RD SHARMA Solutions Class 10 Maths

Chapter 7

Ex 7.2

1. The number of telephone calls received at an exchange per interval for 250 successive one-minute intervals are given in the following frequency table:

No. of calls(x):	0	1	2 5	3 6	4	
No. of intervals (f):	15	24	29 43	46 39	54	

Compute the mean number of calls per interval.

Soln: Let be assumed mean (A) = 3

			(C)
No. of	No. of intervals	$u_1=x_i-A=x_i=3u_1=x_i-A=x_i=3$	f _i u _i f _i u _i
calls X _i X _i	$f_i f_i$		Ch.
0	15	-3	-45
1	24	-2 J.L.S.1	-47
2	29	-1 , Ball	-39
3	46	O LETH	0
4	54	ALC .	54
5	43	2	43(2) = 86
6	39	3	47
	N= 250		Sum = 135

Mean number of cells = 3+frac1352503 + frac135250 = frac885250 frac885250 = 3.54

2. Five coins were simultaneously tossed 1000 times, and at each toss the number of heads was observed. The number of tosses during which 0, 1, 2, 3, 4 and 5 heads were obtained are shown in the table below. Find the mean number of heads per toss.

No of heads per toss (x):	0 4	1 5	2	3	
No of tosses (f):	38 164	144 25	342	287	

Soln:Let the assumed mean (A) = 2

No. of heads per toss X _i X _i	No of intervals	$u_i = A_i - x = A_i - 2u_i = A_i - x = A_i - 2$	f _i u _i f _i u _i
0	38	-2	-7
1	144	-1	-144
2	342	0	0
3	287	1	287
4	164	2	328
5	25	3	75
	N= 1000	AS 18 M	Sum = 470

Mean number of per toss = 2 + 470/1000 = 2 + 0.47 = 2.47

3. The following table gives the number of branches and number of plants in the garden of a school.

No of branches (x):	2	3	4	5	6
No of plants (f):	49	43	57	38	13

Calculate the average number of branches per plant.

Soln:

Let the assumed mean (A) = 4

No of branches X _i X _i	No of plants $\mathbf{f}_i \mathbf{f}_i$	$u_i = x_i - A = x_i - 4u_i = x_i - A = x_i - 4$	$f_i u_i f_i u_i$
2	49	-2	-98
3	43	-1	-43
4	57	0	0
5	38	1	38
6	13	2	26
	N = 200	NO.	Sum = -77

Average number of branches per plant = 4 + (-77/200) = 4 - 77/200 = (800 - 77)/200 = 3.615

4. The following table gives the number of children of 150 families in a village

No of children (x):	0 5	1	2	1123	4		
No of families (f):	10	21	55	42	15	7	

Find the average number of children per family.

Soln: Let the assumed mean (A) = 2

No of children $\mathbf{X}_i \mathbf{X}_i$	No of families $f_i f_i$	$u_i = x_i - A = x_i - 2u_i = x_i - A = x_i - 2$	$f_i u_i f_i u_i$	

0	10	-2	-20
1	21	-1	-21
3	42	1	42
4	15	2	30
5	7	5	35
	N = 20		Sum = 52

Average number of children for family = $2 + \frac{52}{150} = \frac{(300 + 52)}{150} = \frac{352}{150} = 2.35$ (approx)

5. The marks obtained out of 50, by 102 students in a physics test are given in the frequency table below:

					Par
Marks (x):	15 30	20 33	22 38	24 45	25
Frequency (f):	5 18	8 13	11 3	20 1	23

Find the average number of marks. Soln: Let the assumed mean (A) = 25						
Marks X _i X _i	Frequency $f_i f_i$	$u_i = x_i - A = x_i - 2u_i = x_i - A = x_i - 2$	$f_i u_i f_i u_i$			
15	5	-10	-50			
20	8	-5	-40			
22	8	-3	-24			
24	20	-1	-20			
25	23	0	0			
30	18	5	90			
33	13	8	104			

38	3	12	36
45	3	20	60
	N = 122		Sum = 110

Average number of marks = 25 + 110/102

- = (2550 + 110)/102
- = 2660/102
- = 26.08 (Approx)

6. The number of students absent in a class was recorded every day for 120 days and the information is given in the following

No of students absent (x):	0 4	1 5	2	3 7
No of days (f):	1	4	10	50
	34	15	4	2

Find the mean number of students absent per day.

Soln:Let mean assumed mean (A) = 3

No of students absent X _i X _i	No of days	$u_i = x_i - A = x_i - 3$ $u_i = x_i - A = x_i - 3$	f _i u _i f _i u i
3	1	-3	-3
1	4	-2	-8
2	10	-1	-10
3	50	0	0
4	34	1	24
5	15	2	30

6	4	3	12	
7	2	4	8	
	N = 120		Sum =63	

Mean number of students absent per day = 3 + 63/120

- = (360 + 63)/120
- = 423/120
- = 3.53

7. In the first proof of reading of a book containing 300 pages the following distribution of misprints was obtained:

No of misprints per page (x):	0 4	1 5	2	3
No of pages (f):	154 5	96 1	36	9

Find the average number of misprints per page.

Soln: Let the assumed mean (A) = 2

No of misprints per page X _i X _i	No of days	$u_i = x_i - A = x_i - 3$	f _i u _i f _i u i
0	154	-2	-308
1	95	-1	-95
2	36	0	0
3	9	1	9
4	5	2	1
5	1	3	3

N	=	Sum =
30	00	381

Average number of misprints per day = 2 + (-381/300)

- = 2 381/300
- = (600-381)/300
- = 219/300
- = 0.73

8. The following distribution gives the number of accidents met by 160 workers in a factory during a month.

No of accidents (x):	0	1	2	3	4
No of workers (f):	70	52	34	3	1

Find the average number of accidents per worker.

Soln: Let the assumed mean (A) = 2

No of accidents	No of workers $f_i f_i$	$u_i = x_i - A = x_i - 3u_i = x_i - A = x_i - 3$	$f_i u_i f_i u_i$
0	70	-2	-140
1	52	-1	-52
2	34	0	0
3	3	1	3
4	1	2	2
	N = 100		Sum = -187

Average no of accidents per day workers

$$=> x + (-187/160)$$

9. Find the mean from the following frequency distribution of marks at a test in statistics:

Marks (x):	5 30	10 35	15 40	20 45	25 50	
No of students (f):	15 45	50 39	80 9	76 8	72 6	

Soln:Let the assumed mean (A) = 25

Marks X _i X _i	No of students $f_i f_i$	$u_i = x_i - A = x_i - 3u_i = x_i - A = x_i - 3$	f _i u _i f _i u _i
5	15	-20	-300
10	50	-15	-750
15	80	-10	-800
20	76	-5 OH.	-380
25	72	O HID	0
30	45	5	225
35	39	10	390
40	9	15	135
45	8	20	160
50	6	25	150
	N = 400		Sum = -1170

Mean = 25 + (-1170)/400 = 22.075