Volume and Surface Area of Solids Ex 20.A

Name of the solid	Figure	Volume	Laterial/Curved Surface Area	Total Surface Area
Cuboid	b l	lbh	2lh + 2bh or 2h(l+b)	2lh+2bh+ <mark>2lb</mark> or 2(lh+bh+lb)
Cube	aaaa	a ³	$4a^2$	4a²+ <mark>2a²</mark> or 6a²
Right circular cylinder	h	$\pi { m r}^2 { m h}$	2πrh	2πrh + <mark>2πr²</mark> or 2πr(h+r)
Right circular cone	h	$\frac{1}{3}\pi r^2 h$	πrl	$\pi r l + \pi r^2$ or $\pi r (l+r)$
Sphere		$\frac{4}{3}\pi r^3$	$4\pi r^2$	$4\pi { m r}^2$
Hemisphere	r	$\frac{2}{3}\pi r^3$	$2\pi r^2$	$2\pi r^2 + \pi r^2$ or $3\pi r^2$

Q1.

Answer:

Volume of a cylinder = $\pi r^2 \, h$ Lateral surface $=2\pi rh$

Total surface area $=2\pi r(h+r)$

(i) Base radius = 7 cm; height = 50 cm

Now, we have the following:

 $\begin{array}{l} \text{Volume} = \frac{22}{7} \times 7 \times 7 \times 50 = 7700 \ \textit{cm}^3 \\ \text{Lateral surface area} = 2\pi \textit{rh} = 2 \times \frac{22}{7} \times 7 \times 50 = 2200 \ \textit{cm}^2 \end{array}$

Total surface area = $2\pi r(h+r) = 2 \times \frac{22}{7} \times 7(50+7) = 2508 \ cm^2$

(ii) Base radius = 5.6 m; height = 1.25 m

Now, we have the following:

 $\begin{array}{l} \text{Volume} = \frac{22}{7} \times 5.6 \times 5.6 \times 1.25 = 123.2~m^3 \\ \text{Lateral surface area} = 2\pi rh = 2 \times \frac{22}{7} \times 5.6 \times 1.25 = 44~m^2 \end{array}$

Total surface area $=2\pi r(h+r)=\overset{'}{2}\times \frac{22}{7}\times 5.6(1.25+5.6)=241.12~m^2$

(iii) Base radius = 14 dm = 1.4 m, height = 15 m

Now, we have the following:

 $\text{Volume} = \tfrac{22}{7} \times 1.4 \times 1.4 \times 15 = 92.4 \ m^3$

Lateral surface area = $2\pi r h$ = $2 \times \frac{22}{7} \times 1.4 \times 15 = 132~m^2$

Total surface area $=2\pi r(h+r)=\overset{'}{2}\times \frac{22}{7}\times 1.4(15+1.4)=144.32~cm^2$

 $r = 1.5 \,\mathrm{m}$

 $h = 10.5 \,\mathrm{m}$

Capacity of the tank = volume of the tank = $\pi r^2 h = \frac{22}{7} \times 1.5 \times 1.5 \times 10.5 = 74$

We know that $1 \text{ m}^3 = 1000 \text{ L}$

∴ $74.25 \text{ m}^3 = 74250 \text{ L}$

Q3.

Answer:

Height = 7 m

Radius = 10 cm = 0.1 m

Volume= $\pi r^2 h = \frac{22}{7} \times 0.1 \times 0.1 \times 7 = 0.22 \ m^3$

Weight of wood = 225 kg/m³

 \therefore Weight of the pole= $0.22 \times 225 = 49.5~kg$

Q4.

Answer:

Diameter = 2r = 140 cm

i.e., radius, r = 70 cm = 0.7 m

Now, volume $=\pi r^2 h = 1.54 \text{ m}^3$

$$\Rightarrow \frac{22}{7} \times 0.7 \times 0.7 \times h = 1.54$$

$$h = \frac{1.54 \times 7}{0.7 \times 0.7 \times 22} = \frac{154 \times 7}{154 \times 7} = 1 m$$

Q5.

Answer:

Volume = $\pi r^2 h = 3850 \text{ cm}^3$

Height = 1 m =100 cm

Diameter =
$$2r = 140$$
 cm i.e., radius, $r = 70$ cm = 0.7 m Now, volume = $\pi r^2 h = 1.54$ m³
$$\Rightarrow \frac{22}{7} \times 0.7 \times 0.7 \times h = 1.54$$

$$\therefore h = \frac{1.54 \times 7}{0.7 \times 0.7 \times 22} = \frac{154 \times 7}{154 \times 7} = 1 m$$
Q5.

Answer:

Volume = $\pi r^2 h = 3850$ cm³

Height = 1 m = 100 cm

Now, radius, $r = \sqrt{\frac{3850}{\pi \times h}} = \sqrt{\frac{3850 \times 7}{22 \times 100}} = 1.75 \times 7 = 3.5 \text{ cm}$

$$\therefore \text{ Diameter} = 2(\text{radius}) = 2 \times 3.5 = 7 \text{ cm}$$
swer:

meter = 14 m

filus = $\frac{14}{2} = 7 m$

ght = 5 m

∴ Diameter =2(radius) = $2 \times 3.5 = 7$ cm

Q6.

Answer:

Diameter = 14 m

Radius
$$=$$
 $\frac{14}{2}$ $=$ $7 m$

∴ Area of the metal sheet required = total surface area

$$=2\pi\mathbf{r}(\mathbf{h}+\mathbf{r})$$

$$=2 imesrac{22}{7} imes7\left(5+7
ight)m^2$$

$$= 44 \times 12 \ m^2$$

$$=528\ m^2$$

Q7.

Answer:

Circumference of the base = 88 cm

Height = 60 cm

Area of the curved surface $= circumference \times height = 88 \times 60 = 5280 \ cm^2$

Circumference
$$=2\pi r=88~cm$$

Then radius=
$$r=\frac{66}{2\pi}=\frac{68\times 1}{2\times 22}=14~cm$$

Then radius= $r=\frac{88}{2\pi}=\frac{88\times7}{2\times22}=14~cm$ \therefore Volume= $\pi r^2 h=\frac{22}{7}\times14\times14\times60=36960~cm^3$

Q8.

Answer:

 $\begin{aligned} \text{Length} &= \text{height} = 14 \text{ m} \\ \text{Lateral surface area} &= 2\pi \text{rh} = 220 \text{ m}^2 \\ \text{Radius} &= r = \frac{220}{2\pi \text{h}} = \frac{220 \times 7}{2 \times 22 \times 14} = \frac{10}{4} = 2.5 \text{ m} \\ &\therefore \text{Volume} &= \pi \text{r}^2 \text{h} = \frac{22}{7} \times 2.5 \times 2.5 \times 14 = 275 \text{ m}^3 \end{aligned}$

Q9.

Answer:

Height = 8 cm

Volume =
$$\pi r^2 h = 1232 \text{ cm}^3$$

Now, radius = $r = \sqrt{\frac{1232}{\pi h}} = \sqrt{\frac{1232 \times 7}{22 \times 8}} = \sqrt{49} = 7cm$

Also, curved surface area $=2\pi rh=2 imes rac{22}{7} imes 7 imes 8=352$ cm^2

∴ Total surface area

$$= 2\pi r \left(h + r \right) = \left(2 \times \frac{22}{7} \times 7 \times 8 \right) + \left(2 \times \frac{22}{7} \times (7)^2 \right) = 352 + 308 = 660 \text{ cm}^2$$

Q10.

Answer:

We have:
$$rac{radius}{height}=rac{7}{2}$$
 i.e., $m{r}=rac{7}{2}\,m{h}$

Now, volume
$$=\pi \mathbf{r}^2 \mathbf{h} = \pi \left(\frac{7}{2} \, \mathbf{h}\right)^2 \mathbf{h} = 8316 \, \, \mathbf{cm}^3$$
 $\Rightarrow \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times h^3 = 8316$

$$\Rightarrow h^3 = \frac{\frac{2}{8316 \times 2}}{\frac{11 \times 7}{11 \times 7}} = 108 \times 2 = 216$$

$$\Rightarrow h = \sqrt[3]{216} = 6~cm$$

Then
$$r=rac{7}{2}\,h=rac{7}{2} imes 6=21\,cm$$

$$\therefore$$
 Total surface area $=2\pi r \left(h+r
ight)=2 imes rac{22}{7} imes 21 imes \left(6+21
ight)=3564~{
m cm}^2$

Q11.

Answer:

Curved surface area $=2\pi rh=4400~cm^2$

Circumference $=2\pi r=110~\mathrm{cm}$

Now, height=
$$h = \frac{curved\ sur face\ area}{circumference} = \frac{4400}{110} = 40\ cm$$

Also, radius,
$$r = \frac{4400}{2\pi h} = \frac{4400 \times 7}{2 \times 22 \times 40} = \frac{35}{2}$$

$$\text{:: Volume} = \pi r^2 h = \tfrac{22}{7} \times \tfrac{35}{2} \times \tfrac{35}{2} \times 40 = 22 \times 5 \times 35 \times 10 = 38500 \text{ cm}^3$$

Q12.

Answer:

For the cubic pack: Length of the side, a = 5 cm Height = 14 cm $Volume = a^2h = 5 \times 5 \times 14 = 350 \ cm^3$

For the cylindrical pack: Base radius = r = 3.5 cm

Height = 12 cm

Volume= $\pi r^2 h = \frac{22}{7} \times 3.5 \times 3.5 \times 12 = 462 \text{ cm}^3$

We can see that the pack with a circular base has a greater capacity than the pack with a square base. Also, difference in volume= $462-350=112\ cm^3$

Q13.

Answer:

Diameter = 48 cm Radius = 24 cm = 0.24 m Height = 7 m

Now, we have:

Lateral surface area of one pillar= $\pi dh = \frac{22}{7} \times 0.48 \times 7 = 10.56 \text{ m}^2$ Surface area to be painted = total surface area of 15 pillars = $10.56 \times 15 = 158.4 \text{ m}^2$ \therefore Total cost= Rs (158.4×2.5) = Rs 396

Q14.

Answer:

Volume of the rectangular vessel $=22\times16\times14=4928~cm$ Radius of the cylindrical vessel = 8 cm

As the water is poured from the rectangular vessel to the cylindrical vessel, we have:

Volume of the rectangular vessel = volume of the cylindrical vessel

:. Height of the water in the cylindrical vessel
$$=$$
 $\frac{volume}{\pi t^2}$ $=$ $\frac{4928 \times 7}{22 \times 8 \times 8}$ $=$ $\frac{28 \times 7}{8}$ $=$ $\frac{49}{2}$ $=$ 24.5 cm

015.

Answer:

Diameter of the given wire = 1 cm

Radius = 0.5 cm

Length = 11 cm

Now, volume= $\pi \mathbf{r}^2 \mathbf{h} = \frac{22}{7} \times 0.5 \times 0.5 \times 11 = 8.643 \ cm^3$

The volumes of the two cylinders would be the same.

Now, diameter of the new wire = 1 mm = 0.1 cm

Radius = 0.05 cm

$$\therefore$$
 New length $=\frac{\text{volume}}{\pi \text{r}^2}=\frac{8.643\times 7}{22\times 0.05\times 0.05}=1100.\,02~\text{cm}\cong$ 11 m $^{\circ}$

Q16.

Answer:

Length of the edge, a = 2.2 cm

Volume of the cube = $a^3 = (2.2)^3 = 10.648 \text{ cm}^3$

Volume of the wire= $\pi r^2 h$

Radius = 1 mm = 0.1 cm

As volume of cube = volume of wire, we have:

$$h = \frac{vohume}{\pi r^2} = \frac{10.648 \times 7}{22 \times 0.1 \times 0.1} = 338.8 \text{ cm}$$

Diameter = 7 m

Radius = 3.5 m

Depth = 20 m

Volume of the earth dug out $=\pi r^2 h = \frac{22}{7} \times 3.5 \times 3.5 \times 20 = 770~m^3$

Volume of the earth piled upon the given plot= $28 imes 11 imes h = 770 \ m^3$

$$h = \frac{770}{28 \times 11} = \frac{70}{28} = 2.5 m$$

Q18.

Answer:

Inner diameter = 14 m

i.e., radius = 7 m

Depth = 12 m

Volume of the earth dug out= $\pi r^2 h = \frac{22}{7} \times 7 \times 7 \times 12 = 1848~m^3$

Width of embankment = 7 m

Now, total radius = 7 + 7 = 14 m

 $\label{eq:Volume} \mbox{Volume of the embankment} = \mbox{total volume} \ - \ \mbox{inner volume}$

$$=\pi {
m r_o}^2 {
m h} - \pi {
m r_i}^2 {
m h} = \pi {
m h} \left({
m r_o}^2 - {
m r_i}^2
ight)$$

$$=\frac{22}{7} h (14^2 - 7^2) = \frac{22}{7} h (196 - 49)$$

$$=\frac{22}{7}\,\mathbf{h} \times 147 = 21 \times 22\mathbf{h}$$

$$=462 \times h m^3$$

Since volume of embankment = volume of earth dug out, we have:

$$1848 = 462 \, h$$

$$\Rightarrow h = \frac{1848}{462} = 4 \; m$$

: Height of the embankment = 4 m

Q19.

Answer:

Diameter = 84 cm

i.e., radius = 42 cm

Length = 1 m = 100 cm

Now, lateral surface area $= 2\pi rh = 2 \times \frac{22}{7} \times 42 \times 100 = 26400 \text{ cm}^2$

: Area of the road

= lateral surface area \times no. of rotations = $26400 \times 750 = 19800000 \text{ cm}^2 = 1980 \text{ m}^2$

Q20.

Answer:

Thickness of the cylinder = 1.5 cm

External diameter = 12 cm

i.e., radius = 6 cm

also, internal radius = 4.5 cm

Height = 84 cm

Now, we have the following:

Total volume= $\pi r^2 h = \frac{22}{7} \times 6 \times 6 \times 84 = 9504 \text{ cm}^3$

Inner volume = $\pi r^2 h = \frac{22}{7} \times 4.5 \times 4.5 \times 84 = 5346 \text{ cm}^3$

Now, volume of the metal = total volume – inner volume $= 9504 - 5346 = 4158 \ cm^3$

 \therefore Weight of iron $=4158 \times 7.5=31185~\mathrm{g}=31.185~\mathrm{kg}$ [Given: $1~\mathrm{cm}^3=7.5\mathrm{g}$]

Q21.

Now, we have the following:

Total volume= $\pi r^2 h = \frac{22}{7} \times 7 \times 7 \times 100 = 15400 \ cm^3$

Volume of the tube = total volume - inner volume = $15400 - 11314.286 = 4085.714 \ cm^3$

Density of the tube = 7.7 g/cm^3

 \therefore Weight of the tube = volume \times density = $4085.714 \times 7.7 = 31459.9978$ g = 31.459 kg

Volume and Surface Area of Solids Ex 20.B

Name of the solid	Figure	Volume	Laterial/Curved Surface Area	Total Surface Area
Cuboid	b l	lbh	2lh + 2bh or 2h(l+b)	2lh+2bh+ <mark>2lb</mark> or 2(lh+bh+lb)
Cube	aaa	a ³	4a²	4a²+2a² or 6a²
Right circular cylinder	h	$\pi \mathrm{r}^2 \mathrm{h}$	2πrh	$2\pi rh + \frac{2\pi r^2}{or}$ or $2\pi r(h+r)$
Right circular cone	h	$\frac{1}{3}\pi r^2 h$	πrl	$\pi r l + \pi r^2$ or $\pi r (l+r)$
Sphere	r	$\frac{4}{3}\pi r^3$	$4\pi r^2$	$4\pi { m r}^2$
Hemisphere	r	$\frac{2}{3}\pi r^3$	$2\pi { m r}^2$	$2\pi r^2 + \pi r^2$ or $3\pi r^2$

Q1.

Answer:

```
Volume of a cuboid = (Length \times Breadth \times Height) cubic units Total surface area = 2(lb+bh+lh) sq units Lateral surface area = [2(l+b) \times h] sq units (i) Length = 22 cm, breadth = 12 cm, height = 7.5 cm Volume = (Length \times Breadth \times Height) = (22 \times 12 \times 7.5) = 1980 cm³ Total surface area = 2(lb+bh+lh) = 2[(22 \times 12) + (22 \times 7.5) + (12 \times 7.5)] = 2[264+165+90] = 1038 cm² Lateral surface area = [2(l+b) \times h] = 2(22+12) \times 7.5 = 510 cm² (ii) Length = 15 m, breadth = 6 m, height = 9 dm = 0.9 m Volume = (Length \times Breadth \times Height) = (15 \times 6 \times 0.9) = 81 m³ Total surface area = 2(lb+bh+lh) = 2[(15 \times 6) + (15 \times 0.9) + (6 \times 0.9)] = 2[90+13.5+5.4] = 217.8 m²
```

Lateral surface area = $[2(l+b) \times h] = 2(15+6) \times 0.9 = 37.8 \ m^2$

```
(iii) Length = 24 m, breadth = 25 cm = 0.25 m, height = 6 m
 Volume = (Length \times Breadth \times Height) = (24 \times 0.25 \times 6) = 36 \text{ m}^3
 Total surface area = 2(lb + bh + lh)
 = 2[(24 \times 0.25) + (24 \times 6) + (0.25 \times 6)] = 2[6 + 144 + 1.5] = 303 \, m^2
 Lateral surface area =[2(l+b)	imes h]=2(24+0.25)	imes 6=291~m^2
 (iv) Length = 48 cm = 0.48 m, breadth = 6 dm = 0.6 m, height = 1 m
 Volume = (Length \times Breadth \times Height) = (0.48 \times 0.6 \times 1) = 0.288 \, m^3
 Total surface area
 =2(lb+bh+lh)=2[(0.48\times0.6)+(0.48\times1)+(0.6\times1)]=2[0.288+0.48+0.6]=2.736
 Lateral surface area = [2(l+b) \times h] = 2(0.48+0.6) \times 1 = 2.16 \ m^2
Q2.
Answer:
1\,m\,=\,100\,cm
Therefore, dimensions of the tank are:
2\ m\ 75\ cm 	imes\ 1\ m\ 80\ cm 	imes\ 1\ m\ 40\ cm = 275\ cm\ 	imes\ 180\ cm\ 	imes\ 140\ cm
\therefore Volume = Length~\times~Breadth\times~Height~=~275\times180\times140=6930000~cm^3
Also, 1000cm^3=1L
\therefore Volume = rac{6930000}{1000} = 6930~L
Q3.
Answer:
1m = 100cm
\therefore Dimensions of the iron piece = 105~cm \times 70~cm \times 1.5~cm
Total volume of the piece of iron = (105 \times 70 \times 1.5) = 11025 \ cm^3
1 cm<sup>3</sup> measures 8 gms.
::Weight of the piece
=11025 \times 8 = 88200 \ g = \frac{88200}{1000} = 88.2 \ kg
Q4.
Answer:
1\,cm\,=\,0.01\,m
Volume of the gravel used = Area \times Height = (3750)
Cost of the gravel is Rs 6.40 per cubic meter
:. Total cost = (37.5 \times 6.4) = Rs 240
Q5.
 Answer:
 Total volume of the hall = (16 \times 12.5)
                                            (4.5) = 900 \, m^3
 It is given that 3.6 m^3 of air is required for each person.
 The total number of persons that can be accommodated in that hall
 = \frac{\text{Total volume}}{\text{Volume required by each person}}
```

=250 people

Q6.

Answer:

Volume of the cardboard box = $\left(120 \times 72 \times 54\right) = 466560~cm^3$

Volume of each bar of soap= $(6 \times 4.5 \times 4) = 108 \ cm^3$

Total number of bars of soap that can be accommodated in that box

$$=rac{ ext{Volume of the box}}{ ext{Volume of each soap}}=rac{466560}{108}=4320 ext{ bars}$$

Q7.

Answer:

Volume occupied by a single matchbox= $\left(4 \times 2.5 \times 1.5\right) = 15 \, \text{cm}^3$

Volume of a packet containing 144 matchboxes = $\left(15 imes 144\right) = 2160~cm^3$

Volume of the carton = $(150 \times 84 \times 60) = 756000 \text{ cm}^3$

Total number of packets is a carton = $\frac{\text{Volume of the carton}}{\text{Volume of a packet}} = \frac{75600}{2160} = 350 \text{ packets}$

Q8.

Answer:

Total volume of the block = $\left(500 \times 70 \times 32\right) = 1120000 \ cm^3$

Total volume of each plank = $200 \times 25 \times 8 = 40000 \ cm^3 = 200 \times 25 \times 8 = 40000 \ cm^3$

: Total number of planks that can be made= $\frac{\text{Total volume of the block}}{\text{Volume of each plank}} = \frac{1120000}{40000} = 28 \, \text{planks}$

Q9.

Answer:

Volume of the brick $=25\times13.5\times6=2025~cm^3$ Volume of the wall $=800\times540\times33=14256000~cm^3$

Total number of bricks $= rac{ extbf{Volume}}{ extbf{Volume}} rac{ ext{of}}{ ext{the}} rac{ extbf{the}}{ ext{brick}} = rac{14256000}{2025} = 7040 ext{ bricks}$

Q10.

Volume of the wall= $1500 \times 30 \times 400 = 18000000 \ cm^3$ Total quantity of mortar $= rac{1}{12} imes 18000000 = 1500000 \ cm^3$ \therefore Volume of the bricks= 18000000-1500000=16500000 cm^3

Volume of a single brick= $22 \times 12.5 \times 7.5 = 2062.5 \ cm^3$

$$\text{ .. Total number of bricks} = \frac{\text{Total volume of the bricks}}{\text{Volume of a single brick}} = \frac{16500000}{2062.5} = 8000 \text{ bricks}$$

Q11.

Answer:

Volume of the cistern $= 11.2 \times 6 \times 5.8 = 389.76~m^3 = 389.76 \times 1000 = 389760$ litres

Area of the iron sheet required to make this cistern = Total surface area of the cistern $= 2(11.2 \times 6 + 11.2 \times 5.8 + 6 \times 5.8) = 2(67.2 + 64.96 + 34.8) = 333.92 \text{ cm}^2$

Q12.

Answer:

Volume of the block= $0.5 \ m^3$

We know:

$$\begin{array}{ll} 1~hectare~=~10000~m^2 \\ {\rm Thickness} = \frac{{\rm Volume}}{{\rm Area}} = \frac{0.5}{10000} =~0.00005~{\rm m} =~0.005~{\rm cm}~=~0.05~{\rm mm} \end{array}$$

Q13.

Answer:

Rainfall recorded = 5 cm = 0.05 m

Area of the field = 2 hectare = $\,2 \times 10000 \ m^2 \ = \ 20000 \ m^2$

Total rain over the field =

 $0.05 \times 20000 = 1000 \,\mathrm{m}^3$ Area of the field \times Height of the field

Q14.

Answer:

Area of the cross-section of river $=45 imes2=90~m^2$

Rate of flow=
$$3 \ km/hr = \frac{3 \times 1000}{60} = 50 \ \frac{m}{min}$$

Volume of water flowing through the cross-section in one minute $= 90 \times 50 = 4500~m^3$ per minute

015.

Answer:

Let the depth of the pit be d m.

 ${\rm Volume} \ = \ {\rm Length} \ \times \ {\rm width} \ \times \ {\rm depth} \ = \ 5 \ {\rm m} \ \times \ 3.5 \ {\rm m} \times \ d \ m$

But,

Given volume = 14 m³

$$\therefore$$
 Depth $=d=rac{ ext{volume}}{ ext{length} imes ext{width}}=rac{14}{5 imes3.5}=0.8 ext{ m}$ = 80 cm

Q16.

Answer:

Capacity of the water tank $= 576 \ litres = 0.576 \ m^3$ Width = 90 cm = 0.9 mDepth = 40 cm = 0.4 m

Length = $=\frac{\mathrm{capacity}}{\mathrm{width} \times \mathrm{depth}} = \frac{0.576}{0.9 \times 0.4} = 1.600~\mathrm{m}$

Q17.

Answer:

Volume of the beam $= 1.35 \ m^3$

Length = 5 m

Thickness = 36 cm = 0.36 m

Width = $=\frac{\text{volume}}{\text{thickness} \times \text{length}} = \frac{1.35}{5 \times 0.36} = 0.75 \text{ m} = 75 \text{ cm}$

Q18.

Answer:

 $\mbox{Volume} = \mbox{height} \times \mbox{area}$

Given:

Volume = 378 m^3

Area = 84 m²

$$\therefore$$
 Height $=\frac{\text{volume}}{\text{area}}=\frac{378}{84}=4.5 \text{ m}$

Q19.

Answer:

Length of the pool = 260 m Width of the pool = 140 m

Volume of water in the pool = 54600 cubic metres

Q20.

Answer:

External length = 60 cm

External width = 45 cm

External height = 32 cm

External volume of the box= $60 \times 45 \times 32 = 86400 \text{ cm}^3$

Thickness of wood = 2.5 cm

$$\therefore$$
 Internal length $=60-(2.5 imes2)=55$ cm

Internal width
$$=45-\mbox{(2.5}\times\mbox{2)}=40~\mbox{cm}$$

Internal height
$$=32-(2.5\times2)=27$$
 cm

Internal volume of the box= $55 \times 40 \times 27 = 59400 \, \mathrm{cm}^3$

Volume of wood = External volume - Internal volume = $86400 - 59400 = 27000 \, \mathrm{cm}^3$

Q21.

External length = 36 cm

External width = 25 cm

External height = 16.5 cm

External volume of the box= $36 \times 25 \times 16.5 = 14850 \, \mathrm{cm}^3$

Thickness of iron = 1.5 cm

 \therefore Internal length =36-(1.5 imes2)=33 cm

Internal width $=25-(1.5\times2)=22$ cm

Internal height $=16.5-\ 1.5=15\ \text{cm}$ (as the box is open)

Internal volume of the box = $33 \times 22 \times 15 = 10890 \text{ cm}^3$

Volume of iron = External volume – Internal volume = $14850 - 10890 = 3960 \, \mathrm{cm}^3$

Given

 $1 \, \mathrm{cm}^3$ of iron $= 8.5 \, \mathrm{grams}$

Total weight of the box $=3960 \times 8.5 = 33660 \text{ grams} = 33.66 \text{ kilograms}$

Q22.

Answer:

External length = 56 cm

External width = 39 cm

External height = 30 cm

External volume of the box= $56 \times 39 \times 30 = 65520 \text{ cm}^3$

Thickness of wood = 3 cm

 \therefore Internal length $= 56 - (3 \times 2) = 50$ cm

Internal width $=39-(3\times2)=33$ cm

Internal height = $30 - (3 \times 2) = 24$ cm

Capacity of the box = Internal volume of the box $=50 imes 33 imes 24 = 39600 ext{ cm}^3$

Volume of wood = External volume – Internal volume = $65520-39600=25920~\mathrm{cm}^3$

Q23.

Answer:

External length = 62 cm

External width = 30 cm

External height = 18 cm

 \therefore External volume of the box= $62 \times 30 \times 18 = 33480 \ cm^3$

Thickness of the wood = 2 cm

Now, internal length $=62-(2\times2)=58$ cm

Internal width $=30-(2\times2)=26$ cm

Internal height $= 18 - (2 \times 2) = 14$ cm

 \div Capacity of the box = internal volume of the box= (58 \times 26 \times 14) $\emph{cm}^3 = 21112~\emph{cm}^3$

Q24.

External length = 80 cm External width = 65 cm

External height = 45 cm

 \therefore External volume of the box= $80 \times 65 \times 45 = 234000 \ cm^3$

Thickness of the wood = 2.5 cm

Then internal length= $80 - (2.5 \times 2) = 75$ cm Internal width $=65-(2.5\times2)=60$ cm Internal height $=45-(2.5\times2)=40$ cm

Capacity of the box = internal volume of the box= $(75 \times 60 \times 40)$ $cm^3 = 180000$ cm^3

Volume of the wood = external volume – internal volume= $(234000-180000) \ cm^3 = 54000 \ cm^3$

It is given that 100 cm³ of wood weighs 8 g.

: Weight of the wood $=\frac{54000}{100}\times 8~g=4320~g=4.32~kg$

Q25.

Answer:

(i) Length of the edge of the cube = a = 7 m

Now, we have the following:

Volume= $a^3 = 7^3 = 343 \ m^3$

Lateral surface area $=4a^2=4\times7\times7=196~m^2$

Total Surface area $=6a^2=6\times7\times7=294~m^2$

(ii) Length of the edge of the cube = a = 5.6 cm

Now, we have the following:

Volume = $a^3 = 5.6^3 = 175.616 \ cm^3$

Lateral surface area $=4a^2=4\times5.6\times5.6=125.44$ cm²

Total Surface area = $6a^2 = 6 \times 5.6 \times 5.6 = 188.16 \text{ cm}^2$

(iii) Length of the edge of the cube = a = 8 dm 5 cm = 85 cm

Now, we have the following:

Volume = $a^3 = 85^3 = 614125 \ cm^3$

Lateral surface area = $4a^2 = 4 \times 85 \times 85 = 28900 \ cm^2$

Total Surface area = $6a^2 = 6 \times 85 \times 85 = 43350$ cm²

Q26.

Answer:

Let a be the length of the edge of the cube

Total surface area $=6a^2=1176\ cm^2$

$$\Rightarrow$$
 $a=\sqrt{\frac{1176}{6}}=\sqrt{196}=14$ cm

$$\therefore \text{Volume} = a^3 = 14^3 = 2744 \ cm^3$$

Q27.

Answer:

Let a be the length of the edge of the cube.

Then volume $= a^3 = 729 \ cm^3$

Also,
$$a = \sqrt[3]{729} = 9 \ cm$$

$$\therefore$$
 Surface area $=6a^2=6 imes9 imes9=486~cm^2$

1 m = 100 cm

Volume of the original block $= 225 imes 150 imes 27 = 911250 \ cm^3$

Length of the edge of one cube = 45 cm

Then volume of one cube $=45^3=91125\ cm^3$

: Total number of blocks that can be cast $=\frac{\text{volume}}{\text{volume}} \frac{\text{of the block}}{\text{vol one cube}} = \frac{911250}{91125} = 10$

Q29.

Answer:

Let a be the length of the edge of a cube.

Volume of the cube $=a^3$

Total surface area $=6a^2$

If the length is doubled, then the new length becomes 2a.

Now, new volume $= (2a)^3 = 8a^3$

Also, new surface area== $6(2a)^2 = 6 \times 4a^2 = 24a^2$

.: The volume is increased by a factor of 8, while the surface area increases by a factor of 4.

Q30.

Answer:

Cost of wood = Rs $500/m^3$

Cost of the given block = Rs 256

: Volume of the given block = $a^3 = \frac{256}{500} = 0.512 \, m^3 \, = \, 512000 \, cm^3$

Also, length of its edge = a = $\sqrt[3]{0.512} = 0.8~m$ = 80 cm

Volume and Surface Area of Solids Ex 20.C

Name of the solid	Figure	Volume	Laterial/Curved Surface Area	Total Surface Area
Cuboid	b l	lbh	2lh + 2bh or 2h(l+b)	2lh+2bh+ <mark>2lb</mark> or 2(lh+bh+lb)
Cube	aaa	a ³	$4a^2$	4a²+ <mark>2a²</mark> or 6a²
Right circular cylinder	h	$\pi { m r}^2 { m h}$	2πrh	2πrh + <mark>2πr²</mark> or 2πr(h+r)
Right circular cone	h	$\frac{1}{3}\pi r^2 h$	π rl	πrl + πr² or πr(l+r)
Sphere		$\frac{4}{3}\pi r^3$	$4\pi r^2$	$4\pi r^2$
Hemisphere	r	$\frac{2}{3}\pi r^{8}$	$2\pi r^2$	$2\pi r^2 + \pi r^2$ or $3\pi r^2$

Q1.

Answer:

(b) 17

Length of the diagonal of a cuboid $=\sqrt{l^2+b^2+h^2}$

Q2.

Answer:

(b) $125 \ cm^3$

Total surface area $=6a^2=150\ cm^2$, where a is the length of the edge of the cube. $\Rightarrow 6a^2 = 150$

$$\Rightarrow \pmb{a} = \sqrt{\frac{150}{6}} = \sqrt{25} = 5 \ \pmb{cm}$$

$$\therefore \ \text{Volume} = \pmb{a}^3 = 5^3 = 125 \ \pmb{cm}^3$$

(c) $294 \ cm^2$

$$\begin{array}{l} \text{Volume} = a^3 = 343 \ cm^3 \\ \Rightarrow a = \sqrt[3]{343} = 7 \ cm \\ \therefore \text{ Total surface area} = 6a^2 = 6 \times 7 \times 7 = 294 \ cm^2 \end{array}$$

Q4.

Answer:

(c) $294 \ cm^2$

$$\begin{array}{l} \text{Volume} = a^3 = 343~cm^3 \\ \Rightarrow a = \sqrt[3]{343} = 7~cm \\ \therefore \text{ Total surface area} = 6a^2 = 6\times7\times7 = 294~cm^2 \end{array}$$

Q5.

Answer:

(c) 6400

Volume of each brick= $25 \times 11.25 \times 6 = 1687.5 \ cm^3$ Volume of the wall= $800 \times 600 \times 22.5 = 10800000~cm^3$: No. of bricks = $\frac{10800000}{1687.5} = 6400$

Q6.

Answer:

(c) 1000

Volume of the smaller cube = $(10 cm)^3 = 1000 cm^3$ volume of the smaller cube= $(10\ cm)^3 = 1000\ cm^3$ Volume of box= $(100\ cm)^3 = 1000000\ cm^3$ [1 m = 100 cm] \therefore Total no. of cubes = $\frac{100\times100\times100}{10\times10\times10} = 1000$ Q7. Answer: (a) $48\ cm^3$

Q7.

Let a be the length of the smallest edge.
Then the edges are in the production of the smallest edge. Then the edges are in the proportion a: 2a: 3a.

Now, surface area $= 2(a \times 2a + a \times 3a + 2a \times 3a) = 2(2a^2 + 3a^2 + 6a^2) = 22a^2 = 88 \ cm^2$

$$\Rightarrow$$
 $a=\sqrt{rac{88}{22}}=\sqrt{4}=2$

Also, 2a = 4 and 3a = 6

 \therefore Volume= $a \times 2a \times 3a = 2 \times 4 \times 6 = 48 \ cm^3$

Q8.

Answer:

(b) 1:9

$$\frac{\text{Volume } 1}{\text{Volume } 2} = \frac{1}{27} = \frac{a^2}{b^2}$$

$$\Rightarrow a = \frac{b}{\sqrt[3]{27}} = \frac{b}{3} \text{ or } b = 3a \text{ or } \frac{b}{a} = 3$$

Now,
$$\frac{\text{surface area 1}}{\text{surface area 2}} = \frac{6a^2}{6b^2} = \frac{a^2}{b^2} = \frac{\left(b/3\right)^2}{b^2} = \frac{1}{9}$$

 \therefore Ratio of the surface areas = 1:9

Q9.

Answer:

(c) 164 sq cm

Surface area $= 2(10 \times 4 + 10 \times 3 + 4 \times 3) = 2(40 + 30 + 12) = 164 \text{ cm}^2$

Q10.

Answer:

(c) 36 kg

Volume of the iron beam $= 9 \times 0.4 \times 0.2 = 0.72 \ m^3$ \therefore Weight= $0.72 \times 50 = 36~kg$

Q11.

Answer:

(a) 2 m

 $42000 L = 42 m^3$

Volume = lbh

∴ Weight=
$$0.72 \times 50 = 36 \ kg$$

Q11.

Answer:

(a) 2 m

 $42000 \ L = 42 \ m^3$

Volume = lbh

∴ Height $(h) = \frac{42}{b} = \frac{6}{6 \times 0.5} = 2 \ m$

Q12.

Answer:

(b) 88

Volume of the room= $10 \times 8 \times 3.3 = 264 \ m^3$

One person requires 3 m³.

Q12.

Answer:

(b) 88

Volume of the room = $10 \times 8 \times 3.3 = 264~m^3$

One person requires 3 m³

 \therefore Total no. of people that can be accommodated $=\frac{264}{3}=88$

Q13.

Answer:

(a) 30000

 $\mathbf{Volume} = 3 \times 2 \times 5 = 30 \ m^3 = 30000 \ \mathbf{L}$

Q14.

Answer:

(b) $1390 \ cm^2$

Surface area = $2(25 \times 15 + 15 \times 8 + 25 \times 8) = 2(375 + 120 + 200) = 1390 \text{ cm}^2$

Q15.

Answer:

(d) $64 \ cm^2$

Diagonal of the cube $= a\sqrt{3} = 4\sqrt{3} \ cm$

$$\therefore \text{Volume}{=}\,a^3=4^3=64~cm^3$$

Q16.

(b) 486 sq cm

Diagonal
$$=\sqrt{3}a~cm~=~9\sqrt{3}cm$$
 i.e., a = 9

 \therefore Total surface area $=6a^2=6 imes81=486~cm^2$

Q17.

Answer:

(d) If each side of the cube is doubled, its volume becomes 8 times the original volume.

Let the original side be a units.

Then original volume = a^3 cubic units

Now, new side = 2a units

Then new volume = $(2a)^3$ sq units = 8 a^3 cubic units

Thus, the volume becomes 8 times the original volume.

Q18.

Answer:

(b) becomes 4 times.

Let the side of the cube be a units.

Surface area = $6a^2$ sq units

Now, new side = 2a units

Now, new side =
$$2a$$
 units

New surface area = $6(2a^2)$ sq units = $24a^2$ sq units.

Thus, the surface area becomes 4 times the original area.

Q19.

Answer:

(a) 12 cm

Total volume = $6^3 + 8^3 + 10^3 = 216 + 512 + 1000 = 1728$ cm³
 \therefore Edge of the new cube = $\sqrt[3]{1728} = 12$ cm

Q20.

Answer:

(d) 625 cm³

Length of the cuboid so formed = 25 cm

Breadth of the cuboid = 5 cm

Height of the cuboid = 5 cm

 \therefore Volume of cuboid = $25 \times 5 \times 5 = 625$ cm³

:. Volume of cuboid $= 25 \times 5 \times 5 = 625 \ cm^3$

Q21.

Answer:

(d) 44 m^3

Diameter = 2 m

Radius = 1 m

Height = 14 m

∴ Volume = $\pi r^2 h = \frac{22}{7} \times 1 \times 1 \times 14 = 44 \text{ m}^3$

Q22.

(b) 12 m

Diameter = 14 m

Radius = 7 m

Volume = 1848 m^3

Now, volume = $\pi \mathbf{r}^2 \mathbf{h} = \frac{22}{7} \times 7 \times 7 \times \mathbf{h} = 1848 \, \mathbf{m}^3$

$$\therefore$$
 h = $\frac{1848}{22 \times 7}$ = 12 **m**

Q23.

Answer:

(c) 4:3

Here,

Q24.

Answer:

(d) 640

Q24.

Answer:

(d) 640

Total no. of coins =
$$\frac{\text{volume of cylinder}}{\text{volume of each coin}} = \frac{\pi \times 3 \times 3 \times 8}{\pi \times 0.75 \times 0.75 \times 0.2} = 640$$

Q25.

Answer:

(b) 84 m

Length = $\frac{\text{volume}}{\pi r^3 2} = \frac{66 \times 7}{22 \times 0.05 \times 0.05} = 8400 \text{ cm} = 84 \text{ m}$

Q26.

Answer:

(a) 1100 cm³

Volume = $\pi \mathbf{r}^2 \mathbf{h} = \frac{22}{7} \times 5 \times 5 \times 14 = 1100 \text{ cm}^3$

Q25.

Answer:

(b) 84 m

Length =
$$\frac{\text{volume}}{\pi r^2 2} = \frac{66 \times 7}{22 \times 0.05 \times 0.05} = 8400 \text{ cm} = 84 \text{ m}$$

Q26.

Answer:

(a) 1100 cm³

(a) 1100 cm³ Volume=
$$\pi \mathbf{r}^2 \mathbf{h} = \frac{22}{7} \times 5 \times 5 \times 14 = 1100 \text{ cm}^3$$

Q27.

Answer:

(a) 1837 cm²

Diameter = 7 cm

Radius =3.5 cm

Height = 80 cm

$$\therefore$$
 Total surface area $=2\pi r \Big(r+h\Big)=2 imes rac{22}{7} imes 3.5 \Big(3.5+80\Big)=22 \Big(83.5\Big)=1837 \ {
m cm}^2$

Q28.

Answer:

(b) 396 cm³

Here, curved surface area $= 2\pi rh = 264 \ cm^3$

$$\Rightarrow r = \frac{264 \times 7}{2 \times 22 \times 14} = 3 \ cm$$

$$\therefore$$
 Volume = $\pi r^2 h = \frac{22}{7} \times 3 \times 3 \times 14 = 396 \text{ cm}^3$

Q29.

(a) 770 cm³

Diameter = 14 cm

Radius = 7 cm

$$\Rightarrow h = \frac{220 \times 7}{2 \times 22 \times 7} = 5 \text{ cm}$$

Now, curved surface area =
$$2\pi rh = 220 \text{ cm}^2$$

 $\Rightarrow h = \frac{220 \times 7}{2 \times 22 \times 7} = 5 \text{ cm}$
 $\therefore \text{ Volume} = \pi r^2 h = \frac{22}{7} \times 7 \times 7 \times 5 = 770 \text{ cm}^3$

Q30.

Answer:

(c) 20:27

We have the following:

$$\frac{r_1}{r_2} = \frac{1}{2}$$

$$\frac{h_1}{h_2} = \frac{5}{3}$$

$$\begin{aligned} & \frac{r_1}{r_2} = \frac{2}{3} \\ & \frac{h_1}{h_2} = \frac{5}{3} \\ & \therefore \frac{V_1}{V_2} = \frac{\pi r_1^2 h_1}{\pi r_2^2 h_2} = \frac{20}{27} \end{aligned}$$

