NCERT Solutions Class 11 Maths Chapter 10 Exercise 10.1

Question 1:

Draw a quadrilateral in the Cartesian plane, whose vertices are $(-4,5),(0,7),(5,-5)$ and $(-4,-2)$. Also, find its area.

Solution:

Let ABCD be the given quadrilateral with vertices $A(-4,5), B(0,7), C(5,-5)$ and $D(-4,-2)$. Then, by plotting $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D on the Cartesian plane and joining $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA , the given quadrilateral can be drawn as

To find the area of quadrilateral ABCD , we draw one diagonal, say AC .
Accordingly, $\operatorname{ar}(\square A B C D)=\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A C D)$
We know that the area of a triangles whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ and $\left(x_{3}, y_{3}\right)$ is $\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$

Therefore,

$$
\begin{aligned}
\operatorname{ar}(\triangle A B C) & =\frac{1}{2}|-4(7+5)+0(-5+5)+5(5-7)| \\
& =\frac{1}{2}|-48+0-10| \\
& =\frac{1}{2}|-58| \\
& =\frac{1}{2} \times 58 \\
& =29 \\
\operatorname{ar}(\triangle A C D) & =\frac{1}{2}|(-4)(-5+2)+5(-2-5)+(-4)(5+5)| \\
& =\frac{1}{2}|12-35-40| \\
& =\frac{1}{2}|-63| \\
& =\frac{1}{2} \times 63 \\
& =\frac{63}{2}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{ar}(\square A B C D) & =\operatorname{ar}(\triangle A B C)+\operatorname{ar}(\triangle A C D) \\
& =\left(29+\frac{63}{2}\right) \text { sq. unit } \\
& =\left(\frac{58+63}{2}\right) \text { sq. unit } \\
& =\frac{121}{2} \text { sq.unit }
\end{aligned}
$$

Question 2:

The base of an equilateral triangle with side $2 a$ lies along the y-axis such that the midpoint of the base is at the origin. Find vertices of the triangle.

Solution:

Let ABC be the given equilateral triangle with side $2 a$.
Accordingly, $A B=B C=C A=2 a$

Assume that base BC lies along the x-axis such that the mid-point of BC is at the origin. i.e., $B O=O C=a$, where O is the origin.

Now, it is clear that the coordinates of point $C(0, a)$, while the coordinates of point $B(0,-a)$.
It is known that the line joining a vertex of an equilateral triangle with the mid-point of its opposite side is perpendicular.
Hence, vertex A lies on the y-axis.

On applying Pythagoras theorem to $\triangle A O C$, we obtain

$$
\begin{aligned}
A C^{2} & =O A^{2}+O C^{2} \\
O A^{2} & =A C^{2}-O C^{2} \\
& =(2 a)^{2}+(a)^{2} \\
& =4 a^{2}-a^{2} \\
& =3 a^{2} \\
O A & = \pm \sqrt{3} a
\end{aligned}
$$

Therefore, coordinates of point $A(\pm \sqrt{3} a, 0)$
Thus, the vertices of the given equilateral triangle are $(0, a),(0,-a)$ and $(\sqrt{3} a, 0)$ or $(0, a),(0,-a)$ and $(-\sqrt{3} a, 0)$.

Question 3:

Find the distance between $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ when: (i) PQ is parallel to the y-axis, (ii) PQ is parallel to the x-axis

Solution:

The given points are $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$
(i) When PQ is parallel to the y-axis, $x_{1}=x_{2}$.

In this case, distance between P and $\mathrm{Q}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
P Q & =\sqrt{\left(y_{2}-y_{1}\right)^{2}} \\
& =\left|y_{2}-y_{1}\right|
\end{aligned}
$$

(ii) When PQ is parallel to the x-axis $y_{1}=y_{2}$

In this case, distance between P and $\mathrm{Q}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

$$
\begin{aligned}
P Q & =\sqrt{\left(x_{2}-x_{1}\right)^{2}} \\
& =\left|x_{2}-x_{1}\right|
\end{aligned}
$$

Question 4:

Find a point on the x-axis, which is equidistant from the points $(7,6)$ and $(3,4)$.

Solution:

Let $(a, 0)$ be the point on the X-axis that is equidistance from the points $(7,6)$ and $(3,4)$. Accordingly,

$$
\begin{aligned}
& \sqrt{(7-a)^{2}+(6-0)^{2}}=\sqrt{(3-a)^{2}+(4-0)^{2}} \\
\Rightarrow & \sqrt{49+a^{2}-14 a+36}=\sqrt{9+a^{2}-6 a+16} \\
\Rightarrow & \sqrt{a^{2}-14 a+85}=\sqrt{a^{2}-6 a+25}
\end{aligned}
$$

On squaring on both sides, we obtain

$$
\begin{aligned}
& a^{2}-14 a+85=a^{2}-6 a+25 \\
\Rightarrow & -14 a+6 a=25-85 \\
\Rightarrow & -8 a=60 \\
\Rightarrow & a=\frac{60}{8} \\
\Rightarrow & a=\frac{15}{2}
\end{aligned}
$$

Thus, the required point on the x-axis is $\left(\frac{15}{2}, 0\right)$

Question 5:

Find the slope of a line, which passes through the origin, and the mid-point of the segment joining the points $P(0,-4)$ and $B(8,0)$.

Solution:

The coordinates of the mid-point of the line segment joining the points
$P(0,-4)$ and $B(8,0)$ are $\left(\frac{0+8}{2}, \frac{-4+0}{2}\right)=(4,-2)$
It is known that the slope (m) of a non-vertical line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, x_{2} \neq x_{1}$
Therefore, the slope of the line passing through $(0,0)$ and $(4,-2)$ is

$$
\frac{-2-0}{4-0}=-\frac{2}{4}=-\frac{1}{2}
$$

Hence, the required slope of the line is $-\frac{1}{2}$

Question 6:

Without using the Pythagoras theorem, show that the points $(4,4),(3,5)$ and $(-1,-1)$ are vertices of a right-angled triangle.

Solution:

The vertices of the given triangles are $A(4,4), B(3,5)$ and $C(-1,-1)$.
It is known that the slope (m) of a non-vertical line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, x_{2} \neq x_{1}$
Therefore, slope of AB $\left(m_{1}\right)=\frac{5-4}{3-4}=-1$
Slope of BC ${ }^{\left.\left(m_{2}\right)=\frac{-1-5}{-1-3}=\frac{-6}{-4}=\frac{3}{2},{ }^{-1}\right)}$
Slope of $\mathrm{CA}\left(m_{3}\right)=\frac{4+1}{4+1}=\frac{5}{5}=1$

It is observed that $m_{1} m_{3}=-1$

This shows that line segments AB and CA are perpendicular to each other i.e., the given triangle is right-angled at $A(4,4)$.

Thus, the points $(4,4),(3,5)$ and $(-1,-1)$ are the vertices of a right-angled triangle.

Question 7:

Find the slope of the line, which makes an angle of 30° with the positive direction of y-axis measured anticlockwise.

Solution:

If a line makes an angle of 30° with positive direction of the y-axis measured anticlockwise, then the angle made by the line with the positive direction of the x-axis measured anticlockwise is $90^{\circ}+30^{\circ}=120^{\circ}$.

Thus, the slope of the given line is

$$
\begin{aligned}
\tan 120^{\circ} & =\tan \left(180^{\circ}-60^{\circ}\right) \\
& =-\tan 60^{\circ} \\
& =-\sqrt{ } 3
\end{aligned}
$$

Question 8:

Find the value of x for which the points $(x,-1),(2,1)$ and $(4,5)$ are collinear.

Solution:

If points $A(x,-1), B(2,1)$ and $C(4,5)$ are collinear, Then, Slope of $A B=$ Slope of $B C$

$$
\begin{aligned}
& \Rightarrow \frac{1-(-1)}{2-x}=\frac{5-1}{4-2} \\
& \Rightarrow \frac{1+1}{2-x}=\frac{4}{2} \\
& \Rightarrow \frac{2}{2-x}=2 \\
& \Rightarrow 2=4-2 x \\
& \Rightarrow 2 x=4-2 \\
& \Rightarrow x=1
\end{aligned}
$$

Thus, the required value of $x=1$

Question 9:

Without using distance formula, show that points $(-2,-1),(4,0),(3,3)$ and $(-3,2)$ are vertices of a parallelogram.

Solution:

Let points $(-2,-1),(4,0),(3,3)$ and $(-3,2)$ be respectively denoted by A, B, C and D.

Slope of $\mathrm{AB}=\frac{0+1}{4+2}=\frac{1}{6}$

Slope of $\mathrm{CD}=\frac{2-3}{-3-3}=\frac{-1}{-6}=\frac{1}{6}$
Therefore, Slope of AB = Slope of CD
Hence, AB and CD are parallel to each other.

Now,
Slope of BC $=\frac{3-0}{3-4}=\frac{3}{-1}=-3$
Slope of $\mathrm{AD}=\frac{2+1}{-3+2}=\frac{3}{-1}=-3$
Therefore, Slope of BC = Slope of AD
Hence, BC and AD are parallel to each other.
Therefore, both pairs of opposite side of quadrilateral ABCD are parallel. Hence, ABCD is a parallelogram.

Thus, points $(-2,-1),(4,0),(3,3)$ and $(-3,2)$ are the vertices of a parallelogram.

Question 10:

Find the angle between the x-axis and the line joining the points $(3,-1)$ and $(4,-2)$

Solution:

The slope of the line joining the points $(3,-1)$ and $(4,-2)$ is

$$
\begin{aligned}
m & =\frac{-2-(-1)}{4-3} \\
& =-2+1 \\
& =-1
\end{aligned}
$$

Now, the inclination (θ) of the line joining the points $(3,-1)$ and $(4,-2)$ is given by

$$
\begin{aligned}
\tan \theta & =-1 \\
\theta & =\left(90^{\circ}+45^{\circ}\right) \\
\theta & =135^{\circ}
\end{aligned}
$$

Thus, the angle between the x-axis and the line joining the points $(3,-1)$ and $(4,-2)$ is 135°.

Question 11:

The slope of a line is double of the slope of another line. If tangent of the angle between them is $\frac{1}{3}$, find the slopes of the lines.

Solution:

We know that if θ is the angle between the lines l_{1} and l_{2} with slopes m_{1} and m_{2} then

$$
\tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|
$$

It is given that the tangent of the angle between the two lines is $\overline{3}$ and slope of a line is double of the slope of another line.

Let m and $2 m$ be the slopes of the given lines
Therefore,

$$
\begin{array}{ll}
\frac{1}{3}=\left|\frac{2 m-m}{1+m(2 m)}\right| & \frac{1}{3}=\left|\frac{m-2 m}{1+m(2 m)}\right| \\
\frac{1}{3}=\left|\frac{m}{1+2 m^{2}}\right| & \frac{1}{3}=\left|\frac{-m}{1+2 m^{2}}\right| \\
\frac{1}{3}=\frac{m}{1+2 m^{2}} & \text { or }
\end{array} \frac{\frac{1}{3}=\frac{-m}{1+2 m^{2}}}{}
$$

Case I

$$
\begin{aligned}
& \frac{1}{3}=\frac{-m}{1+2 m^{2}} \\
& 1+2 m^{2}=-3 m \\
& 2 m^{2}+2 m+m+1=0 \\
& 2 m(m+1)+1(m+1)=0 \\
& (m+1)(2 m+1)=0 \\
& \Rightarrow m=-1 \text { or } m=-\frac{1}{2}
\end{aligned}
$$

If $m=-1$, then the slopes of the lines are -1 and -2 .
If $m=-\frac{1}{2}$, then the slopes of the lines are $-\frac{1}{2}$ and -1 .

Case II

$$
\begin{aligned}
& \frac{1}{3}=\frac{m}{1+2 m^{2}} \\
& 2 m^{2}+1=3 m \\
& 2 m^{2}-3 m+1=0 \\
& 2 m^{2}-2 m-m+1=0 \\
& 2 m(m-1)-1(m-1)=0 \\
& (2 m-1)(m-1)=0 \\
& \Rightarrow m=1 \text { or } m=\frac{1}{2}
\end{aligned}
$$

If $m=1$, then the slopes of the lines are 1 and 2.
If $m=\frac{1}{2}$, then the slopes of the lines are $\frac{1}{2}$ and 1 .
Hence, the slopes of the lines are -1 and -2 , or $-\frac{1}{2}$ and -1 , or 1 and 2 , or $\frac{1}{2}$ and 1 .

Question 12:

A line passes through $\left(x_{1}, y_{1}\right)$ and (h, k). If slope of the line is m, show that $k-y_{1}=m\left(h-x_{1}\right)$

Solution:

The slope of the line passing through $\left(x_{1}, y_{1}\right)$ and (h, k) is $\frac{k-y_{1}}{h-x_{1}}$
It is given that the slope of the line is m
Therefore,

$$
\begin{aligned}
& \frac{k-y_{1}}{h-x_{1}}=m \\
& k-y_{1}=m\left(h-x_{1}\right)
\end{aligned}
$$

Hence, $k-y_{1}=m\left(h-x_{1}\right)$ proved.

Question 13:

If three points $(h, 0),(a, b)$ and $(0, k)$ lie on a line, show that $\frac{a}{h}+\frac{b}{k}=1$

Solution:

If three points $A(h, 0), B(a, b)$ and $C(0, k)$ lie on a line, then Slope of AB = Slope of BC

$$
\begin{aligned}
\frac{b-0}{a-h} & =\frac{k-b}{0-a} \\
\frac{b}{a-h} & =\frac{k-b}{-a} \\
-a b & =(k-b)(a-h) \\
-a b & =k a-k h-a b+b h \\
k a+b h & =k h
\end{aligned}
$$

On dividing both sides by $k h$, we obtain

$$
\begin{gathered}
\frac{k a}{k h}+\frac{b h}{k h}=\frac{k h}{k h} \\
\frac{a}{h}+\frac{b}{k}=1
\end{gathered}
$$

Question 14:

Consider the given population and year graph. Find the slope of the line $A B$ and using it, find what will be the population in the year 2010 ?

Solution:

Since line AB passes through points $A(1985,92)$ and $B(1995,97)$, its slope is

$$
\begin{aligned}
\frac{97-92}{1995-1985} & =\frac{5}{10} \\
& =\frac{1}{2}
\end{aligned}
$$

Let y be the population in the year 2010 .
Then, according to the given graph, line AB must pass through point $C(2010, y)$. Therefore, Slope of $A B=$ Slope of $B C$

$$
\begin{aligned}
\frac{1}{2} & =\frac{y-97}{2010-1995} \\
\frac{1}{2} & =\frac{y-97}{15} \\
\frac{15}{2} & =y-97 \\
y & =7.5+97 \\
y & =104.5
\end{aligned}
$$

Thus, the slope of line AB is $\frac{1}{2}$, while in the year 2010, the population will be 104.5 crores.

