{CPB}$,
$\mathrm{CD}=\mathrm{CB} . . . \mathrm{ABCD}$ is square
$\mathrm{CP}=\mathrm{CP} \ldots$ common side
$P B=P D . .$. Given

Thus by SSS property of congruence,
$\Delta \mathrm{CPD} \cong \Delta \mathrm{CPB}$
$\angle C P D=\angle C P B . .$. (C.P.C.T.)
Now,
Adding both sides of 1 and 2 ,
$\angle \mathrm{CPD}+\angle \mathrm{APD}=\angle \mathrm{APB}+\angle \mathrm{CPB}$

Angels around the point P add upto 360°
$\therefore \angle \mathrm{CPD}+\angle \mathrm{APD}+\angle \mathrm{APB}+\angle \mathrm{CPB}=360^{\circ}$

From 4,
$2(\angle \mathrm{CPD}+\angle \mathrm{APD})=360^{\circ}$
$\angle \mathrm{CPD}+\angle \mathrm{APD}=180^{\circ}$

This proves that CPA is a straight line.

Answer15) Given: In square $\mathrm{ABCD}, \triangle \mathrm{OAB}$ is an equilateral triangle.
To prove: $\triangle O C D$ is an isosceles triangle.

Proof:

$\because \angle \mathrm{DAB}=\angle \mathrm{CBA}=90^{\circ} \quad$ (Angles of square ABCD$)$
And, $\angle O A B=0 B A=60^{\circ} \quad$ (Angles of equilateral $\triangle O A B$)

$\therefore \angle \mathrm{DAB}-\angle \mathrm{OAB}=\angle \mathrm{CBA}-\angle \mathrm{OBA}=90^{\circ}-60^{\circ}$
$\Rightarrow \angle \mathrm{OAD}=\angle \mathrm{OBC}=30^{\circ}$
$\because \angle \mathrm{DAB}=\angle \mathrm{CBA}=90^{\circ} \quad$ Angles of square ABCD
And, $\angle O A B=0 B A=60^{\circ}$
Angles of equilateral $\triangle \mathrm{OAB}$
$\therefore \angle \mathrm{DAB}-\angle \mathrm{OAB}=\angle \mathrm{CBA}-\angle \mathrm{OBA}=90^{\circ}-60^{\circ}$
$\Rightarrow \angle \mathrm{OAD}=\angle \mathrm{OBC}=30^{\circ}$

Now, in $\triangle \mathrm{DAO}$ and $\triangle \mathrm{CBO}$,
$A D=B C$
(Sides of square ABCD)
$\angle \mathrm{DAO}=\angle \mathrm{CBO}$
[From (i)]
$\mathrm{AO}=\mathrm{BO}$
(Sides of equilateral $\triangle \mathrm{OAB}$)
\therefore By SAS congruence criteria,
$\Delta \mathrm{DAO} \cong \triangle \mathrm{CBO}$

So, OD = OC (CPCT)
Hence, $\triangle \mathrm{OCD}$ is an isosceles triangle.

Answer16)

Given: $A X=A Y$.
To prove: $\mathrm{CX}=\mathrm{BY}$

Proof:

In $\triangle \mathrm{CXA}$ and $\triangle \mathrm{BYA}$,
$A X=A Y$ \qquad .Given
$\angle \mathrm{XAC}=\angle \mathrm{YAB} \ldots$ common angle

$A C=A B . .$. Given,
$\Delta \mathrm{CXA} \cong \Delta \mathrm{BYA}$
(S.A.S. criteria)
$\mathrm{CX}=\mathrm{BY}$
(C.P.C.T.)

Answer17)

Given: $\mathrm{BD}=\mathrm{DC}$ and $\mathrm{DL} \perp \mathrm{AB}$ and $\mathrm{DM} \perp \mathrm{AC}$ such that $\mathrm{DL}=\mathrm{DM}$

To prove: $\mathrm{AB}=\mathrm{AC}$

Proof:

In right angled triangles $\Delta \mathrm{BLD}$ and $\triangle \mathrm{CMD}$,
$\angle \mathrm{BLD}=\angle \mathrm{CMD}=90^{\circ}$
$\mathrm{BD}=\mathrm{CD} . .$. Given
DL $=$ DM ... Given

Thus by right angled hypotenuse side property of congruence,
$\Delta \mathrm{BLD} \cong \Delta \mathrm{CMD}$
Hence, we know that, corresponding parts of the congruent triangles are equal
$\angle A B D=\angle A C D$

In $\triangle \mathrm{ABC}$, we have,
$\angle A B D=\angle A C D$
$\therefore \mathrm{AB}=\mathrm{AC} . .$. Sides opposite to equal angles are equal

Answer18)

Given: In $\triangle A B C, A B=A C$ and the bisectors of $\angle B$ and $\angle C$ meet at a point 0 .

To prove: $\mathrm{BO}=\mathrm{CO}$ and $\angle \mathrm{BAO}=\angle \mathrm{CAO}$

Proof:

In , $\triangle \mathrm{ABC}$ we have,
$\angle \mathrm{OBC}=\frac{1}{2} \angle \mathrm{~B}$
$\angle \mathrm{OCB}=\frac{1}{2} \angle \mathrm{C}$

But $\angle \mathrm{B}=\angle \mathrm{C}$... Given
So, $\angle \mathrm{OBC}=\angle \mathrm{OCB}$

Since the base angles are equal, sides are equal
$\therefore \mathrm{OC}=\mathrm{OB}$
Since OB and OC are bisectors of angles $\angle \mathrm{B}$ and $\angle \mathrm{C}$ respectively, we have
$\angle \mathrm{ABO}=\frac{\frac{1}{2}}{2} \angle \mathrm{~B}$
$\angle \mathrm{ACO}=\frac{1}{2} \angle \mathrm{C}$
$\therefore \angle \mathrm{ABO}=\angle \mathrm{ACO}$

Now in $\triangle \mathrm{ABO}$ and $\triangle \mathrm{ACO}$
$\mathrm{AB}=\mathrm{AC} \ldots$ Given
$\angle \mathrm{ABO}=\angle \mathrm{ACO} .$. from (2)
$B O=O C \ldots$ from (1)
Thus by SAS property of congruence,
$\Delta \mathrm{ABO} \cong \triangle \mathrm{ACO}$

Hence, we know that, corresponding parts of the congruent triangles are equal
$\angle B A O=\angle C A O$
ie. AO bisects $\angle \mathrm{A}$; Hence proved.

Answer19)

Given: (i) ABCD is a trapezium
(ii) M is the mid point of $A B$
(iii) N is the mid point of CD

To Prove: $\mathrm{AD}=\mathrm{BC}$.

Construction: (i) Join B to N

(ii) Join A to N

Proof:

Consider $\triangle \mathrm{AMN}$ and $\triangle \mathrm{BMN}$
$\angle \mathrm{AMN}=\angle \mathrm{BMN}=90$
$\mathrm{AM}=\mathrm{BM}$ (M is the midpoint of AB)
$\mathrm{MN}=\mathrm{MN}$ (common)
$\triangle \mathrm{AMN}$ congruent to $\triangle \mathrm{BMN}$ (SAS congruence rule)
Consider $\triangle \mathrm{ADN}$ and $\triangle \mathrm{BCN}$
$\mathrm{DN}=\mathrm{CN}(\mathrm{N}$ is the midpoint of CD$)$
$\mathrm{AN}=\mathrm{BN}(\mathrm{CPCT})$
$\angle \mathrm{MNA}=\angle \mathrm{BNM}(\mathrm{CPCT})$
$\angle \mathrm{MNC}=\angle \mathrm{MND}=90$
Subtracting Eq(2) from $\operatorname{Eq}(1)$
$\angle \mathrm{MND}-\angle \mathrm{MNA}=\angle \mathrm{MNC}-\angle \mathrm{BNM}$
$\angle \mathrm{AND}=\angle \mathrm{BNC}$
$\triangle \mathrm{AND}$ congruent to $\triangle \mathrm{BNC}$
$\mathrm{AD}=\mathrm{BC}(\mathrm{CPCT})$
Hence proved

Answer20)

Given: Bisectors of the angles B and C of an isosceles triangle with $A B=A C$ intersect each other at 0 .

To prove: $\angle \mathrm{MOC}=\angle \mathrm{ABC}$

Proof:

In $\triangle \mathrm{ABC}$,
$\mathrm{AB}=\mathrm{AC}$ (Given)

$\Rightarrow \angle \mathrm{ACB}=\angle \mathrm{ABC}$ (opposite angles to equal sides are equal)
$1 / 2 \angle \mathrm{ACB}=1 / 2 \angle \mathrm{ABC}$ (divide both sides by 2)
$\Rightarrow \angle \mathrm{OCB}=\angle \mathrm{OBC} \ldots(1)(\mathrm{As} \mathrm{OB}$ and OC are bisector of $\angle \mathrm{B}$ and $\angle \mathrm{C})$
Now, $\angle \mathrm{MOC}=\angle \mathrm{OBC}+\angle \mathrm{OCB}$ (as exterior angle is equal to sum of two opposite interior angle)
$\Rightarrow \angle \mathrm{MOC}=\angle \mathrm{OBC}+\angle \mathrm{OBC}($ from $(1))$
$\Rightarrow \angle \mathrm{MOC}=2 \angle \mathrm{OBC}$
$\Rightarrow \angle \mathrm{MOC}=\angle \mathrm{ABC}$ (because OB is bisector of $\angle \mathrm{B}$)
Hence proved.

Answer21)

Given: (i) In an isosceles $\triangle \mathrm{ABC}$,
(ii) $\mathrm{AB}=\mathrm{AC}$,
(iii) BO and CO are the bisectors of $\angle \mathrm{ABC}$ and $\angle \mathrm{ACB}$.

To prove: $\angle \mathrm{ABD}=\angle \mathrm{BOC}$
Construction: Produce CB to point D.

Proof:

In $\triangle \mathrm{ABC}$,

$\because \mathrm{AB}=\mathrm{AC}$
$\therefore \angle \mathrm{ACB}=\angle \mathrm{ABC}$
(Angle opposite to equal sides are equal)
$\Rightarrow \frac{1}{2} \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{ABC}$
$\Rightarrow \angle O C B=\angle O B C$
(Given, BO and CO are angle bisector of $\angle \mathrm{ABC}$ and $\angle \mathrm{ACB}$, respectively)
$\Rightarrow \frac{1}{2} \angle \mathrm{ACB}=\frac{1}{2} \angle \mathrm{ABC}$
$\Rightarrow \angle \mathrm{OCB}=\angle \mathrm{OBC}$
(Given, BO and CO are angle bisector of $\angle \mathrm{ABC}$ and $\angle \mathrm{ACB}$, respectively)

In $\triangle B O C$,
$\angle \mathrm{OBC}+\angle \mathrm{OCB}+\angle \mathrm{BOC}=180^{\circ} \quad$ (By angle sum property of triangle)
$\Rightarrow \angle O B C+\angle O B C+\angle B O C=180^{\circ} \quad[$ From (i) $]$
$\Rightarrow 2 \angle \mathrm{OBC}+\angle \mathrm{BOC}=180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{BOC}=180^{\circ} \quad(\mathrm{BO}$ is the angle bisector of $\angle \mathrm{ABC})$
$\angle O B C+\angle O C B+\angle B O C=180^{\circ} \quad$ By angle sum property of triangle
$\Rightarrow \angle \mathrm{OBC}+\angle \mathrm{OBC}+\angle \mathrm{BOC}=180^{\circ}$ From (i)
$\Rightarrow 2 \angle O B C+\angle B O C=180^{\circ}$
$\Rightarrow \angle \mathrm{ABC}+\angle \mathrm{BOC}=180^{\circ} \quad \mathrm{BO}$ is the angle bisector of $\angle \mathrm{ABC}$

Also, DBC is a straight line.
So, $\angle \mathrm{ABC}+\angle \mathrm{DBA}=180^{\circ} \quad$ (Linear pair)
$\angle \mathrm{ABC}+\angle \mathrm{DBA}=180^{\circ} \quad$ (Linear pair)

From (ii) and (iii), we get
$\angle \mathrm{ABC}+\angle \mathrm{BOC}=\angle \mathrm{ABC}+\angle \mathrm{DBA}$
$\therefore \angle \mathrm{BOC}=\angle \mathrm{DBA}$

Answer22)

Given: P is the point on the bisector of an angle $\angle A B C$, and PQ \| AB

To Proof: BPQ is isoscele
Since,
BP is the bisector of $\angle \mathrm{ABC}=\angle \mathrm{ABP}=\angle \mathrm{PBC}$ (i)

Now,

PQ || AB
$\angle \mathrm{BPQ}=\angle \mathrm{ABP}$
(ii) [Alternate angles]

From (i) and (ii), we get
$\angle \mathrm{BPQ}=\angle \mathrm{PBC}$

Or,
$\angle \mathrm{BPQ}=\angle \mathrm{PBQ}$

Now, in $\triangle B P Q$
$\angle \mathrm{BPQ}=\angle \mathrm{PBQ}$
$\triangle \mathrm{BPQ}$ is an isosceles triangle

Hence Proved.

Answer23) Given: A is an object in front of mirror LM,
B is the image of A and the observer is at D

AB intersects LM at T

To Prove: A and B are equidistant from LM

$\mathrm{AT}=\mathrm{BT}$
Construction: Join BD. Let it intersect LM at C
Join AC. CN be the normal at C.
Proof:
$\angle \mathrm{i}=\angle \mathrm{r}$
$A B \| N C$
...[Both are perpendicular to LM]
$\angle \mathrm{CAT}=\angle \mathrm{CAN}=\angle \mathrm{i} \quad . . .(2)[$ Alternate angles]
$\angle \mathrm{CBA}=\angle \mathrm{DCN}=\angle \mathrm{r} \quad \ldots(3)$ [Corresponding angles]
From (1), (2) and (3), we get
$\angle \mathrm{CAT}=\angle \mathrm{CBA}$
In $\triangle \mathrm{CAT}$ and $\Delta \mathrm{CBT}$,
$\angle \mathrm{CAT}=\angle \mathrm{CBT}$
...[From (4)]
$\angle \mathrm{ATC}=\angle \mathrm{BTC}$
$\mathrm{CT}=\mathrm{CT}$
Therefore;
$\Delta \mathrm{CAT} \cong \Delta \mathrm{CBT}$
...[AAA Criteria]
$\mathrm{AT}=\mathrm{BT}$
...[C.P.C.T]
Hence Proved.

Answer24)

Let AB be the breadth of the river.
M is any point situated on the bank of the river.
Let O be the mid point of BM.
Moving along perpendicular to point such that A, O and N are in straight line.

Then MN is the required breadth of the river.

In \triangle OBA and $\triangle O M N$,
we have: $O B=O M$ (O is midpoint)
$\angle O B A=\angle O M N \quad\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle \mathrm{AOB}=\angle \mathrm{NOM}$ (Vertically opposite angle)
$\therefore \triangle \mathrm{OBA} \cong \triangle \mathrm{OMN}$ (ASA criterion)
In $\triangle \mathrm{OBA}$ and $\triangle \mathrm{OMN}$,
we have: $O B=O M$ (O is midpoint)
$\angle O B A=\angle O M N \quad\left(\right.$ Each $\left.90^{\circ}\right)$
$\angle A O B=\angle N O M$ (Vertically opposite angle)
$\therefore \triangle \mathrm{OBA} \cong \triangle \mathrm{OMN}$ (ASA criterion)
Thus, $\mathrm{MN}=\mathrm{AB}$ (CPCT)
If MN is known, one can measure the width of the river without actually crossing it.

Answer25)Given: D is the midpoint of ac
$B D=1 / 2 \mathrm{AC}$
To Prove: $\angle \mathrm{ABC}$ is 90°
In $\triangle \mathrm{ADB}, \mathrm{AD}=\mathrm{BD}$

$\angle \mathrm{DAB}=\angle \mathrm{DBA}=\angle \mathrm{x}$
(Opposite angles)
In $\triangle \mathrm{DCB}, \mathrm{BD}=\mathrm{CD}$
$\angle \mathrm{DBC}=\angle \mathrm{DCB}=\angle \mathrm{y}$
In $\triangle \mathrm{ABC}$ we will use the angle sum property
$\angle \mathrm{ABC}+\angle \mathrm{BCA}+\angle \mathrm{CAB}=180^{\circ}$
$2(\angle x+\angle y)=180^{\circ}$
$\angle \mathrm{x}+\angle \mathrm{y}=90^{\circ}$
$\angle \mathrm{ABC}=90^{\circ}$
This meAnswer that $A B C$ is the right angled triangle.

Answer26)No, because in the congruent rule, the two sides and the included angle of one triangle are equal to the two sides and the included angle of the other triangle, that is, SAS criteria.

Answer 27) No,
Corresponding sides must be equal.

EXERCISE-9(B)

Answer1) (i) No, because the sum of two sides of a triangle is not greater than the third side.
$5+4=9$
(ii) Yes, because the sum of two sides of a triangle is greater than the third side.
$7+4>8 ; 8+7>4 ; 8+4>7$
(iii) Yes, because the sum of two sides of a triangle is greater than the third side.
$5+6>10 ; 10+6>5 ; 5+10>6$
(iv) Yes, because the sum of two sides of a triangle is greater than the third side.
$2.5+5>7 ; 5+7>2.5 ; 2.5+7>5$
(v) No, because the sum of two sides of a triangle is not greater than the third side.
$3+4<8$

Answer2) Given: In $\triangle \mathrm{ABC}, \angle \mathrm{A}=50^{\circ}$ and $\angle \mathrm{B}=60^{\circ}$

In $\triangle A B C$,
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \quad$ (Angle sum property of a triangle)
$\Rightarrow 50^{\circ}+60^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 110^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle \mathrm{C}=180^{\circ}-110^{\circ}$
$\Rightarrow \angle \mathrm{C}=70^{\circ}$

Hence, the longest side will be opposite to the largest angle ($\angle \mathrm{C}=70^{\circ}$) i.e. AB.
And, the shortest side will be opposite to the smallest angle $\left(\angle A=50^{\circ}\right)$ i.e. $B C$.

Answer3) (i) Given: In $\triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ}$
So, sum of the other two angles in triangle $\angle \mathrm{B}+\angle \mathrm{C}=90^{\circ}$
i.e. $\angle \mathrm{B}, \angle \mathrm{C}<90^{\circ}$

Since, $\angle \mathrm{A}$ is the greatest angle.
So, the longest side is BC.
(ii) Given: $\angle \mathrm{A}=\angle \mathrm{B}=45^{\circ}$

Using angle sum property of triangle,
$\angle \mathrm{C}=90^{\circ}$
Since, $\angle \mathrm{C}$ is the greatest angle.
So, the longest side is $A B$.
(iii) Given: $\angle \mathrm{A}=100^{\circ}$ and $\angle \mathrm{C}=50^{\circ}$

Using angle sum property of triangle,
$\angle B=30^{\circ}$
Since, $\angle \mathrm{A}$ is the greatest angle.
So, the shortest side is BC.

Answer4) Given: $\triangle A B C$, side $A B$ is produced to D so that $B D=B C$ and $\angle B=60^{\circ}, \angle A=70^{\circ}$

To Prove:

(i) $\mathrm{AD}>\mathrm{CD}$

And, (ii) $\mathrm{AD}>\mathrm{AC}$

Proof:

First join C and D
Now,

In $\triangle \mathrm{ABC}$
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
(Sum of all angles of triangle)
$\angle \mathrm{C}=180^{\circ}-70^{\circ}-60^{\circ}=50^{\circ}$
$\angle \mathrm{C}=50^{\circ}$
$\angle A C B=50^{\circ}$ (i)
And also in $\triangle \mathrm{BDC}$
$\angle D B C=180^{\circ}-\angle A B C$
$=180^{\circ}-60^{\circ}=120^{\circ}$
$B D=B C$ (Given)
$\angle \mathrm{BCD}=\angle \mathrm{BDC}$
(Therefore, angle opposite to equal sides are equal)
Now,
$\angle \mathrm{DBC}+\angle \mathrm{BCD}+\angle \mathrm{BDC}=180^{\circ}$
(Sum of all sides of triangle)
$120^{\circ}+\angle \mathrm{BCD}+\angle \mathrm{BCD}=180^{\circ}$
$2 \angle \mathrm{BCD}=180^{\circ}-120^{\circ}$
$2 \angle B C D=60^{\circ}$
$\angle B C D=30^{\circ}$
Therefore, $\angle \mathrm{BCD}=\angle \mathrm{BDC}=30^{\circ}$ (ii)
Now, consider $\triangle \mathrm{BDC}$,
$\angle \mathrm{BAC}=\angle \mathrm{DAC}=70^{\circ}$ (Given)
$\angle \mathrm{BDC}=\angle \mathrm{ADC}=30^{\circ}[$ From (ii) $]$
$\angle A C D=\angle A C B+\angle B C D$
$=50^{\circ}+30^{\circ}$ [From (i) and (ii)]
$=80^{\circ}$

Now,
$\angle \mathrm{ADC}<\angle \mathrm{DAC}<\angle \mathrm{ACD}$
$\mathrm{AC}<\mathrm{DC}<\mathrm{AD}$ (Therefore, side opposite to greater angle is longer and smaller angle is smaller)

AD $>\mathrm{CD}$

And,
AD $>\mathrm{AC}$
Hence Proved.
We have,
$\angle A C D>\angle D A C$
And,
$\angle A C D>\angle A D C$
AD $>\mathrm{DC}$
$\mathrm{AD}>\mathrm{AC}$ (Therefore, side opposite to greater angle is longer and smaller angle is smaller)

Answer5)GIVEN:
$\angle B<\angle A$
$\angle C<\angle D$

TO PROVE:

$$
\mathrm{AD}<\mathrm{BC}
$$

PROOF:

$\angle B<\angle A$
SO,

$$
\mathrm{OA}<\mathrm{OB} \quad . . .(1) \quad(\text { SIDE OPPOSITE TO SMALLER ANGLE IS SMALL })
$$

NOW, $\angle \mathrm{C}<\angle \mathrm{D}$

SO,

$$
\mathrm{OD}<\mathrm{OC}
$$

...(2) (SIDE OPPOSITE TO SMALLER ANGLE IS SMALL)
NOW,
ADDING 1 AND 2
$O A+O D<O B+O C$
ADDING WE GET,

$$
\mathrm{AD}<\mathrm{BC}
$$

HENCE PROVED.

Answer6) Given:
In quadrilateral $A B C D, A B$ smallest $\& C D$ is longest sides.
To Prove: $\angle \mathrm{A}>\angle \mathrm{C}$
$\& \angle B>\angle D$

Construction: Join AC.

Mark the angles as shown in the figure..

Proof:

In $\triangle A B C, A B$ is the shortest side.
$B C>A B$
$\angle 2>\angle 4 \ldots$...(i)
[Angle opposite to longer side is greater]
In $\triangle \mathrm{ADC}, \mathrm{CD}$ is the longest side
$\mathrm{CD}>\mathrm{AD}$
$\angle 1>\angle 3$
[Angle opposite to longer side is greater]
Adding (i) and (ii), we have
$\angle 2+\angle 1>\angle 4+\angle 3$
$\Rightarrow \angle A>\angle C$

Similarly, by joining BD, we can prove that
$\angle B>\angle D$

Answer 7) To Prove: $(A B+B C+C D+D A)>(A C+B D)$

Proof:

$A B C D$ is a quad.Its diagonals are $A C$ and $B D$.
In triangle $\mathrm{ACB}, \mathrm{AB}+\mathrm{BC}>\mathrm{AC}$
In triangle $\mathrm{BDC}, \mathrm{BC}+\mathrm{CD}>\mathrm{BD}$

In triangle $\mathrm{BAD}, \mathrm{AB}+\mathrm{AD}>\mathrm{BD}$

Adding 1,2,3 and 4,

$$
\mathrm{AB}+\mathrm{BC}+\mathrm{BC}+\mathrm{CD}+\mathrm{AD}+\mathrm{DC}+\mathrm{AB}+\mathrm{AD}>\mathrm{AC}+\mathrm{BD}+\mathrm{AC}+\mathrm{BD}
$$

$2 \mathrm{AB}+2 \mathrm{BC}+2 \mathrm{CD}+2 \mathrm{AD}>2 \mathrm{AC}+2 \mathrm{BD}$
$\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{AD}>\mathrm{AC}+\mathrm{BD} . \quad$ HENCE PROVED.
Answer8) Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side

Therefore, In $\triangle \mathrm{AOB}, \mathrm{AB}<\mathrm{OA}+\mathrm{OB}$ \qquad
In $\triangle \mathrm{BOC}, \mathrm{BC}<\mathrm{OB}+\mathrm{OC}$ \qquad
In Δ COD,$C D<O C+O D$ \qquad
In $\triangle \mathrm{AOD}, \mathrm{DA}<\mathrm{OD}+\mathrm{OA}$ \qquad

$\Rightarrow \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<20 \mathrm{~A}+20 \mathrm{~B}+20 \mathrm{C}+20 \mathrm{D}$
$\Rightarrow \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2[(\mathrm{AO}+\mathrm{OC})+(\mathrm{DO}+\mathrm{OB})$
$\Rightarrow \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{AC}+\mathrm{BD})$
Hence Proved.

Answer9) Given: In $\triangle \mathrm{ABC}, \angle \mathrm{B}=35^{\circ}, \angle \mathrm{C}=65^{\circ}$ and $\angle \mathrm{BAX}=\angle \mathrm{XAC}$
To find: Relation between AX, BX and CX in descending order.
In $\triangle \mathrm{ABC}$, by the angle sum property, we have
$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{A}+35^{\circ}+65^{\circ}=180^{\circ}$
$\angle \mathrm{A}+100^{\circ}=180^{\circ}$
$\therefore \angle \mathrm{A}=80^{\circ}$
But $\angle B A X=\angle A=40^{\circ}$

Now in $\triangle A B X$,
$\angle B=35^{\circ}$
$\angle B A X=40^{\circ}$
And $\angle \mathrm{BXA}=180^{\circ}-35^{\circ}-40^{\circ}$
$=105^{\circ}$
So, in $\triangle A B X$,
$\angle B$ is smallest, so the side opposite is smallest, ie. $A X$ is smallest side.
$\therefore \mathrm{AX}<\mathrm{BX}$.
Now consider $\triangle \mathrm{AXC}$,
$\angle C A X=\angle A=40^{\circ}$
$\angle A X C=180^{\circ}-40^{\circ}-65^{\circ}$
$=180^{\circ}-105^{\circ}=75^{\circ}$
Hence, in $\triangle \mathrm{AXC}$ we have,
$\angle \mathrm{CAX}=40^{\circ}, \angle \mathrm{C}=65^{\circ}, \angle \mathrm{AXC}=75^{\circ}$
$\therefore \angle \mathrm{CAX}$ is smallest in $\triangle \mathrm{AXC}$
So the side opposite to $\angle \mathrm{CAX}$ is shortest
ie. CX is shortest
$\therefore \mathrm{CX}<\mathrm{AX}$.
From 1 and 2,
$\mathrm{BX}>\mathrm{AX}>\mathrm{CX}$

Answer10) Given: $P Q>P R$
QS and RS are bisector of $\angle \mathrm{Q}$ and $\angle \mathrm{R}$ Respectively

To Prove: SQ>SR

Proof:
$\angle R>\angle Q$
(angle opposite to greater side is greater)
$1 / 2^{*} \angle \mathrm{R}>1 / 2^{*} \angle \mathrm{Q}$
$\angle \mathrm{SRQ}>\angle \mathrm{SQR}$
SQ>SR
(Side opposite to greater angle is greater)

Answer11) Given: $\mathrm{AB}=\mathrm{AC}$
To prove: $\mathrm{BD}>\mathrm{CD}$

Proof:

Since $A B=A C$
$\angle \mathrm{ABC}=$
$\angle A C B$
(By

Isosceles Triangle property) ---(i)
Here clearly,
$\angle \mathrm{ABC}>\angle \mathrm{CBD}$
$\angle A C B>\angle C B D$---from (i)
$\angle D C B>\angle C B D$
BD $>\mathrm{CD}$
(Angle opposite to greater side is greater in a triangle)
Hence Proved.

Answer12) Let $\triangle \mathrm{ABC}$ be a triangle in which AC is the longest side.
To prove: Angle opposite the longest side is greater than $2 / 3$ of right angle.
Proof: $\angle \mathrm{B}>\angle \mathrm{A}$
And $\angle \mathrm{B}>\angle \mathrm{C}$
Adding (i) and (ii), we get
$\rightarrow \angle \mathrm{B}+\angle \mathrm{B}>\angle \mathrm{A}+\angle \mathrm{C}$

$\rightarrow 2 \angle B>\angle A+\angle C$
$\rightarrow 2 \angle \mathrm{~B}+\angle \mathrm{B}>\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}$
$\rightarrow 3 \angle \mathrm{~B}>180^{\circ}=\angle \mathrm{B}>60^{\circ}$
$\rightarrow \angle \mathrm{B}>2 / 3 \mathrm{x}$ right amgle.
$\left[60^{\circ}=2 / 3 \times 90^{\circ}\right]$

Answer13)

(i)To Prove: $\mathrm{CD}+\mathrm{DA}+\mathrm{AB}>\mathrm{BC}$

Proof:

$\triangle \mathrm{ABC}$, we have
$\mathrm{CD}+\mathrm{DA}>\mathrm{AC}$
Add AB on both sides, we get
$\mathrm{CD}+\mathrm{DA}+\mathrm{AB}>\mathrm{AC}+\mathrm{AB}>\mathrm{BC}$
$C D+D A+A B>B C$
Hence proved.
(ii) To Prove: $\mathrm{CD}+\mathrm{DA}+\mathrm{AB}+\mathrm{BC}>2 \mathrm{AC}$

Proof:

In $\triangle \mathrm{ABC}$, we have

$$
\begin{equation*}
\mathrm{AB}+\mathrm{BC}>\mathrm{AC} \tag{1}
\end{equation*}
$$

In $\triangle \mathrm{ADC}$, we have
$\mathrm{CD}+\mathrm{DA}>\mathrm{AC}$

Adding (1) and (2), we get
$\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{AC}$
$\mathrm{CD}+\mathrm{DA}+\mathrm{AB}+\mathrm{BC}>2 \mathrm{AC}$
Hence Proved.

Answer14)

Given:

In triangle $A B C, O$ is any interior point.
We know that any segment from a point 0 inside a triangle to any vertex of the triangle cannot be longer than the two sides adjacent to the vertex.
Thus, $O A$ cannot be longer than both AB and CA (if this is
 possible, then 0 is outside the triangle).

To Prove:

(i) $\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC}$
(ii) $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>\mathrm{OA}+\mathrm{OB}+\mathrm{OC}$
(iii) $\mathrm{OA}+\mathrm{OB}+\mathrm{OC}>1 / 2(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$

Proof:

(i) OA cannot be longer than both AB and CA
$A B>0 B$
$\mathrm{AC}>\mathrm{OC}$

Thus,
$\mathrm{AB}+\mathrm{AC}>0 \mathrm{~B}+\mathrm{OC} \quad$...[Adding (1) and(2)]
$A B>0 B$
$\mathrm{AC}>\mathrm{OC}$

Thus,
$\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC} \quad$...[Adding (1) and (2)]
(ii) $\mathrm{AB}>0 \mathrm{~A}$.
$\mathrm{BC}>0 \mathrm{OB}$.
CA>OC.....(5)
Adding the above three equations, we get:
Thus, $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}>\mathrm{OA}+\mathrm{OB}+\mathrm{OC}$
OA cannot be longer than both AB and CA .
$\mathrm{AB}>0 \mathrm{~B}$.....(5)
$\mathrm{AC}>0 \mathrm{C}$.
$\mathrm{AB}+\mathrm{AC}>\mathrm{OB}+\mathrm{OC}[0 n$ adding (5) and (6)]
Thus, the first equation to be proved is shown correct.
(iii) Now, consider the triangles OAC, OBA and OBC

We have:
OA $+0 \mathrm{C}>\mathrm{AC}$
$\mathrm{OA}+\mathrm{OB}>\mathrm{AB}$
$\mathrm{OB}+\mathrm{OC}>\mathrm{BC}$

Adding the above three equations, we get:
$\mathrm{OA}+0 \mathrm{C}+\mathrm{OA}+\mathrm{OB}+\mathrm{OB}+\mathrm{OC}>\mathrm{AB}+\mathrm{AC}+\mathrm{BC}$
$\Rightarrow 2(O A+O B+O C)>A B+A C+B C$
Thus, $0 \mathrm{~A}+\mathrm{OB}+0 \mathrm{C}>1 / 2(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$.

Answer15) Given : (i) $A D \perp B C$
(ii) $\mathrm{CD}>\mathrm{BD}$

To Prove: $A C>A B$

Proof:

In $\triangle \mathrm{ABD} ; \angle \mathrm{ABD}+\angle \mathrm{BAD}+\angle \mathrm{BDA}=180^{\circ}$
$\angle \mathrm{ABD}+\angle \mathrm{BAD}+90^{\circ}=180^{\circ}$
$\angle \mathrm{ABD}+\angle \mathrm{BAD}=90^{\circ}$

Similarly; In $\triangle \mathrm{ADC} ; \angle \mathrm{ACB}+\angle \mathrm{CAD}=90^{\circ}$
Since; $\mathrm{BD}<\mathrm{CD} ; \angle \mathrm{BAD}<\angle \mathrm{CAD}$
$\angle \mathrm{ABD}>\angle \mathrm{ACB}$
$\mathrm{AC}>\mathrm{AB}$
(sides opposite to greater angles are greater)

Answer16) Given: $\mathrm{CD}=\mathrm{DE}$

To prove: $A B+A C>B E$

Proof:

In $\triangle \mathrm{ABC}$,
$A B+A C>B C$
$A B+A C>B C$... 1

In $\triangle \mathrm{BED}$,
$B D+C D>B E \Rightarrow B C>B E$
$B D+C D>B E \Rightarrow B C>B E \quad . . .2$

From (1) and (2), we get
$\mathrm{AB}+\mathrm{AC}>\mathrm{BE}$.
Hence Proved.

MULTIPLE CHOICE QUESTIONS

Answer1) (a)

SSA is not a criteria for congruency of triangles. SSA would mean for example, that in triangles ABC and DEF , angle $\mathrm{A}=$ angle $\mathrm{D}, \mathrm{AB}=\mathrm{DE}$, and $\mathrm{BC}=\mathrm{EF}$.

With these assumptions it is not true that triangle ABC is congruent to triangle DEF. In general there are two sets of congruent triangles with the same SSA data.

ASS: Not Congruent!

Answer2) (c)
Given: (i) $A B=Q R$
(ii) $\mathrm{BC}=\mathrm{RP}$
(iii) $C A=P Q$

From the above given information following figures can be drawn.

Hence, $\triangle \mathrm{PQR} \cong \Delta \mathrm{CAB}$.

Answer3 (a)

Given: $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
From the above given information following figures can be drawn.

If $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$, then $\mathrm{BC}=\mathrm{QR}$.
$B C=R Q$ is not correct.

Answer4 (c)
Given: (i) $A B=A C$
(ii) $\angle B=50^{\circ}$

From the above given information following figure can be drawn.

Since; $\triangle \mathrm{ABC}$ is an isosceles triangle
Hence; $\angle B=\angle C=50^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \\
& \angle \mathrm{x}+50^{\circ}+50^{\circ}=180^{\circ} \\
& \angle \mathrm{x}+100^{\circ}=180^{\circ} \\
& \angle \mathrm{x}=180^{\circ}-100^{\circ} \\
& \angle \mathrm{x}=\angle \mathrm{A}=80^{\circ}
\end{aligned}
$$

Answer5)(a)
Given: (i) $\mathrm{BC}=\mathrm{AB}$
(ii) $\angle B=80^{\circ}$

From the above given information following figure can be drawn.

Since; $\triangle \mathrm{ABC}$ is an isosceles triangle
$\angle A=\angle C=\angle x$

Hence; $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$\angle x+\angle x+80^{\circ}=180^{\circ}$
$2 \angle x=180^{\circ}-80^{\circ}$
$\angle \mathrm{X}=\frac{100^{\circ}}{2}$
$\angle x=50^{\circ}$
$\angle \mathrm{x}=\angle \mathrm{A}=50^{\circ}$
Answer6) (a)
Given: (i) $\angle \mathrm{A}=\angle \mathrm{C}$
(ii) $\mathrm{BC}=4 \mathrm{~cm}$
(iii) $\mathrm{AC}=5 \mathrm{~cm}$

From the above given information following figure can be drawn.

Since; $\angle A=\angle C$ are equal.
Hence; $\Delta \mathrm{ABC}$ is an isosceles triangle.
So; $\mathrm{AB}=\mathrm{BC}=4 \mathrm{~cm}$.

Answer7) (b)
Given: (i) side $1=4 \mathrm{~cm}$.
(ii) side $2=2.5 \mathrm{~cm}$.

Since; the sum of two sides in a triangle must be greater than the third side.

So; the third side should be less than the sum of the other two sides.
the third side should be $<4 \mathrm{~cm}+2.5 \mathrm{~cm}$, i.e. 6.5 cm .
Hence; the third side cannot be 6.5 cm .

Answer 8) (b)
Given : $\angle \mathrm{C}>\angle \mathrm{B}$
From the above given information following figure can be drawn.

From the above figure it can be determined that $\mathrm{AB}>\mathrm{AC}$

Answer9) (b)
Given: (i) $\Delta \mathrm{ABC} \cong \Delta \mathrm{FDE}$
(ii) $\mathrm{AB}=5 \mathrm{~cm}$.
(iii) $\angle \mathrm{A}=80^{\circ}$
(iv) $\angle B=40^{\circ}$

From the above given information following figures can be drawn .

Corresponding angle the $\triangle \mathrm{FDE}$ is $\angle \mathrm{E}=60^{\circ}$

Answer10) (c)
Given: (i) $\angle \mathrm{A}=40^{\circ}$
(ii) $\angle \mathrm{B}=60^{\circ}$

From the above given information following figure can be drawn.

$\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$
$40^{\circ}+60^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\angle \mathrm{C}=180^{\circ}-100^{\circ}$
$\angle \mathrm{C}=80^{\circ}$
Since; side opposite of greater angle is greater. So, the side $A B$ is greatest.

Answer11(c)
Given: $A B>A C$

We know that the angle opposite to the larger side is larger.
So, $\mathrm{AB}>\mathrm{AC}=\angle \mathrm{ACB}>\angle \mathrm{ABC}$

$$
\begin{equation*}
=\angle \mathrm{ACD}>\angle \mathrm{ABD} . \tag{i}
\end{equation*}
$$

Again side CD of $\triangle \mathrm{ACD}$ has been produced to B.

So, ext. $\angle \mathrm{ADB}>\angle \mathrm{ACD}$.
From (i) and (ii), we get
$\angle A D B>\angle A C D>\angle A B D$
$\angle \mathrm{ADB}>\angle \mathrm{ABD}$
$A B>A D$ (side opposite of greater angle is greater).
Hence, $A B>A D$.

Answer12)(b)

Given: (i) $\mathrm{AB}>\mathrm{AC}$.
(ii) BO and CO are the bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}$.

$\angle \mathrm{ACB}>\angle \mathrm{ABC}$
Angles opposite to greater sides are greater.
$\frac{\angle \mathrm{ACB}}{2}>\frac{\angle \mathrm{ABC}}{2}$
$\angle O C B>\angle O B C$
Hence, OB > OC.
Answer13)(a)
Given: (i) $\mathrm{AB}=\mathrm{AC}$
(ii) $O B=O C$.

It is given in the question that,
In $\triangle \mathrm{OAB}$ and $\triangle \mathrm{OAC}$, we have
$A B=A C$
$O B=O C$
$\mathrm{OA}=\mathrm{OA}($ Common $)$
\therefore By SSS congruence criterion
$\Delta \mathrm{OAB} \cong \Delta \mathrm{OAC}$
$\therefore \angle \mathrm{ABO}=\angle \mathrm{ACO}$
So, $\angle \mathrm{ABO}: \angle \mathrm{ACO}=1: 1$

Answer14) (b)

Given: (i) BL $\perp \mathrm{AC}$
(ii) $\mathrm{CM} \perp \mathrm{AB}$
(iii) $\mathrm{BL}=\mathrm{CM}$.

In $\triangle \mathrm{ABL}$ and $\triangle \mathrm{ACM}$, we have
$\mathrm{BL}=\mathrm{CM}$ (given)
$\angle \mathrm{BAL}=\angle \mathrm{CAM}$ (common)
$\angle \mathrm{ALB}=\angle \mathrm{AMC}\left(\right.$ each $\left.90^{\circ}\right)$
$\Delta \mathrm{ABL} \cong \triangle \mathrm{ACM}$ and hence $\mathrm{AB}=\mathrm{AC}$.

$\triangle \mathrm{ABC}$ is isosceles.

Answer15) (b)

Given : (i) $\mathrm{AB}=\mathrm{DE}$
(ii) $\mathrm{BC}=\mathrm{EF}$

From the above given information following figures can be drawn.

For $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}, \angle \mathrm{B}$ should be equal to $\angle \mathrm{E}$.
Hence if $\angle B=\angle E$, then $\triangle A B C \cong \triangle D E F$ by S.A.S. criterion.

Answer16)(c)

Given: (i) $\angle B=\angle E$
(ii) $\angle \mathrm{C}=\angle \mathrm{F}$

From the above given information following figures can be drawn.

For $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}, \mathrm{BC}$ should be equal to EF .
Hence if $\mathrm{BC}=\mathrm{EF}$, then $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$ by A.S.A. criterion.

Answer17) (a)

Given: (i) $A B=A C$
(ii) $\angle \mathrm{C}=\angle \mathrm{P}$
(iii) $\angle B=\angle Q$

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{AC} \\
& \angle \mathrm{C}=\angle \mathrm{B} \\
& \angle \mathrm{P}=\angle \mathrm{Q} \text { (since } \angle \mathrm{C}=\angle \mathrm{P} \text { and } \angle \mathrm{B}=\angle \mathrm{Q}) \\
& \mathrm{QR}=\mathrm{PQ} .
\end{aligned}
$$

Thus both the triangles are isosceles but not congruent.

Answer18) (c)

Two right angles would up to 180° so the third angle becomes zero. This is not possible.
Therefore, the triangle cannot have two right angles.A triangle can't have two obtuse angles as obtuse angle meAnswer more than 900 Sô, the sum of the two sides exceeds more than 180° which is not possible. As the sum of all three angles of a triangle is 180°. A triangle can have two acute angle as acute angle meAnswer less than 90°.And External angle of triangle is greater than either opposite angles.

Answer19) a) (Sum of any sides of a triangle) greater than $(>)$ (third side).
b) (Difference of any two sides of a triangle) less than $(<)$ (third side).
c) (Sum of three altitudes of a triangle)less than($<$)(sum of three sides).
d) (Sum of any two sides of a triangle) greater than $(>$) (twice the median to the third side).
e) (Perimeter of a triangle) greater than $(>)$ (sum of its three median).

Answer20) a) Each angle of an equilateral triangle measures $\underline{60}^{\circ}$.
b) MediAnswer of an equilateral triangle are equal.
c) In a right angle triangle, the hypotenuse is thelongestside.
d) Drawing a $\triangle \mathrm{ABC}$ with $\mathrm{AB}=3 \mathrm{~cm} ., \mathrm{BC}=4 \mathrm{~cm}$. and $\mathrm{CA}=7 \mathrm{~cm}$. is not possible.

