Answer each of the following questions either in one word or one sentence or as per requirement of the questions:
Question 1.
Define an arithmetic progression.
Solution:
A sequence $a_{1}, a_{2}, a_{3}, \ldots$, an is called an arithmetic progression of then exists a constant d
Such that $a_{2}-a_{1}=d, a_{3}-a_{2}=d$, \qquad $a_{n}-a_{n-1}=d$
and so on and dis called common difference

Question 2.

Write the common difference of an A.P. whose nth term is $a_{n}=3 n+7$.
Solution:
$a_{n}=3 n+7$
$\mathrm{a}_{1}=3 \times 1+7=3+7=10$
$\mathrm{a}_{2}=3 \times 2+7=6+7=13$
$a_{3}=3 \times 3+7=9+7=16$
$d=a_{3}-a_{2}$ or $a_{2}-a_{1}=16-13=3$ or $13-10=3$

Question 3.

Which term of the sequence $114,109,104, \ldots$ is the first negative term?

Solution:

Sequence is $114,109,104, \ldots$....
Let a_{n} term be negative
Then $a_{n}<0$
First term $(a)=114$, common difference
(d) $=109-114$
$\Rightarrow d=-5$
$\because a_{n}=a+(n-1) d$
$\Rightarrow a_{n}=114+(n-1)(-5)$
$\Rightarrow a_{n}=114-5 n+5$
$\Rightarrow a_{n}=119-5 n$
$\because a_{n}<0$
$\therefore 119-5 n<0 \Rightarrow 119<5 n$
$\Rightarrow 5 n>119 \Rightarrow n>\frac{119}{5} \Rightarrow n>24$
$\therefore 24$ th term will be negative

Question 4.

Write the value of $a_{30}-a_{10}$ for the A.P. $4,9,14,19$,

Solution:
In the A.P., 4, 9, 14, 19,
First term $(a)=4$
Common difference $(d)=9-4=5$
$\therefore a_{n}=a+(n-1) d$
$\Rightarrow a_{10}=4+(10-1) \times 5$
$=4+9 \times 5=4+45=49$
and $a_{30}=4+(30-1) \times 5$
$=4+29 \times 5=4+145=149$
$\therefore a_{30}-a_{10}=149-49=100$

Question 5.

Write 5th term from the end of the A.P. 3, 5, 7, 9,..., 201.
Solution:

$$
\text { A.P. is } 3,5,7,9, \ldots, 201
$$

Here first term $(a)=3$
Common difference $(d)=5-3=2$
$a_{n}=a+(n-1) d \Rightarrow 201=3+(n-1) \times 2$
$\Rightarrow 201=3+2 n-2 \Rightarrow 201+2-3=2 n$
$\Rightarrow 2 n=200 \Rightarrow n=100$
Now fifth term from the end will be a_{n-4}

$$
\begin{aligned}
\therefore & a_{n-4}=3+(n-4-1) \times 2 \\
& =3+(100-5) \times 2=3+95 \times 2
\end{aligned}
$$

$=3+190=193$
5th term from the end $=193$

Question 6.

Write the value of x for which $2 x, x+10$ and $3 x+2$ are in A.P.
Solution:
$\because 2 x, x+10$ and $3 x+2$ are in A.P.
$\therefore x+10=\frac{2 x+3 x+2}{2}$
$\Rightarrow 2(x+10)=5 x+2$
$\Rightarrow 2 x+20=5 x+2$
$\Rightarrow 5 x-2 x=20-2$
$\Rightarrow 3 x=18 \Rightarrow x=\frac{18}{3}=6$

Question 7.

Write the nth term of an A.P. the sum of whose n terms is S_{n}.
Solution:
Sum of n terms $=\mathrm{S}_{\mathrm{n}}$
Let a be the first term and d be the common difference $a_{n}=S_{n}-S_{n-1}$

Question 8.

Write the sum of first n odd natural numbers.
Solution:
The first n odd natural number are
$1,3,5,7, \ldots .$.
Here $a=1, d=3-1=2$
$\therefore \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{n}{2}[2 \times 1+(n-1) \times 2]$
$=\frac{n}{2}[2+2 n-2]=\frac{n}{2} \times 2 n=n^{2}$

Question 9.

Write the sum of first n even natural numbers.

Solution:

First n even natural numbers are
$2,4,6,8$,
Here $a=2, d=2$
$\therefore \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]$
$=\frac{n}{2}[2 \times 2+(n-1) \times 2]$
$=\frac{n}{2}[4+2 n-2]=\frac{n}{2}[2+2 n]$
$=\frac{n}{2} \times 2(1+n)=n(n+1)$

Question 10.
If the sum of n terms of an A.P. is $S_{n}=3 n^{2}+5 n$. Write its common difference.

Solution:

$$
\begin{aligned}
& \mathrm{S}_{n}=3 n^{2}+5 n \\
& \mathrm{~S}_{1} \text { or } a_{1}=3(1)^{2}+5(1)=3+5=8 \\
& \mathrm{~S}_{2}=3(2)^{2}+5(2)=12+10=22 \\
\therefore & a_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}=22-8=14 \\
\therefore & d=a_{1}=a_{1}=14-8=6
\end{aligned}
$$

Question 11.

Write the expression for the common difference of an A.P. Whose first term is a and nth term is b .
Solution:
First term of an A.P. = a
and $a_{n}=a+(n-1) d=b$.
Subtracting, $b-a=(n-1) d$
d = b-an-1
Question 12.
The first term of an A.P. is pand its common difference is q. Find its 10th term. [CBSE 2008]
Solution:
First term of an A.P. (a) = p
and common difference (d) $=\mathrm{q}$
$\mathrm{a}_{10}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$=p+(10-1) q=p+9 q$
Question 13.
For what value of p are $2 p+1,13,5 p-3$ are three consecutive terms of an A.P.? [CBSE 2009]

Solution:

$\because 2 p+1,13,5 p-3$ are consecutive terms of an A.P.
$\therefore c . d .=13-2 p-1,=5 p-3-13$
$\Rightarrow 5 p+2 p=13-1+13+3$
$\Rightarrow 7 p=28 \Rightarrow p=\frac{28}{7}=4$
Hence $p=4$

Question 14.

If $45, \mathrm{a}, 2$ are three consecutive terms of an A.P., then find the value of a.

Solution:

$\because \frac{4}{5}, a, 2$ are there consecutive terms of an A.P.
$\therefore c . d .=a-\frac{4}{5}=2-a$
$\Rightarrow a+a=2+\frac{4}{5} \Rightarrow 2 a=\frac{14}{5}$
$\Rightarrow a=\frac{14}{5 \times 2}=\frac{7}{5}$
$\therefore a=\frac{7}{5}$

Question 15.

If the sum of first p term of an A.P. is $a p^{2}+b p$, find its common difference.
Solution:
Sum of first p terms $=a p^{2}+b p$
$\therefore \mathrm{S}_{p}=a p^{2}+b p$
$\mathrm{S}_{p-1}=a(p-1)^{2}+b(p-1)$
$\therefore a_{p}=\mathrm{S}_{p}-\mathrm{S}_{p-1}$
$=a p^{2}+b k-a(p-1)^{2}-b \quad(p-1)$
$=a p^{2}+b k-a\left(p^{2}-2 p+1\right)-b p+b$
$=a p^{2}+b p-a p^{2}+2 a p-a-b p+b$
$=2 a p-a-b=2 a p-(a+b)$
Now $=2 a(1)-(a+b)$
$=2 a-a-b=a-b$
and $a_{2}=2 a(2)-a-b=4 a-a-b$
$=3 a-b$
$=d=a_{2}-a_{1}$
$d=3 a-b-a+b=2 a$
\therefore Commong difference $=2 a$

Question 16.

Find the 9th term from the end of the A.P. 5, 9, 13, ..., 185. [CBSE 2016]

Solution:

Here first term, $\mathrm{a}=5$
Common difference, $\mathrm{d}=9-5=4$
Last term, I = 185
nth term from the end $=I-(n-1) d$
9 th term from the end $=185-(9-1) 4=185-8 \times 4=185-32=153$

Question 17.

For what value of k will the consecutive terms $2 k+1,3 k+3$ and $5 k-1$ form on A.P.? [CBSE 2016]

Solution:

$(3 k+3)-(2 k+1)=(5 k-1)-(3 k+3)$
$3 k+3-2 k-1=5 k-1-3 k-3$
$\mathrm{k}+2=2 \mathrm{k}-4$
$2 k-k=2+4$
$\mathrm{k}=6$

Question 18.
Write the nth term of the A.P.
$1 \mathrm{~m}, 1+\mathrm{mm}, 1+2 \mathrm{~mm}$,
[CBSE 2017]
Solution:
Here, $a=\frac{1}{m}$

$$
\begin{aligned}
& d=\frac{1+2 m}{m}-\frac{1+m}{m}=\frac{1+2 m-1-m}{m}=\frac{m}{m}=1 \\
& \mathrm{~T}_{n}=a+(n-1) d \\
& =\frac{1}{m}+(n-1) \times 1=\frac{m(n-1)+1}{m}
\end{aligned}
$$

