Q.1) The numerator of a fraction is 4 less than the denominator. If the numerator is decreased by 2 and denominator is increased by 1, then the denominator is eight times the numerator. Find the fraction.

Soln:

Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is $xy\frac{x}{v}$

The numerator of the fraction is 4 less the denominator. Thus, we have

$$x = y - 4$$

$$\Rightarrow$$
x-**y**=-4 \Rightarrow x-y = -4

If the numerator is decreased by 2 and denominator is increased by 1, then the denominator is 8 times the numerator. Thus, we have

$$y+1 = 8(x-2)$$

$$\Rightarrow$$
y+1=8x-16 \Rightarrow y+1=8x-16 \Rightarrow 8x-y=1+16 \Rightarrow 8x-y=17 \Rightarrow 8x-y=17

So, we have two equations

$$x - y = -4$$

$$8x - y = 17$$

Here x and y are unknowns. We have to solve the above equations for x and y. Subtracting the second equation from the first equation, we get

$$(x - y) - (8x - y) = -4 - 17$$

$$\Rightarrow \mathbf{x} - \mathbf{y} - 8\mathbf{x} + \mathbf{y} = -21 \Rightarrow \mathbf{x} - \mathbf{y} - 8\mathbf{x} + \mathbf{y} = -21 \Rightarrow -7\mathbf{x} = -21 \Rightarrow \mathbf{x} = 217 \Rightarrow \mathbf{x} = \frac{21}{7}$$

$$\Rightarrow$$
 217 $\Rightarrow \frac{21}{7}$ x = 3

Substituting the value of x in the first equation, we have

$$3 - y = -4$$

$$\Rightarrow$$
y=3+4 \Rightarrow y = 3 + 4 \Rightarrow **y**=7 \Rightarrow y = 7

Hence the fraction is $37\frac{3}{7}$

Q.2) A fraction becomes 911 $\frac{9}{11}$ if 2 is added to both numerator and the denominator. If 3 is added to both the numerator and the denominator it becomes 56 $\frac{5}{6}$. Find the fraction

Soln:

Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is $xy\frac{x}{v}$

If 2 is added to both numerator and the denominator, the fraction becomes 911 $\frac{9}{11}$. Thus, we have

$$x+2y+2=911 \frac{x+2}{y+2} = \frac{9}{11} \Rightarrow 11(x+2)=9(y+2) \Rightarrow 11(x+2)=9(y+2) \Rightarrow 11x+22=9y+18$$

 $\Rightarrow 11x+22=9y+18 \Rightarrow 11x-9y=18-22 \Rightarrow 11x-9y=18-22 \Rightarrow 11x-9y+4=0$
 $\Rightarrow 11x-9y+4=0$

If 3 is added to both numerator and the denominator, the fraction becomes 56 $\frac{5}{6}$

$$x+3y+3=56\frac{x+3}{y+3}=\frac{5}{6} \Rightarrow 6(x+3)=5(y+3) \Rightarrow 6(x+3)=5(y+3) \Rightarrow 6x+18=5y+15$$

 $\Rightarrow 6x+18=5y+15 \Rightarrow 6x-5y=15-18 \Rightarrow 6x-5y=15-18 \Rightarrow 6x-5y+3=0 \Rightarrow 6x-5y+3=0$

So, we have two equations

$$11x - 9y + 4 = 0$$

$$6x - 5y + 3 = 0$$

Here x and y are unknowns. We have to solve the above equations for x and y.

By using cross-multiplication, we have

$$x-9*3-(-5)*4 \frac{x}{-9*3-(-5)*4} = -y11*3-6*4 \frac{-y}{11*3-6*4} = 111*(-5)-6*(-9) \frac{1}{11*(-5)-6*(-9)}$$

$$\Rightarrow x-27+20 \Rightarrow \frac{x}{-27+20} = \Rightarrow -y33-24 \Rightarrow \frac{-y}{33-24} = 1-55+54 \frac{1}{-55+54}$$

$$\Rightarrow$$
 x-7 \Rightarrow $\frac{x}{-7} = -y9 \frac{-y}{9} = 1-1 \frac{1}{-1}$

$$\Rightarrow$$
 x7 = y9 = 1 $\Rightarrow \frac{x}{7} = \frac{y}{9} = 1$

$$x = 7, y = 9$$

The fraction is $79\frac{7}{9}$

Q.3) A fraction becomes 13 $\frac{1}{3}$ if 1 is subtracted from both its numerator and denominator. If 1 is added to both the numerator and denominator, it becomes 12 $\frac{1}{2}$. Find the fraction.

Soln:

Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is xy $\frac{x}{y}$

If 1 is subtracted from both numerator and the denominator, the fraction becomes 13 $\frac{1}{3}$. Thus, we have

$$x-1y-1 = 13 \frac{x-1}{y-1} = \frac{1}{3} \Rightarrow 3(x-1) = (y-1) \Rightarrow 3(x-1) = (y-1) \Rightarrow 3x-3 = y-1 \Rightarrow 3x-3 = y-1 \Rightarrow 3x-y-2 = 0$$

If 1 is added to both numerator and the denominator, the fraction becomes 12 $\frac{1}{2}$. Thus, we have

$$x+1y+1 = 12 \frac{x+1}{y+1} = \frac{1}{2} \Rightarrow 2(x+1) = (y+1) \Rightarrow 2(x+1) = (y+1) \Rightarrow 2x+2 = y+1$$

 $\Rightarrow 2x+2 = y+1 \Rightarrow 2x-y+1 = 0 \Rightarrow 2x-y+1 = 0$

So, we have two equations

$$3x - y - 2 = 0$$

$$2x - y + 1 = 0$$

Here x and y are unknowns. We have to solve the above equations for x and y.

By using cross-multiplication, we have

$$x(-1)*1-(-1)*(-2)\frac{x}{(-1)*1-(-1)*(-2)} = -y3*1-2*(-2)\frac{-y}{3*1-2*(-2)} = 13*(-1)-2*(-1)\frac{1}{3*(-1)-2*(-1)}$$

$$\Rightarrow$$
 x-1-2 \Rightarrow $\frac{x}{-1-2}$ = \Rightarrow -y3+4 \Rightarrow $\frac{-y}{3+4}$ = 1-3+2 $\frac{1}{-3+2}$

$$\Rightarrow$$
 x-3 $\Rightarrow \frac{x}{-3} = -y7 \frac{-y}{7} = 1-1 \frac{1}{-1}$

$$\Rightarrow x-3 \Rightarrow \frac{x}{-3} = -y7 \frac{-y}{7} = 1-1 \frac{1}{-1}$$

$$\Rightarrow x3 = y7 = 1 \Rightarrow \frac{x}{3} = \frac{y}{7} = 1 \Rightarrow x = 3, y = 7 \Rightarrow x = 3, y = 7$$
The fraction is $37 \frac{3}{7}$

The fraction is $37\frac{3}{7}$

Q.4) If we add 1 to the numerator and subtract 1 from the denominator, a fraction becomes 1. It also becomes 12 $\frac{1}{2}$ if we only add 1 to the denominator. What is the fraction?

Soln:

Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is $xy \frac{x}{v}$

If 1 is added to the numerator and 1 is subtracted from the denominator, the fraction becomes 1. Thus, we have

$$x+1y-1=1$$
 $\frac{x+1}{y-1}=1$ \Rightarrow $(x+1)=(y-1)$ \Rightarrow $(x+1)=(y-1)$ \Rightarrow $x+1-y+1=0$ \Rightarrow $x-y+2=0$ \Rightarrow $x-y+2=0$

If 1 is added to the denominator, the fraction becomes $12\frac{1}{2}$. Thus, we have

$$xy+1 = 12 \frac{x}{y+1} = \frac{1}{2} \Rightarrow 2x = (y+1) \Rightarrow 2x = (y+1) \Rightarrow 2x-y-1 = 0$$

So, we have two equations

$$x - y + 2 = 0$$

$$2x - y - 1 = 0$$

Here x and y are unknowns. We have to solve the above equations for x and y.

By using cross-multiplication, we have

$$x(-1)*(-1)-(-1)*2 \frac{x}{(-1)*(-1)-(-1)*2} = -y1*(-1)-2*2 \frac{-y}{1*(-1)-2*2} = 11*(-1)-2*(-1) \frac{1}{1*(-1)-2*(-1)}$$

$$\Rightarrow$$
x1+2 \Rightarrow $\frac{x}{1+2}$ = \Rightarrow -y-1-4 \Rightarrow $\frac{-y}{-1-4}$ = 1-1+2 $\frac{1}{-1+2}$

$$\Rightarrow$$
 x3 \Rightarrow $\frac{x}{3}$ = -y-5 $\frac{-y}{-5}$ = 11 $\frac{1}{1}$

$$\Rightarrow$$
 x3=y5=1 \Rightarrow $\frac{x}{3} = \frac{y}{5} = 1 \Rightarrow$ x=3,y=5 \Rightarrow x = 3, y = 5

The fraction is $35\frac{3}{5}$

5) The sum of the numerator and denominator of a fraction is 12. If the denominator is increased by 3, the fraction becomes $12\frac{1}{2}$. Find the fraction.

Soln:

Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is $xy \frac{x}{y}$

The sum of the numerator and denominator of the fraction is 12. Thus, we have

$$x + y = 12$$

$$\Rightarrow$$
x+y-12=0 \Rightarrow **x** + **y**-12 = 0

If the denominator is increased by 3, the fraction becomes $12\frac{1}{2}$. Thus, we have

$$xy+3 = 12 \frac{x}{y+3} = \frac{1}{2} \implies 2x = (y+3) \implies 2x = (y+3) \implies 2x-y-3 = 0 \implies 2x-y-3 = 0$$

So, we have two equations

$$x + y - 12 = 0$$

$$2x - y - 3 = 0$$

Here x and y are unknowns. We have to solve the above equations for x and y.

By using cross-multiplication, we have

$$x(1)*(-3)-(-1)*-12\frac{x}{(1)*(-3)-(-1)*-12} = -y1*(-3)-2*-12\frac{-y}{1*(-3)-2*-12} = 11*(-1)-2*(1)\frac{1}{1*(-1)-2*(1)}$$

$$\Rightarrow$$
 x-3-12 \Rightarrow $\frac{x}{-3-12}$ = \Rightarrow -y-3+24 \Rightarrow $\frac{-y}{-3+24}$ = 1-1-2 $\frac{1}{-1-2}$

$$\Rightarrow$$
 x-15 \Rightarrow $\frac{x}{-15}$ = -y21 $\frac{-y}{21}$ = 1-3 $\frac{1}{-3}$

$$\Rightarrow$$
 x15=y21=13 $\Rightarrow \frac{x}{15} = \frac{y}{21} = \frac{1}{3} \Rightarrow$ x=153,y=213 \Rightarrow x = $\frac{15}{3}$, y = $\frac{21}{3} \Rightarrow$ x=5,y=7 \Rightarrow x = 5, y = 7

The fraction is $57\frac{5}{7}$

7) The sum of a numerator and denominator of a fraction is 18. If the denominator is increased by 2, the fraction reduces to 13 $\frac{1}{3}$. Find the fraction.

Soln:

Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is $xy \frac{x}{y}$

The sum of the numerator and denominator of the fraction is 18. Thus, we have

$$x + y = 18$$

$$\Rightarrow$$
x+y-18=0 \Rightarrow **x** + **y-18=0**

If the denominator is increased by 2, the fraction becomes $13\frac{1}{3}$. Thus, we have

$$xy+2=13\frac{x}{y+2}=\frac{1}{3} \Rightarrow 3x=(y+2) \Rightarrow 3x=(y+2) \Rightarrow 3x-y-2=0 \Rightarrow 3x-y-2=0$$

So, we have two equations

$$x + y - 18 = 0$$

$$3x - y - 2 = 0$$

Here x and y are unknowns. We have to solve the above equations for x and y.

By using cross-multiplication, we have

$$x(1)*(-2)-(-1)*-18\frac{x}{(1)*(-2)-(-1)*-18} = -y1*(-2)-3*-18\frac{-y}{1*(-2)-3*-18} = 11*(-1)-3*(1)\frac{1}{1*(-1)-3*(1)}$$

$$\Rightarrow$$
x-2-18 \Rightarrow $\frac{x}{-2-18}$ = \Rightarrow -y-2+54 \Rightarrow $\frac{-y}{-2+54}$ =1-1-3 $\frac{1}{-1-3}$

$$\Rightarrow$$
 x-20 $\Rightarrow \frac{x}{-20} = -y52 \frac{-y}{52} = 1-4 \frac{1}{-4}$

$$\Rightarrow$$
 x20 = y52 = 14 $\Rightarrow \frac{x}{20} = \frac{y}{52} = \frac{1}{4} \Rightarrow$ x= 204, y= 524 \Rightarrow x = $\frac{20}{4}$, y = $\frac{52}{4} \Rightarrow$ x=5, y=13 \Rightarrow x = 5, y = 13

The fraction is 513 $\frac{5}{13}$

8) If 2 is added to the numerator of a fraction, it reduces to $12\frac{1}{2}$ and if 1 is subtracted from the denominator, it reduces to $13\frac{1}{3}$. Find the fraction.

Soln:

Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is $xy\frac{x}{v}$

If 2 is added to the numerator of the fraction, it reduces to $12\frac{1}{2}$. Thus we have

$$x+2y \frac{x+2}{y} = 12 \frac{1}{2}$$

$$\Rightarrow 2(x+2)=y \Rightarrow 2(x+2)=y \Rightarrow 2x+4=y \Rightarrow 2x+4=y \Rightarrow 2x-y+4=0 \Rightarrow 2x-y+4=0$$

If 1 is subtracted from the denominator, the fraction reduces to $13\frac{1}{3}$. Thus, we have

$$xy-1 = 13 \frac{x}{y-1} = \frac{1}{3} \implies 3x = (y-1) \implies 3x = (y-1) \implies 3x-y+1=0 \implies 3x-y+1=0$$

So, we have two equations

$$2x - y + 4 = 0$$

$$3x - y + 1 = 0$$

Here x and y are unknowns. We have to solve the above equations for x and y.

By using cross-multiplication, we have

$$x(-1)*(1)-(-1)*4 \frac{x}{(-1)*(1)-(-1)*4} = -y2*(1)-3*4 \frac{-y}{2*(1)-3*4} = 12*(-1)-3*(-1) \frac{1}{2*(-1)-3*(-1)}$$

$$\Rightarrow$$
 x-1+4 \Rightarrow $\frac{x}{-1+4}$ = \Rightarrow -y2-12 \Rightarrow $\frac{-y}{2-12}$ = 1-2+3 $\frac{1}{-2+3}$

$$\Rightarrow x3 \Rightarrow \frac{x}{3} = -y-10 \frac{-y}{-10} = 11 \frac{1}{1}$$

$$\Rightarrow$$
 x3 = y10 = 1 $\Rightarrow \frac{x}{3} = \frac{y}{10} = 1$

$$\Rightarrow$$
x=3,y=10 \Rightarrow x = 3, y = 10

The fraction is $310 \frac{3}{10}$

9) The sum of the numerator and denominator of a fraction is 4 more than twice the numerator. If the numerator and denominator are increased by 3, they are in the ratio 2:3. Determine the fraction.

Soln:

Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is $xy \frac{x}{y}$

The sum of the numerator and denominator of the fraction is 4 more than twice the numerator. Thus, we have

$$x + y = 2x + 4$$

$$\Rightarrow$$
2x+4-x-y=0 \Rightarrow 2x+4-x-y=0

$$\Rightarrow$$
x-**y**+**4**=**0** \Rightarrow **x**-**y**+4=**0**

If the numerator and denominator are increased by 3, they are in the ratio 2:3. Thus we have

$$x + 3:y + 3 = 2:3$$

$$\Rightarrow_{x+3y+3=23} \Rightarrow_{\frac{x+3}{y+3}} = \frac{2}{3} \Rightarrow_{3}(x+3)=2(y+3) \Rightarrow_{3}(x+3)=2(x+3) \Rightarrow_{3}($$

So, we have two equations

$$x - y + 4 = 0$$

$$3x - 2y + 3 = 0$$

Here x and y are unknowns. We have to solve the above equations for x and y.

By using cross-multiplication, we have

$$x(-1)*(3)-(-2)*4 \frac{x}{(-1)*(3)-(-2)*4} = -y1*(3)-3*4 \frac{-y}{1*(3)-3*4} = 11*(-2)-3*(-1) \frac{1}{1*(-2)-3*(-1)}$$

$$\Rightarrow$$
 x-3+8 \Rightarrow $\frac{x}{-3+8}$ = \Rightarrow -y3-12 \Rightarrow $\frac{-y}{3-12}$ = 1-2+3 $\frac{1}{-2+3}$

$$\Rightarrow$$
 x5 \Rightarrow $\frac{x}{5}$ = -y-9 $\frac{-y}{-9}$ = 1-2+3 $\frac{1}{-2+3}$

$$\Rightarrow$$
x5=y9=1 \Rightarrow $\frac{x}{5}$ = $\frac{y}{9}$ = 1 \Rightarrow x=5,y=9 \Rightarrow x = 5,y = 9

10) If the numerator of a fraction is multiplied by 2 and the denominator is reduced by 5 the fraction becomes $65\frac{6}{5}$. And, if the denominator is doubled and the numerator is increased by 8, the fraction becomes $25\frac{2}{5}$. Find the fraction.

Soln:

Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is $xy \frac{x}{y}$

If the numerator is multiplied by 2 and denominator is reduced by 5, the fraction becomes 65 $\frac{6}{5}$. Thus, we have

$$\Rightarrow_{2xy-5} = 65 \Rightarrow \frac{2x}{y-5} = \frac{6}{5} \Rightarrow 10x = 6(y-5) \Rightarrow 10x = 6(y-5) \Rightarrow 10x - 6y + 30 = 0$$

$$\Rightarrow 10x - 6y + 30 = 0 \Rightarrow 2(5x - 3y + 15) = 0 \Rightarrow 2(5x - 3y + 15) = 0 \Rightarrow 5x - 3y + 15 = 0$$

If the denominator is doubled and the numerator are increased by 8, the fraction becomes $25\frac{2}{5}$.. Thus we have

$$\Rightarrow x+82y=25 \Rightarrow \frac{x+8}{2y} = \frac{2}{5} \Rightarrow 5(x+8)=4y \Rightarrow 5(x+8)=4y \Rightarrow 5x+40=4y \Rightarrow 5x+40=4y \Rightarrow 5x-4y+40=0$$

So, we have two equations

$$5x - 3y + 15 = 0$$

$$5x - 4y + 40 = 0$$

Here x and y are unknowns. We have to solve the above equations for x and y.

By using cross-multiplication, we have

$$x(-3)*(40)-(-4)*15 \frac{x}{(-3)*(40)-(-4)*15} = -y5*(40)-5*15 \frac{-y}{5*(40)-5*15} = 15*(-4)-5*(-3) \frac{1}{5*(-4)-5*(-3)}$$

$$\Rightarrow x-120+60 \Rightarrow \frac{x}{-120+60} = \Rightarrow -y200-75 \Rightarrow \frac{-y}{200-75} = 1-20+15 \frac{1}{-20+15}$$

$$\Rightarrow x-60 \Rightarrow \frac{x}{-60} = -y125 \frac{-y}{125} = 1-5 \frac{1}{-5}$$

$$\Rightarrow x60 \Rightarrow \frac{x}{60} = y125 \frac{y}{125} = 15 \frac{1}{5}$$

$$x=605, y=1255 x = \frac{60}{5}, y = \frac{125}{5} \Rightarrow x=12, y=25 \Rightarrow x=12, y=25$$

The fraction is $1225 \frac{12}{25}$

11) The sum of the numerator and denominator of a fraction is 3 less than twice the denominator. If the numerator and denominator are decreased by 1, the numerator becomes half the denominator. Determine the fraction

Soln:

Let the numerator and denominator of the fraction be x and y respectively. Then the fraction is $xy \frac{x}{y}$

The sum of the numerator and denominator of a fraction is 3 less than twice the denominator. Thus, we have

$$x + y = 2y - 3$$

$$\Rightarrow$$
x+**y**-2**y**+3=0 \Rightarrow **x**+**y**-2**y**+3=0 \Rightarrow **x**-**y**+3=0 \Rightarrow **x**-**y**+3=0

If the numerator and denominator are decreased by 1, the numerator becomes half the denominator. Thus, we have

$$x-1=12(y-1)x-1=\frac{1}{2}(y-1)$$
 $\Rightarrow x-1y-1=12 \Rightarrow \frac{x-1}{y-1}=\frac{1}{2} \Rightarrow 2(x-1)=(y-1)$
 $\Rightarrow 2(x-1)=(y-1)$ $\Rightarrow 2x-2=(y-1)\Rightarrow 2x-2=(y-1)\Rightarrow 2x-y-1=0 \Rightarrow 2x-y-1=0$

So, we have two equations

$$x - y + 3 = 0$$

$$2x - y - 1 = 0$$

Here x and y are unknowns. We have to solve the above equations for x and y.

By using cross-multiplication, we have

$$x(-1)*(-1)-(-1)*3 \frac{x}{(-1)*(-1)-(-1)*3} = -y1*(-1)-2*3 \frac{-y}{1*(-1)-2*3} = 11*(-1)-2*(-1) \frac{1}{1*(-1)-2*(-1)}$$

$$\Rightarrow$$
 x1+3 \Rightarrow $\frac{x}{1+3} = \Rightarrow$ -y-1-6 \Rightarrow $\frac{-y}{-1-6} = 1$ -1+2 $\frac{1}{-1+2}$

$$\Rightarrow$$
 x4 $\Rightarrow \frac{x}{4} = -y-7 \frac{-y}{-7} = 11 \frac{1}{1}$

$$\Rightarrow$$
 x4 $\Rightarrow \frac{x}{4} =$ y7 $\frac{y}{7} =$ 11

$$\Rightarrow$$
x=4,**y=7** \Rightarrow x = 4, y = 7

The fraction is $47\frac{4}{7}$