RD SHARMA Solutions

Class 10 Maths
Chapter 7
Ex 7.4

1. Following are the lives in hours of 15 pieces of the components of aircraft engine. Find the median: 715, 724, 725, 710, 729, 745, 694, 699, 696, 712, 734, 728, 716, 705, 719

Soln:
Lives in hours of is pieces are $=715,724,725,710,729,745,694,699,696,712,734,728,716,705$, 719

Arrange the above data in ascending order $=694,696,699,705,710,712,715,716,719,721,725$, 728, 729, 734, 745
$\mathrm{N}=15$ (odd)
Median $=(\mathrm{N}+12)^{\text {th }}\left(\frac{\mathrm{N}+1}{2}\right){ }^{\text {th }}$ terms
$=(15+12)^{\text {th }}\left(\frac{15+1}{2}\right)$ th $_{\text {terms }}=8^{\text {th }}$ terms $=716$
2.The following is the distribution of height of students of a certain class in a certain city:

Height (in	$160-162$	$163-165$	$166-$
cm):	168	$169-171$	$172-174$
No of	15	118	
students:	142	127	18

Find the median height.

Soln:

Class interval (exclusive)	Class interval (inclusive)	Class interval frequency	Cumulative frequency
$160-162$	$159.5-162.5$	15	15
$163-165$	$162.5-165.5$	118	$133(\mathrm{~F})$
$166-168$	$165.5-168.5$	142 (f)	275
$169-171$	$168.5-171.5$	127	402

172-174

We have
$\mathrm{N}=420$
$\mathrm{N} / 2=420 / 2=120$
The cumulative frequency just greater than $\mathrm{N} / 2$ is 275 then $165.5-168.5$ is the median class such, that
$\mathrm{L}=165.5, \mathrm{f}=142, \mathrm{~F}=133$ and $\mathrm{h}=168.5-165.5=3$
Mean $=L+{ }_{N 2}-F f \times h L+\frac{\frac{N}{2}-F}{f} \times h$
$\equiv 166.5+1.63=168.13$
3. Following is the distribution of I.Q of 100 students. Find the median I.Q.

Soln:

Class interval (exclusive)	Class interval (inclusive)	Class interval frequency	Cumulative frequency
$55-64$	$54.5-64-5$	1	1
$65-74$	$64.5-74.5$	2	3
$75-84$	$74.5-84.5$	9	12
$85-94$	$84.5-94.5$	22	$34(f)$
$95-104$	$94.5-104.5$	$33(f)$	67

$105-114$	$104.5-114.5$	22	89
$115-124$	$114.5-124.5$	8	97
$125-134$	$124.5-134.5$	2	99
$135-144$	$134.5-144.5$	1	100
		$N=100$	

We have $\mathrm{N}=100$
$\mathrm{N} / 2=100 / 2=50$
The cumulative frequency just greater than $\mathrm{N} / 2$ is 67 then the median class is $94.5-104.5$ such that $\mathrm{L}=94.5, \mathrm{~F}=33 \mathrm{~h}=104.5-94.5=10$

Mean $=L+_{\mathrm{N} 2}-\mathrm{Ff} \times \mathrm{hL}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h}$
$=94.5+50-3433 \times 1094.5+\frac{50-34}{33} \times 10=94.5+4.88=99.35$
4.Calculate the median from the following data:

Soln:

Class interval	Frequency	Cumulative frequency
$15-25$	8	8
$25-35$	10	18
$35-45$	15	$33(\mathrm{f})$
$45-55$	25	58

$55-65$	$40(f)$	28
$65-75$	20	38
$75-85$	15	183
$85-95$	7	140
	$N=140$	

We have $\mathrm{N}=140$
$\mathrm{N} / 2=140 / 2=70$
The cumulative frequency just greater than $\mathrm{N} / 2$ is 98 then median class is $55-65$ such that $L=55, f=40, F=58, h=65-55=10$

Mean $=L+_{N 2}-\mathrm{Ff} \times \mathrm{hL}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h}$
$=55+70-5840 \times 1055+\frac{70-58}{40} \times 10=55+3=58$
5.Calculate the median from the following data:

Marks below:	10	20	30	40
	50	60	70	80
No of	15	35	60	84
students:	96	127	198	250

Soln:

Marks below	No of students	Class interval	Frequency	Cumulative frequency
10	15	$0-10$	15	15
20	35	$10-20$	20	35
30	60	$20-30$	25	60
40	84	$30-40$	24	84

50	96	$40-50$	12	$96(\mathrm{~F})$
60	127	$50-60$	31 (f)	127
70	198	$60-70$	71	198
80	250	$70-80$	52	250
			$\mathrm{~N}=250$	

We have $\mathrm{N}=250$
$\mathrm{N} / 2=250 / 2=125$
The cumulative frequency just greater than N/2 is 127 then median class is $50-60$ such that $L=50, f=31, F=96, h=60-50=10$

Mean $=L+^{n} 2-F f \times h L+\frac{\frac{N}{2}-F}{f} \times h$
$=50+125-9631 \times 1050+\frac{125-96}{31} \times 10=50+9.35=59.35$
6.Calculate the missing frequency from the following distribution, it being given that the median of the distribution is 24.

Age in years:	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
No of persons:	5	25	$?$	18	7

Soln:

Class interval	Frequency	Cumulative frequency
$0-10$	5	5
$10-20$	25	30 (F)
$20-30$	x (f)	$30+x$
$30-40$	18	$48+x$
$40-50$	7	$55+x$
	$N=170$	

Given
Median $=24$
Then, median class $=20-30$
$L=20, \quad h=30-20=10, f=x, \quad F=30$
Median $=\mathrm{L}+_{\mathrm{N} 2}-\mathrm{Ff} \times \mathrm{hL}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h}$
$24=20+{ }_{55+\times 2-30 x} \times 1020+\frac{\frac{55+\times}{2}-30}{x} \times 10$
$24-20=55+\times 2-30 x \times 10 \frac{\frac{55+\mathrm{x}}{2}-30}{\mathrm{x}} \times 10$
$4 \mathrm{x}=(55+\times 2-30) \times 10\left(\frac{55+\mathrm{x}}{2}-30\right) \times 10$
$4 \mathrm{x}=275+5 \mathrm{x}-300$
$4 x-5 x=-25$
$-x=-25$
$\mathrm{x}=25$
Missing frequency $=25$
7.The following table gives the frequency distribution of married women by age at marriage.

Age (in years)	Frequency	Age (in years)	Frequency
$15-19$	53	$40-44$	9
$20-24$	140	$45-49$	5
$25-29$	98	$50-54$	3
$30-34$	32	$55-59$	3
$35-39$	12	60 and above	2

Calculate the median and interpret the results
Soln:

Class interval (exclusive)	Class interval (inclusive)	Frequency	Cumulative frequency
$15-19$	$14.5-19.5$	53	53 (F)
$20-24$	$19.5-24.5$	140 (f)	193
$25-29$	$24.5-29.5$	98	291
$30-34$	$29.5-34.5$	32	323
$35-39$	$34.5-39.5$	12	335
$40-44$	$39.5-44.5$	9	344
$45-49$	$44.5-49.5$	5	349
$50-54$	$49.5-54.5$	3	352
$55-54$	$54.5-59.5$	3	355
60 and above	59.5 and above	2	357
		$\mathrm{~N}=357$	

$N=357$
$\mathrm{N} / 2=357 / 2=178.5$
The cumulative frequency just greater than N/2 is 193,
Then the median class is $19.5-24.5$ such that $\mathrm{l}=19.5, \mathrm{f}=140, \mathrm{~F}=53, \mathrm{~h}=25.5-19.5=5$
Median $=I+_{N 2-F f} \times \mathrm{hl}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h}$
Median $=19.5+178.5-53140 \times 519.5+\frac{178.5-53}{140} \times 5$
Median $=23.98$
Nearly half the women were married between the ages of 15 and 25
8.The following table gives the distribution of the life time of 400 neon lamps:

Life time:	Number of lamps

$1500-2000$	14
$2000-2500$	56
$2500-3000$	60
$3000-3500$	86
$3500-4000$	74
$4000-4500$	62
$4500-5000$	48

Find the median life.

Soln: We can find cumulative frequencies with their respective class intervals as below

Life time	Number of lamps f_{i}	Cumulative frequency (cf)
$1500-2000$	14	14
$2000-2500$	56	70
$2500-3000$	60	130
$3000-3500$	86	216
$3500-4000$	74	290
$4000-4500$	62	400
$4500-5000$	48	
Total (n)	400	

Now we may observe that cumulative frequency just greater than $\mathrm{n} / 2(400 / 2=200)$ is 216 belongs to class interval 3000-3500

Median class $=3000-3500$
Lower limits (I) of median class $=3000$
Frequency (f) of median class $=86$
Cumulative frequency (cf) of class preceding median class $=130$
Class size (h) $=500$
Median $=\mathrm{I}+(\mathrm{n} 2-\mathrm{cff}) \times \mathrm{hl}+\left(\frac{\frac{\mathrm{n}}{}-\mathrm{cf}}{\mathrm{f}}\right) \times \mathrm{h}$
$\left.=3000+(200-13086) \times 500) 3000+\left(\frac{200-130}{86}\right) \times 500\right)$
$=3000+(35000 / 86)$
$=3406.98$
So, median life time of lamps is 3406.98 hours
9.The distribution below gives the weight of 30 students in a class. Find the median weight of students:

Weight (in kg):	$70-45$		$45-50$	$50-55$	$55-60$	$60-65$
	$70-75$					
No of students:	2	3	8	6		
	6	3	2			

Soln: We may find cumulative frequency with their respective class intervals as below

Weight (in kg)	Number of students f_{i}	Cumulative frequency (cf)
$40-45$	2	2
$45-50$	3	5
$50-55$	8	13
$55-60$	6	19
$60-65$	6	25
$65-70$	3	28
$70-75$	2	30

Cumulative frequency just greater than $\mathrm{n} / 2$ (i.e. $30 / 2=15$) is 19 , belonging to class interval $55-60$
Median class $=55-60$
Lower limit (I) of median class $=55$
Frequency (f) of median class $=6$
Cumulative frequency (cf) $=13$
Class size (h) $=5$

Median $=l+\left({ }_{n 2}-\right.$ cff $) \times h l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$
$\left.=55+(15-136) \times 5) 55+\left(\frac{15-13}{6}\right) \times 5\right)$
$=55+10 / 6$
= 56.666
So, median weight is 56.67 kg
10.Find the missing frequencies and the median for the following distribution if the mean is 1.46

No of	0	1	2	
accidents:	3	4	5	Total
Frequencies (no of days):	46	$?$	$?$	200

Soln:

No of accidents (x)	No of days (f)	fx
0	46	0
1	x	x
2	y	$2 y$
3	25	75
4	10	40
5	5	25
	$N=200$	Sum $=x+2 y+140$

Given
$\mathrm{N}=200$
$46+x+y+25+10+5=200$
$x+y=200-46-25-10-5$
$x+y=114-(1)$
And, Mean $=1.46$
Sum/ N = 1.46
$(x+2 y+140) / 200=1.46$
$x+2 y=292-140$
$x+2 y=152-(2)$
Subtract equation (1) from equation (2)
$x+2 y-x-y=152-114$
$y=38$
Putting the value of y in equation (1), we have $x=114-38=76$

No of accidents	No of days	Cumulative frequency
0	46	46
1	76	122
2	38	160
3	25	185
4	10	195
5	5	200
	$\mathrm{~N}=200$	

We have,
$N=200$
$\mathrm{N} / 2=200 / 2=100$
The cumulative frequency just more than $\mathrm{N} / 2$ is 122 then the median is 1
11.An incomplete distribution is given below:

Variable:	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-$

		30	3	65	$?$

You are given that the median value is 46 and the total number of items is 230 .
(i) Using the median formula fill up the missing frequencies.
(ii) Calculate the AM of the completed distribution.

Soln:

(i)

Class interval	Frequency	Cumulative frequency
$10-20$	12	12
$20-30$	30	42
$30-40$	x	$42+x(F)$
$40-50$	65 (f)	$107+x$
$50-60$	Y	$107+x+y$
$60-70$	25	$132+x+y$
$70-80$	$N=150$	$150+x+y$

Given
Median = 46
Then, median class $=40-50$
$L=40, h=50-40=10, f=65, F=42+x$
Median $=L+_{N 2-F f} \times h L+\frac{\frac{N}{2}-F}{f} \times h$
$46=40+115-(42+x) 65 \times 1040+\frac{115-(42+x)}{65} \times 10$
$46-40=115-42-x 65 \times 10 \frac{115-42-x}{65} \times 10$
$6(65 / 10)=73-x$
$39=73-x$
$x=73-39=34$
Given
$N=230$
$12+30+34+65+y+25+18=230$
$184+y=230$
$Y=230-184$
$Y=46$
(ii)

Class interval	Mid value x	Frequency f	Fx
$10-20$	15	12	180
$20-30$	25	30	750
$30-40$	35	34	1190
$40-50$	45	65	2925
$50-60$	55	46	2530
$60-70$	65	25	1625
$70-80$	75	18	1350
		$N=230$	$\Sigma f x=10550 \Sigma \mathrm{fx}=10550$

Mean $=\Sigma f x N \frac{\Sigma f x}{N}$
= 10550/ $230=45.87$
12.If the median of the following frequency distribution is $\mathbf{2 8 . 5}$ find the missing frequencies:

Class interval:	$0-10$	$10-20$	$20-30$	$30-$	Total
	40	$40-50$	$50-60$		
Frequency:	5	f_{1}	20		60

Soln:

Class interval	Frequency	Cumulative frequency
$0-10$	5	5
$10-20$	f_{1}	$5+f_{1}(F)$
$20-30$	20 (f)	$25+f_{1}$
$30-40$	15	$40+f_{1}$
$40-50$	f_{2}	$40+f_{1}+f_{2}$
	$N=60$	

Given

Median $=28.5$
Then, median class $=20-30$
Median $=I+_{N 2-F f} \times \mathrm{hl}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h}$
$28.5=2030-\left(5+\mathrm{f}_{1}\right) 20 \times 1020 \frac{30-\left(5+\mathrm{f}_{1}\right)}{20} \times 10$
$28.5-20=30-5_{1} 20 \times 10 \frac{30-5_{1}}{20} \times 10$
$8.5=25-\mathrm{f}_{1} 2 \frac{25-\mathrm{f}_{1}}{2}$
$17=25-f$
$\mathrm{f}_{1}=25-17=8$
Given
Sum of frequencies $=60$
$5+f_{1}+20+15+f_{2}+5=60$
$5+8+20+15+f_{2}+5=60$
$f_{2}=7$
$\mathrm{f}_{1}=8$ and $\mathrm{f}_{2}=7$
13.The median of the following data is 525 . Find the missing frequency, if it is given that there are 100 observations in the data.

Class interval	Frequency	Class interval	Frequency
$0-100$	2	$500-600$	20
$100-200$	5	$600-700$	f_{2}
$200-300$	f_{1}	$700-800$	9
$300-400$	12	$800-900$	7
$400-500$	17	$900-1000$	4

Soln:

Class interval	Frequency	Cumulative frequency
$0-100$	2	2
$100-200$	5	7
$200-300$	f_{1}	$7+f_{1}$
$300-400$	12	$19+f_{1}$
$400-500$	20 (f)	$36+f_{1}(f)$
$500-600$	f_{2}	$56+f_{1}$
$600-700$	9	$56+f_{1}+f_{2}$
$700-800$	7	$65+f_{1}+f_{2}$
$800-900$	4	$72+f_{1}+f_{2}$
$900-1000$	$N=100$	$76+f_{1}+f_{2}$

Given
Median $=525$
Then, median class $=500-600$
$L=500, f=20, F=36+f_{1}, h=600-500=100$
Median $=L+_{N 2-F f} \times h L+\frac{\frac{N}{2}-F}{f} \times h$
$525=500+50-\left(36+f_{1}\right) 20 \times 100500+\frac{50-\left(36+f_{1}\right)}{20} \times 100$
$525=500+50-36-\mathrm{f}_{1} 20 \times 100 \frac{50-36-\mathrm{f}_{1}}{20} \times 100$
$25=\left(14-f_{1}\right) \times 5$
$5=14-f_{1}$
$f_{1}=14-5=9$
Given
Sum of frequencies $=100$
$2+5+f_{1}+12+17+20+f_{2}+9+7+4=100$
$2+5+9+12+17+20+f_{2}+9+7+4=100$
$85+f_{2}=100$
$f_{2}=100-85=15$
$f_{1}=9$ and $f_{2}=15$
14.If the median of the following data is 32.5 , find the missing frequencies.

| Class
 interval: | $0-10$ $10-20$ $20-30$ $30-40$ Total
 $40-50$ $50-60$ $60-70$
 Frequency: f_{1} 5 9

 12 f_{2} 3 2 | 40 |
| :--- | :--- | :---: | :---: | :---: | :---: |

Soln:

Class interval	Frequency	Cumulative frequency
$0-10$	f_{1}	f_{1}
$10-20$	5	$5+\mathrm{f}_{1}$

$20-30$	9	$14+f_{1}$
$30-40$	12 (f)	$26+f_{1}$
$40-50$	f_{2}	$26+f_{1}+f_{2}$
$50-60$	3	$29+f_{1}+f_{2}$
$60-70$	2	$31+f_{1}+f_{2}$
	$N=40$	

Given

Median = 32.5
The median class $=90-40$
$L=30, h=40-30=10, f=12, F=14+f_{1}$
Median $=L+^{N} 2-F f \times h L+\frac{\frac{\mathrm{N}}{2}-F}{f} \times h$
$32.5=30+20-\left(14+\mathrm{f}_{1}\right) 12 \times 1030+\frac{20-\left(14+\mathrm{f}_{1}\right)}{12} \times 10$
$32.5-30=20-\left(14+f_{1}\right) 12 \times 10 \frac{20-\left(14+\mathrm{f}_{1}\right)}{12} \times 10$
$2.5(12)=\left(6-f_{1}\right) * 10$
$30=\left(6-f_{1}\right) * 10$
$3=6-f_{1}$
$f_{1}=6-3=3$
Given
Sum of frequencies $=40$
$f_{1}+5+9+12+f_{2}+3+2=40$
$3+5+9+12+f_{2}+3+2=40$
$34+f_{2}=40$
$f_{2}=40-34=6$
$f_{1}=3$ and $f_{2}=6$
15.Compute the median for each of the following data

(i)	(ii)		
Marks	No of students	Marks	No of students
Less than 10	0	More than 80	150
Less than 30	10	More than 90	141
Less than 50	25	More than 100	124
Less than 70	43	More than 110	105
Less than 90	65	More than 120	60
Less than 110	87	More than 130	27
Less than 130	96	More than 140	12
Less than	100	More than	
150			

Soln:(i)

Marks	No of students	Class interval	Frequency	Cumulative frequency
Less than 10	0	$0-10$	0	0
Less than 30	10	$10-30$	10	10
Less than 50	25	$30-50$	15	25
Less than 70	43	$50-70$	18	43 (F)
Less than 90	65	$70-90$	22 (f)	65
Less	87	$90-110$	22	87

than 110				
Less than 130	96	$110-130$	9	96
Less than 150	100	$130-$ 150	4	100
			$\mathrm{~N}=100$	

We have

$N=100$
$\mathrm{N} / 2=100 / 2=50$
The cumulative frequency just greater than $\mathrm{N} / 2$ is 65 then median class is $70-90$ such that
$L=70, h=90-70=20, f=22, F=43$
Median $=L+_{N 2-F f} \times h L+\frac{\frac{N}{2}-F}{f} \times h$
$=70+50-4322 \times 2070+\frac{50-43}{22} \times 20$
$=70+7 \times 202270+\frac{7 \times 20}{22}$
$=70+6.36$
$=76.36$
(ii)

Marks	No of students	Class interval	Frequency	Cumulative frequency
More than 80	150	$80-90$	9	9
More than 90	141	$90-100$	17	26
More than 100	124	$100-110$	19	$45(F)$
More than 110	105	$110-120$	45 (f)	90
More than 120	60	$120-$ 130	33	123
More than 130	27	$130-$	15	138

\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { More } \\
\text { than } 140\end{array}
$$ \& 12 \& 140-

150\end{array}\right) 12\)\begin{tabular}{l}
150

\hline | More |
| :--- |
| than 150 |

\hline
\end{tabular}

We have
$N=150$
$\mathrm{N} / 2=150 / 2=75$
The cumulative frequency just more than N/2 is 90 then the median class is $110-120$ such that
$L=70, h=120-110=10, f=45, F=45$
Median $=L+_{\mathrm{N} 2}-\mathrm{Ff} \times \mathrm{hL}+\frac{\frac{\mathrm{N}}{2}-\mathrm{F}}{\mathrm{f}} \times \mathrm{h}$
$=110+75-4545 \times 10110+\frac{75-45}{45} \times 10$
$=110+30 \times 1045110+\frac{30 \times 10}{45}$
$=110+6.67$
$=116.67$
16.A survey regarding the height (in cm) of 51 girls of class X of a school was conducted and the following data was obtained:

Height in cm	number of girls
Less than 140	4
Less than 145	11
Less than 150	29
Less than 155	40
Less than 160	46
Less than 165	51

Find the median height.

Soln: To calculate the median height, we need to find the class intervals and their corresponding frequencies.

The given distribution being of the less than type, 140, 145, 150, 155, 160, 165 give the upper limits of the corresponding class intervals. So, the classes should be below 140, 140-145, 145-150, 150-155, 155-160, 160-165. Observe that from the given distribution, we find that there are 4 girls with height less than 140, i.e. the frequency of class interval below 140 is 4 . Now, there are 11 girls with heights less than 145 and 4 girls with height less than 140. Therefore, the number of girls with height in the interval $140-145$ is $11-4=7$. Similarly, the frequency of $145-150$ is $29-11=18$, for $150-155$, it is $40-29=11$, and so on. So, our frequency distribution table with given cumulative frequencies becomes:

Class interval	Frequency	Cumulative frequency
Below 140	4	4
$140-145$	7	11
$145-150$	18	29
$150-155$	11	40
$155-160$	6	46

Now $n=51 . S 0, n / 2=51 / 2=25.5$ this observation lies in the class $145-150$
Then,
L (the lower limit) $=145$
cf (the cumulative frequency of the class preceding $145-150$) $=11$
$f($ the frequency of the median class $145-150)=18$
$h($ the class size $)=5$
Using the formula, median $=I+\left({ }_{n 2}-c f f\right) \times h l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h \quad$, we have

Median = Missing close brace Missing close brace
$=145+72.5 / 18=149.03$
So, the median height of the girls is 149.03 cm
This means that the height of about 50% of the girls in less than this height, and 50% are taller than this height.
17.A life insurance agent found the following data for distribution of ages of 100 policy holders. Calculate the median age, if policies are only given to persons having age 18 years onwards but less than 60 years.

Ages in years	Number of policy holders
Below 20	2
Below 25	6
Below 30	24
Below 35	45
Below 40	78
Below 45	89
Below 50	92
Below 60	98
	100

Soln: Here class width is not same. There is no need to adjust the frequencies according to class interval. Now given frequencies table is less type represented with upper class limits. As policies were given only to persons having age 18 years onwards but less than 60 years we can define class intervals with their respective cumulative frequency as below.

Age (in years)	Number of policy holders f_{i}	Cumulative frequency (cf)
$18-20$	2	2
$20-25$	$6-2=4$	6
$25-30$	$24-6=18$	24
$30-35$	$45-24=21$	45
$35-40$	$78-45=33$	78
$40-45$	$89-78=11$	89
$45-50$	$92-89=3$	92
$50-55$	$98-92=6$	98

$55-60$	$100-98=2$	100
Total		

Now from table we may observe that $\mathrm{n}=100$
Cumulative frequency (cf) just greater than $\mathrm{n} / 2$ (i.e. 100/ $2=50$) is 78 belonging to interval $35-40$
So median class $=35-40$
Lower limit (I) of median class $=35$
Class size (h) $=5$
Frequency (f) of median class $=33$
Cumulative frequency (cf) of class preceding median class $=45$
Median $=\mathrm{I}+\left({ }_{\mathrm{n} 2}-\mathrm{cff}\right) \times \mathrm{h} \mathrm{l}+\left(\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}}\right) \times \mathrm{h}$
$=35+(50-4533) \times 535+\left(\frac{50-45}{33}\right) \times 5$
$=35+253335+\frac{25}{33}$
$=35.76$
So median age is 35.76 years
18.The lengths of 40 leaves of a plant are measured correct to the nearest millimeter, and the data obtained is represented in the following table:

Length (in mm)	No of leaves
$118-126$	3
$127-135$	5
$136-144$	9
$145-153$	12
$154-162$	5
$163-171$	4
$172-180$	2

Find the mean length of life

Soln: The given data is not having continuous class intervals. We can observe the difference between two class intervals is 1 . So we have to add and subtract
$1 / 2=0.5$ to upper class limits and lower class limits
Now continuous class intervals with respective cumulative frequencies can be represented as below:

Length (in mm)	Number of leaves f_{i}	Cumulative frequency (cf)
$117.5-126.5$	3	3
$126.5-135.5$	5	8
$135.5-144.5$	9	17
$144.5-153.5$	12	29
$153.5-162.5$	5	34
$162.5-171.5$	4	38
$171.5-180.5$	2	40

From the table we may observe that cumulative frequency just greater then $\mathrm{n} / 2$ (i.e. $40 / 2=20$) is 29 , belongs to class interval 144.5-153.5

Median class $=144.5-153.5$
Lower limit $(\mathrm{I})=144.5$
Class size (h) $=9$
Frequency (f) of median class $=12$
Cumulative frequency (cf) of class preceding median class $=17$
Median $=\mathrm{I}+(\mathrm{n} 2-\mathrm{cff}) \times \mathrm{hl}+\left(\frac{\frac{\mathrm{n}}{2}-\mathrm{cf}}{\mathrm{f}}\right) \times \mathrm{h}$
$\left.=144.5+(20-1712) \times 9) 144.5+\left(\frac{20-17}{12}\right) \times 9\right)$
$=144.5+9 / 4=146.75$
So median length of leaves is 146.75 mm

19.An incomplete distribution is given as follows:

Variable:	$0-10$ 60 $60-70$					
Frequency:	10	20	$?$	40		
	$?$	25	15			

You are given that the median value is 35 and sum is all the frequencies are 170. Using the median formula, fill up the missing frequencies

Soln:

Class interval	Frequency	Cumulative frequency
$0-10$	10	10
$10-20$	20	30
$20-30$	f_{1}	$30+\mathrm{f}_{1}(\mathrm{~F})$
$30-40$	$40(\mathrm{~F})$	$70+\mathrm{f}_{1}$
$40-50$	f_{2}	$70+\mathrm{f}_{1}+\mathrm{f}_{2}$
$50-60$	15	$95+\mathrm{f}_{1}+\mathrm{f}_{2}$
$60-70$	$\mathrm{~N}=170$	$110+\mathrm{f}_{1}+\mathrm{f}_{2}$

Given
Median $=35$
Then median class $=30-40$
$L=30, h=40-30=10, f=40, F=30+f_{1}$
Median $=L+_{N 2}-F f \times h L+\frac{\frac{\mathrm{N}}{2}-F}{f} \times h$
$35=30+85-\left(30+\mathrm{f}_{1}\right) 40 \times 1030+\frac{85-\left(30+\mathrm{f}_{1}\right)}{40} \times 10$
$35-30=85-30-\mathrm{f}_{1} 40 \times 10 \frac{85-30-\mathrm{f}_{1}}{40} \times 10$
$5=55-f_{1} 4 \frac{55-\mathrm{f}_{1}}{4}$
$20=55-f_{1}$
$\mathrm{f}_{1}=55-20=35$

Given

Sum of frequencies $=170$
$10+20+f_{i}+40+f_{2}+25+15=170$
$10+20+35+40+f_{2}+25+15=170$
$f_{2}=25$
$f_{1}=35$ and $f_{2}=25$

