In each of the following systems of equation determine whether the system has a unique solution, no solution or infinite solutions. In case there is a unique solution, find it from 1 to 4:

(1)
$$x-3y-3=0x-3y-3=0$$

$$3x-9y-2=03x-9y-2=0$$

Soln:

The given system may be written as

$$x-3y-3=0x-3y-3=0$$
 $3x-9y-2=03x-9y-2=0$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=1, b_1=-3, c_1=-3$$

$$a_2=3,b_2=-9,c_2=-2a_2=3,b_2=-9,c_2=-2$$

We have.

$$a_1a_2 = 13 \frac{a_1}{a_2} = \frac{1}{3} b_1b_2 = -3 - 9 = 13 \frac{b_1}{b_2} = \frac{-3}{-9} = \frac{1}{3}$$

And ,
$$c_1c_2 = -3 - 2 = 32 \frac{c_1}{c_2} = \frac{-3}{-2} = \frac{3}{2}$$

$$a_1a_2 = b_1b_2 \neq c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

Therefore, the given equation has no solution.

(2)
$$2x+y-5=0$$
 $2x+y-5=0$

$$4x+2y-10=04x+2y-10=0$$

Soln:

The given system may be written as

$$2x+y-5=02x+y-5=0$$
 $4x+2y-10=04x+2y-10=0$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=1,c_1=-5a_1=2,b_1=1,c_1=-5$$

$$a_2$$
=4, b_2 =2, c_2 =-10 a_2 = 4, b_2 = 2, c_2 = -10

We have,

$$a_1a_2 = 24 = 12 \frac{a_1}{a_2} = \frac{2}{4} = \frac{1}{2} \quad b_1b_2 = 12 \frac{b_1}{b_2} = \frac{1}{2}$$

And ,
$$c_1c_2 = -5 - 10 = 12 \frac{c_1}{c_2} = \frac{-5}{-10} = \frac{1}{2}$$

So,
$$a_1a_2 = b_1b_2 = c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Therefore, the given equation has infinitely many solution.

(3)
$$3x-5y=203x-5y=20$$

$$6x-10y=406x-10y=40$$

Soln:

The given system may be written as

$$3x-5y=203x-5y=20$$
 $6x-10y=406x-10y=40$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1$$
=3, b_1 =-5, c_1 =-20 a_1 = 3, b_1 = -5, c_1 = -20

$$a_2$$
=6, b_2 =-10, c_2 =-40 a_2 = 6, b_2 = -10, c_2 = -40

We have,

$$a_1a_2 = 36 = 12 \frac{a_1}{a_2} = \frac{3}{6} = \frac{1}{2} \quad b_1b_2 = -5 - 10 = 12 \frac{b_1}{b_2} = \frac{-5}{-10} = \frac{1}{2}$$

And,
$$c_1c_2 = -20-40 = 12 \frac{c_1}{c_2} = \frac{-20}{-40} = \frac{1}{2}$$

So,
$$a_1a_2 = b_1b_2 = c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Therefore, the given equation has infinitely many solution.

(4)
$$\mathbf{x-2y-8=0}$$
 $\mathbf{x}-2\mathbf{y}-8=0$

$$5x-10y-10=05x-10y-10=0$$

Soln:

The given system may be written as

$$x-2y-8=0x-2y-8=0$$
 $5x-10y-10=05x-10y-10=0$

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=1,b_1=-2,c_1=-8a_1=1,b_1=-2,c_1=-8$$

$$a_2=5, b_2=-10, c_2=-10a_2=5, b_2=-10, c_2=-10$$

We have,

$$a_1a_2 = 15 \frac{a_1}{a_2} = \frac{1}{5} b_1b_2 = -2 - 10 = 15 \frac{b_1}{b_2} = \frac{-2}{-10} = \frac{1}{5}$$

And,
$$c_1c_2 = -8 - 10 = 45 \frac{c_1}{c_2} = \frac{-8}{-10} = \frac{4}{5}$$

$$a_1a_2 = b_1b_2 \neq c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

Therefore, the given equation has no solution.

Find the value of k for each of the following system of equations which have a unique solution (5-8)

(5) kx+2y-5=0kx+2y-5=0

$$3x+y-1=03x+y-1=0$$

Soln:

The given system may be written as

$$kx+2y-5=0kx+2y-5=0$$
 $3x+y-1=03x+y-1=0$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1$$
=k, b_1 =2, c_1 =-5 a_1 =k, b_1 =2, c_1 =-5

$$a_2=3,b_2=1,c_2=-1$$
 $a_2=3,b_2=1,c_2=-1$

For unique solution, we have

$$a_1a_2 \neq b_1b_2 \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$
 $k3 \neq 21 \frac{k}{3} \neq \frac{2}{1} \Rightarrow k \neq 6 \Rightarrow k \neq 6$

Therefore, the given system will have unique solution for all real values of k other than 6.

(6)
$$4x+ky+8=04x+ky+8=0$$

$$2x+2y+2=0$$
 $2x + 2y + 2 = 0$

Soln:

The given system may be written as

$$4x+ky+8=04x+ky+8=0$$
 $2x+2y+2=02x+2y+2=0$

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where, a_1 =4, b_1 =k, c_1 =8 a_1 = 4, b_1 = k, c_1 = 8

$$a_2=2,b_2=2,c_2=2a_2=2,b_2=2,c_2=2$$

For unique solution, we have

$$a_1 a_2 \neq b_1 b_2 \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$
 $42 \neq k2 \frac{4}{2} \neq \frac{k}{2} \Rightarrow k \neq 4 \Rightarrow k \neq 4$

Therefore, the given system will have unique solution for all real values of k other than 4.

(7)
$$4x-5y=k4x-5y=k$$

$$2x-3y=122x-3y=12$$

Soln:

The given system may be written as

$$4x-5y-k=0$$
 $4x-5y-k=0$ $2x-3y-12=0$ $2x-3y-12=0$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=4, b_1=-5, c_1=-ka_1=4, b_1=-5, c_1=-k$$

$$a_2=2,b_2=-3,c_2=-12a_2=2,b_2=-3,c_2=-12$$

For unique solution, we have

$$a_1a_2 \neq b_1b_2 \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \quad 42 \neq -5 - 3 \frac{4}{2} \neq \frac{-5}{-3}$$

 \Rightarrow **k** \Rightarrow k can have any real values.

Therefore, the given system will have unique solution for all real values of k.

(8)
$$x+2y=3x+2y=3$$

$$5x+ky+7=05x+ky+7=0$$

Soln:

The given system may be written as

$$x+2y=3x+2y=3$$
 5x+ky+7=05x+ky+7=0

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1$$
=1, b_1 =2, c_1 =-3 a_1 = 1, b_1 = 2, c_1 = -3

$$a_2=5,b_2=k,c_2=7$$
 $a_2=5,b_2=k,c_2=7$

For unique solution, we have

$$a_1a_2 \neq b_1b_2 \frac{a_1}{a_2} \neq \frac{b_1}{b_2}$$
 $15 \neq 2k \frac{1}{5} \neq \frac{2}{k} \Rightarrow k \neq 10 \Rightarrow k \neq 10$

Therefore, the given system will have unique solution for all real values of k other than 10.

Find the value of k for which each of the following system of equations having infinitely many solution: (9-19)

(9)
$$2x+3y-5=02x+3y-5=0$$

$$6x-ky-15=06x-ky-15=0$$

Soln:

The given system may be written as

$$2x+3y-5=02x+3y-5=0$$
 $6x-ky-15=06x-ky-15=0$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1$$
=2, b_1 =3, c_1 =-5 a_1 = 2, b_1 = 3, c_1 = -5

$$a_2$$
=6, b_2 =k, c_2 =-15 a_2 = 6, b_2 = k, c_2 = -15

For unique solution, we have

$$a_1a_2 = b_1b_2 = c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 26 \neq 3k $\frac{2}{6} \neq \frac{3}{k} \implies$ k = 9

Therefore, the given system of equation will have infinitely many solutions, if k=9.

(10)
$$4x+5y=34x+5y=3$$

$$kx+15y=9kx+15y=9$$

Soln:

The given system may be written as

$$4x+5y=34x+5y=3$$
 $kx+15y=9kx+15y=9$

The given system of equation is of the form

$$\mathbf{a_1x} + \mathbf{b_1y} - \mathbf{c_1} = \mathbf{0} \\ \mathbf{a_1x} + \mathbf{b_1y} - \mathbf{c_1} = 0 \\ \mathbf{a_2x} + \mathbf{b_2y} - \mathbf{c_2} = \mathbf{0} \\ \mathbf{a_2x} + \mathbf{b_2y} - \mathbf{c_2} = 0 \\ \mathbf{a_2x} + \mathbf{b_2y} - \mathbf{c_2} = 0 \\ \mathbf{a_2x} + \mathbf{a$$

Where,
$$a_1$$
=4, b_1 =5, c_1 =3 a_1 = 4, b_1 = 5, c_1 = 3

$$a_2=k,b_2=15,c_2=9$$
 $a_2=k,b_2=15,c_2=9$

For unique solution, we have

$$a_1a_2 = b_1b_2 = c_1c_2\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 $4k = 515 = -3 - 9\frac{4}{k} = \frac{5}{15} = \frac{-3}{-9}$ $4k = 13\frac{4}{k} = \frac{1}{3} \implies k \neq 12 \implies k \neq 12$

Therefore, the given system will have infinitely many solutions if k=12.

(11)
$$kx-2y+6=0kx-2y+6=0$$

$$4x+3y+9=04x+3y+9=0$$

Soln:

The given system may be written as

$$kx-2y+6=0kx-2y+6=0$$
 $4x+3y+9=04x+3y+9=0$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=k, b_1=-2, c_1=6a_1=k, b_1=-2, c_1=6$$

$$a_2=4,b_2=-3,c_2=9$$
 $a_2=4,b_2=-3,c_2=9$

For unique solution, we have

$$a_1a_2 = b_1b_2 = c_1c_2\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 $k4 = -2 - 3 = 23\frac{k}{4} = \frac{-2}{-3} = \frac{2}{3} \implies k = 83 \implies k = \frac{8}{3}$

Therefore, the given system of equations will have infinitely many solutions, if k=83 k = $\frac{8}{3}$.

(12)
$$8x+5y=98x+5y=9$$

$$kx+10y=19kx+10y=19$$

Soln:

The given system may be written as

$$8x+5y=98x+5y=9$$
 kx+10y=19kx+10y=19

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1$$
=8, b_1 =5, c_1 =-9 a_1 = 8, b_1 = 5, c_1 = -9

$$a_2=k,b_2=10,c_2=-18$$
 $a_2=k,b_2=10,c_2=-18$

For unique solution, we have

$$a_1 a_2 = b_1 b_2 = c_1 c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \quad 8k = 510 = -9 - 18 = 12 \frac{8}{k} = \frac{5}{10} = \frac{-9}{-18} = \frac{1}{2} \implies k = 16 \implies k = 16$$

Therefore, the given system of equations will have infinitely many solutions, if k=16k=16.

(13)
$$2x-3y=72x-3y=7$$

$$(k+2)x-(2k+1)y=3(2k-1)(k+2)x-(2k+1)y=3(2k-1)$$

Soln:

The given system may be written as

$$2x-3y=72x-3y=7$$
 (k+2)x-(2k+1)y=3(2k-1)(k+2)x-(2k+1)y=3(2k-1)

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=-3,c_1=-7$$
 $a_1=2,b_1=-3,c_1=-7$

$$a_2=k,b_2=-(2k+1),c_2=-3(2k-1)a_2=k,b_2=-(2k+1),c_2=-3(2k-1)$$

For unique solution, we have

$$\begin{array}{ll} a_{1}a_{2}=b_{1}b_{2}=c_{1}c_{2}\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \quad 2k+2=-3-(2k+1)=-7-3(2k-1)\frac{2}{k+2}=\frac{-3}{-(2k+1)}=\frac{-7}{-3(2k-1)} \quad 2k+2=-3-(2k+1) \text{ and } -3-(2k+1)=-7-3(2k-1)\frac{2}{k+2}=\frac{-3}{-(2k+1)} \quad and \quad \frac{-3}{-(2k+1)}=\frac{-7}{-3(2k-1)} \quad \Rightarrow 2(2k+1)=3(k+2) \text{ and } 3\times 3(2k-1)=7(2k+1)\\ \Rightarrow 2(2k+1)=3(k+2) \text{ and } 3\times 3(2k-1)=7(2k+1) \quad \Rightarrow 4k+2=3k+6 \text{ and } 18k-9=14k+7\\ \Rightarrow 4k+2=3k+6 \text{ and } 18k-9=14k+7 \quad \Rightarrow k=4 \text{ and } 4k=16 \Rightarrow k=4 \\ \end{array}$$

Therefore, the given system of equations will have infinitely many solutions, if k=4k=4.

(14)
$$2x+3y=22x+3y=2$$

$$(k+2)x+(2k+1)y=2(k-1)(k+2)x+(2k+1)y=2(k-1)$$

Soln:

The given system may be written as

$$2x+3y=22x+3y=2$$
 (k+2)x+(2k+1)y=2(k-1)(k+2)x+(2k+1)y=2(k-1)

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=3,c_1=-2a_1=2,b_1=3,c_1=-2$$

$$a_2=(k+2), b_2=(2k+1), c_2=-2(k-1)a_2=(k+2), b_2=(2k+1), c_2=(2k+1), c_2=($$

For unique solution, we have

$$\begin{array}{l} a_{1}a_{2}=b_{1}b_{2}=c_{1}c_{2}\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \quad 2k+2=3(2k+1)=-2-2(k-1)\\ \frac{2}{k+2}=\frac{3}{(2k+1)}=\frac{-2}{-2(k-1)} \quad 2k+2=3(2k+1) \text{ and } 3(2k+1)=22(k-1)\\ \frac{2}{k+2}=\frac{3}{(2k+1)} \quad \text{and } \frac{3}{(2k+1)}=\frac{2}{2(k-1)} \quad \Rightarrow 2(2k+1)=3(k+2) \text{ and } 3(k-1)=(2k+1)\\ \Rightarrow 2(2k+1)=3(k+2) \text{ and } 3(k-1)=(2k+1) \quad \Rightarrow 4k+2=3k+6 \text{ and } 3k-3=2k+1\\ \Rightarrow 4k+2=3k+6 \text{ and } 3k-3=2k+1 \quad \Rightarrow k=4 \text{ and } k=4 \end{array}$$

Therefore, the given system of equations will have infinitely many solutions, if $\mathbf{k=4}$ k = 4.

(15)
$$x+(k+1)y=4x+(k+1)y=4$$

(k+1)x+9y=(5k+2)(k+1)x+9y=(5k+2)

Soln:

The given system may be written as

$$x+(k+1)y=4x+(k+1)y=4$$
 $(k+1)x+9y=(5k+2)(k+1)x+9y=(5k+2)$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=1,b_1=(k+1),c_1=-4a_1=1,b_1=(k+1),c_1=-4$$

$$a_2=(k+1),b_2=9,c_2=-(5k+2)a_2=(k+1),b_2=9,c_2=-(5k+2)$$

For unique solution, we have

$$\begin{array}{l} a_{1}a_{2}=b_{1}b_{2}=c_{1}c_{2}\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \quad 1k+1=(k+1)9=-4-(5k+2\frac{1}{k+1}=\frac{(k+1)}{9}=\frac{4}{-(5k+2)} \quad 1k+1=k+19 \, \text{and} \, k+19=45k+2\\ \frac{1}{k+1}=\frac{k+1}{9} \quad \text{and} \quad \frac{k+1}{9}=\frac{4}{5k+2} \quad \Rightarrow 9=(k+1)^{2} \, \text{and} \, (k+1)(5k+2)=36\\ \Rightarrow 9=(k+1)^{2} \quad \text{and} \, (k+1)(5k+2)=36 \quad \Rightarrow 9=k^{2}+2k+1 \, \text{and} \, 5k^{2}+2k+5k+2=36\\ \Rightarrow 9=k^{2}+2k+1 \, \text{and} \, 5k^{2}+2k+5k+2=36 \quad \Rightarrow k^{2}+2k-8=0 \, \text{and} \, 5k^{2}+7k-34=0\\ \Rightarrow k^{2}+2k-8=0 \, \text{and} \, 5k^{2}+7k-34=0 \quad \Rightarrow k^{2}+4k-2k-8=0 \, \text{and} \, 5k^{2}+7k-34=0\\ \Rightarrow k^{2}+4k-2k-8=0 \, \text{and} \, 5k^{2}+7k-34=0 \quad \Rightarrow k(k+4)-2(k+4)=0 \, \text{and} \, (5k+17)-2(5k+17)=0\\ \Rightarrow k(k+4)-2(k+4)=0 \, \text{and} \, (5k+17)-2(5k+17)=0 \quad \Rightarrow (k+4)(k-2)=0 \, \text{and} \, (5k+17)(k-2)=0\\ \Rightarrow (k+4)(k-2)=0 \, \text{and} \, (5k+17)(k-2)=0 \quad \Rightarrow k=-4 \, \text{ork} = 2 \, \text{and} \, k=\frac{-17}{5} \, \text{ork} = 2 \end{array}$$

thus, k=2 satisfies both the condition.

Therefore, the given system of equations will have infinitely many solutions, if k=2k=2.

(16)
$$kx+3y=2k+1kx + 3y = 2k + 1$$

2(k+1)x+9y=(7k+1)2(k+1)x+9y = (7k+1)

Soln:

The given system may be written as

$$kx+3y=2k+1kx+3y=2k+1$$
 $2(k+1)x+9y=(7k+1)2(k+1)x+9y=(7k+1)$

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1$$
= k , b_1 = 3 , c_1 = $-(2k+1)a_1$ = k , b_1 = 3 , c_1 = $-(2k+1)$

$$a_2=2(k+1),b_2=9,c_2=-(7k+1)a_2=2(k+1),b_2=9,c_2=-(7k+1)$$

For unique solution, we have

$$a_1a_2 = b_1b_2 = c_1c_2\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 $12(k+2) = 39 = -(2k+1) - (7k+1)\frac{1}{2(k+2)} = \frac{3}{9} = \frac{-(2k+1)}{-(7k+1)}$ $12(k+2) = 39$ and $39 = (2k+1)$ $(7k+1)\frac{1}{2(k+2)} = \frac{3}{9}$ and $\frac{3}{9} = \frac{(2k+1)}{(7k+1)}$ $\Rightarrow 9k = 3 \times 2(k+1)$ and $3(7k+1) = 9(2k+1)$ $\Rightarrow 9k = 3 \times 2(k+1)$ and $3(7k+1) = 9(2k+1)$ $\Rightarrow 9k - 6k = 6$ and $21k - 18k = 9 - 3$ $\Rightarrow 3k = 6$ and $3k = 6$ $\Rightarrow k = 2$ and $k = 2$

Therefore, the given system of equations will have infinitely many solutions, if k=2k=2.

(17)
$$2x+(k-2)y=k2x+(k-2)y=k$$

 $6x+(2k-1)y=(2k+5)6x+(2k-1)y=(2k+5)$

Soln:

The given system may be written as

$$2x+(k-2)y=k2x+(k-2)y=k$$
 $6x+(2k-1)y=(2k+5)6x+(2k-1)y=(2k+5)$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=(k-2),c_1=-ka_1=2,b_1=(k-2),c_1=-k$$

$$a_2=6, b_2=(2k-1), c_2=-(2k+5)a_2=6, b_2=(2k-1), c_2=-(2k+5)$$

For unique solution, we have

$$\begin{array}{lll} a_{1}a_{2}=b_{1}b_{2}=c_{1}c_{2}\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} & 26=k-22k-1=-k-2(2k+5)\frac{2}{6}=\frac{k-2}{2k-1}=\frac{-k}{-2(2k+5)} & 26=k-22k-1 \text{ and } k-22k-1=k(2k+5) \\ \frac{2}{6}=\frac{k-2}{2k-1} & \text{and } \frac{k-2}{2k-1}=\frac{k}{(2k+5)} & 13=k-22k-1 \text{ and } 2k^2+5k-4k-10=2k^2-k \\ \frac{1}{3}=\frac{k-2}{2k-1} & \text{and } 2k^2+5k-4k-10=2k^2-k & \Rightarrow 2k-3k=-6+1 \text{ and } k+k=10 \\ \Rightarrow 2k-3k=-6+1 & \text{and } k+k=10 & \Rightarrow -k=-5 \text{ and } 2k=10 & \Rightarrow k=5 \text{ and } k=5 \end{array}$$

Therefore, the given system of equations will have infinitely many solutions, if k=5k=5.

(18)
$$2x+3y=72x+3y=7$$

(k+1)x+(2k-1)y=(4k+1)(k+1)x+(2k-1)y=(4k+1)

Soln:

The given system may be written as

$$2x+3y=72x+3y=7$$
 (k+1)x+(2k-1)y=(4k+1)(k+1)x+(2k-1)y=(4k+1)

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=3,c_1=-7a_1=2,b_1=3,c_1=-7$$

$$a_2=k+1,b_2=2k-1,c_2=-(4k+1)a_2=k+1,b_2=2k-1,c_2=-(4k+1)$$

For unique solution, we have

$$a_1 a_2 = b_1 b_2 = c_1 c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \quad 2k+1 = 32k-1 = -7 - (4k+1) \frac{2}{k+1} = \frac{3}{2k-1} = \frac{-7}{-(4k+1)} \quad 2k+1 = 32k-1 \text{ and } 32k-1 = 7(4k+1) \frac{2}{k+1} = \frac{3}{2k-1} \quad and \quad \frac{3}{2k-1} = \frac{7}{(4k+1)} \quad \text{Extra close brace or missing open brace}$$

$$\Rightarrow$$
4k-2=3k+3and12k+3=14k-7

$$\Rightarrow$$
 4k - 2 = 3k + 3 and 12k + 3 = 14k - 7 \Rightarrow **k=5and2k=10** \Rightarrow **k = 5** and 2k = 10 \Rightarrow **k=5andk=5** \Rightarrow k = 5 and k = 5

Therefore, the given system of equations will have infinitely many solutions, if k=5k=5.

(19)
$$2x+3y=k2x+3y=k$$

$$(k-1)x+(k+2)y=3k(k-1)x+(k+2)y=3k$$

Soln:

The given system may be written as

$$2x+3y=k2x+3y=k$$
 $(k-1)x+(k+2)y=3k(k-1)x+(k+2)y=3k$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=3,c_1=-ka_1=2,b_1=3,c_1=-k$$

$$a_2=k-1,b_2=k+2,c_2=-3ka_2=k-1,b_2=k+2,c_2=-3k$$

For unique solution, we have

Therefore, the given system of equations will have infinitely many solutions, if k=7k=7.

Find the value of k for which the following system of equation has no solution: (20-25)

(20)
$$kx-5y=2kx-5y=2$$

$$6x+2y=76x+2y=7$$

Soln:

The given system may be written as

$$kx-5y=2kx-5y=2$$
 $6x+2y=76x+2y=7$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1$$
=k, b_1 =-5, c_1 =-2 a_1 = k, b_1 = -5, c_1 = -2

$$a_2$$
=6, b_2 =2, c_2 =-7 a_2 = 6, b_2 = 2, c_2 = -7

For no solution, we have

$$a_{1}a_{2} = b_{1}b_{2} \neq c_{1}c_{2} \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} \quad k6 = -52 \neq 27 \frac{k}{6} = \frac{-5}{2} \neq \frac{2}{7} \Rightarrow 2k = -30 \Rightarrow 2k = -30 \quad \Rightarrow k = -15 \Rightarrow k = -15$$

Therefore, the given system of equations will have no solutions, if k=-15k=-15.

(21)
$$x+2y=0x+2y=0$$

$$2x+ky=52x+ky=5$$

Soln:

The given system may be written as

$$x2y=0x2y = 0$$
 $2x+ky=52x + ky = 5$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=1, b_1=2, c_1=0$$
 $a_1=1, b_1=2, c_1=0$

$$a_2=2,b_2=k,c_2=-5a_2=2,b_2=k,c_2=-5$$

For no solution, we have

$$\mathsf{a_1a_2} = \mathsf{b_1b_2} \neq \mathsf{c_1c_2} \, \frac{\mathsf{a_1}}{\mathsf{a_2}} = \frac{\mathsf{b_1}}{\mathsf{b_2}} \neq \frac{\mathsf{c_1}}{\mathsf{c_2}} \quad \mathsf{12} = \mathsf{2k} \neq \mathsf{27} \, \frac{1}{2} = \frac{2}{k} \neq \frac{2}{7} \; \Rightarrow \pmb{k} = \pmb{4} \Rightarrow k = 4$$

Therefore, the given system of equations will have no solutions, if k=4k=4.

(22)
$$3x-4y+7=03x-4y+7=0$$

$$kx+3y-5=0kx+3y-5=0$$

Soln:

The given system may be written as

$$3x-4y+7=03x-4y+7=0$$
 kx+3y-5=0kx+3y-5=0

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=3, b_1=-4, c_1=7$$
 $a_1=3, b_1=-4, c_1=7$

$$a_2$$
=k, b_2 =3, c_2 =-5 a_2 = k, b_2 = 3, c_2 = -5

For no solution, we have

$$a_1a_2 = b_1b_2 \neq c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
 $3k = -43 \frac{3}{k} = \frac{-4}{3} \Rightarrow k = -94 \Rightarrow k = \frac{-9}{4}$

Therefore, the given system of equations will have no solutions, if $k=-94\,k=\frac{-9}{4}$.

(23)
$$2x-ky+3=02x-ky+3=0$$

$$3x+2y-1=03x+2y-1=0$$

Soln:

The given system may be written as

$$2x-ky+3=02x-ky+3=0$$
 $3x+2y-1=03x+2y-1=0$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=-k,c_1=3$$
 $a_1=2,b_1=-k,c_1=3$

$$a_2=3,b_2=2,c_2=-1$$
 $a_2=3,b_2=2,c_2=-1$

For no solution, we have

$$a_1 a_2 = b_1 b_2 \neq c_1 c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \quad 23 = -k2 \frac{2}{3} = \frac{-k}{2} \implies k = -43 \implies k = \frac{-4}{3}$$

Therefore, the given system of equations will have no solutions, if $k=-43k=\frac{-4}{3}$.

(24)
$$2x+ky-11=02x+ky-11=0$$

$$5x-7y-5=05x-7y-5=0$$

Soln:

The given system may be written as

$$2x+ky-11=02x+ky-11=0$$
 $5x-7y-5=05x-7y-5=0$

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where, $a_1=2,b_1=k,c_1=-11a_1=2,b_1=k,c_1=-11$

$$a_2=5,b_2=-7,c_2=-5a_2=5,b_2=-7,c_2=-5$$

For no solution, we have

$$a_1a_2 = b_1b_2 \neq c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
 $25 = -k-7 \frac{2}{5} = \frac{-k}{-7} \implies k = -145 \implies k = \frac{-14}{5}$

Therefore, the given system of equations will have no solutions, if $k = -145 \, \text{k} = \frac{-14}{5}$.

(25)
$$kx+3y=3kx+3y=3$$

$$12x+ky=612x+ky=6$$

Soln:

The given system may be written as

$$kx+3y=3kx + 3y = 3$$
 12x+ky=612x + ky = 6

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1$$
= k , b_1 = 3 , c_1 = $-3a_1$ = k , b_1 = 3 , c_1 = -3

$$a_2$$
=12, b_2 = k , c_2 =-6 a_2 = 12, b_2 = k , c_2 = -6

For no solution, we have

$$a_1a_2 = b_1b_2 \neq c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

$$k12 = 3k \neq 36 \frac{k}{12} = \frac{3}{k} \neq \frac{3}{6}$$
(i)

$$\Rightarrow$$
k²=36 \Rightarrow k²=36 \Rightarrow k=+6or-6 \Rightarrow k=+6 or -6

From (i)

$$k12 \neq 36 \frac{k}{12} \neq \frac{3}{6} \Rightarrow k \neq 6 \Rightarrow k \neq 6$$

Therefore, the given system of equations will have no solutions, if k=-6k = -6 .

(26) For what value of a, the following system of equation will be inconsistent?

4x+6y-11=0
$$4x + 6y - 11 = 0$$

$$2x+ay-7=02x + ay - 7 = 0$$

Soln:

The given system may be written as

$$4x+6y-11=04x+6y-11=0$$
 $2x+ay-7=02x+ay-7=0$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1$$
=4, b_1 =6, c_1 =-11 a_1 = 4, b_1 = 6, c_1 = -11

$$a_2=2,b_2=a,c_2=-7a_2=2,b_2=a,c_2=-7$$

For unique solution, we have

$$a_1a_2 = b_1b_2 \neq c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2} \quad a_1a_2 = b_1b_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} \quad 42 = 6a \frac{4}{2} = \frac{6}{a} \Rightarrow a = 3 \Rightarrow a = 3$$

Therefore, the given system of equations will be inconsistent, if a=3a=3.

(27) For what value of a, the following system of equation have no solution?

$$ax+3y=a-3ax + 3y = a-3$$

$$12x+ay=a12x + ay = a$$

Soln:

The given system may be written as

$$ax+3y=a-3ax + 3y = a-3$$
 12x+ay=a12x + ay = a

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=a,b_1=3,c_1=-(a-3)a_1=a,b_1=3,c_1=-(a-3)$$

$$a_2=12,b_2=a,c_2=-aa_2=12,b_2=a,c_2=-a$$

For unique solution,we have

$$a_1a_2 = b_1b_2 \neq c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
 $a_12 = 3a \neq -(a-3) - a \frac{a}{12} = \frac{3}{a} \neq \frac{-(a-3)}{-a}$ $3a \neq frac - (a-3) - a \Rightarrow a - 3 \neq 3 \Rightarrow a - 3 \neq 3 \Rightarrow a \neq 6 \Rightarrow a \neq 6$

And,

$$a_{12} = 3a \frac{a}{12} = \frac{3}{a} \Rightarrow a^2 = 36 \Rightarrow a^2 = 36 \Rightarrow a = +6 \text{ or } -6 \Rightarrow a = +6 \text{$$

$$\Rightarrow$$
a=-6 \Rightarrow a = -6

Therefore, the given system of equations will have no solution, if a=-6a=-6.

(28) Find the value of a, for which the following system of equation have

(i) Unique solution

(ii) No solution

$$kx+2y=5kx + 2y = 5$$

$$3x+y=13x+y=1$$

Soln:

The given system may be written as

$$kx+2y-5=0kx+2y-5=0$$
 $3x+y-1=03x+y-1=0$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=k, b_1=2, c_1=-5a_1=k, b_1=2, c_1=-5$$

$$a_2=3,b_2=1,c_2=-1$$
 $a_2=3,b_2=1,c_2=-1$

(i) For unique solution, we have

$$a_1 a_2 \neq b_1 b_2 \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \ k3 \neq 21 \frac{k}{3} \neq \frac{2}{1} \ k \neq 6k \neq 6$$

Therefore, the given system of equations will have unique solution, if $k \neq 6k \neq 6$.

(ii) For no solution, we have

$$a_1a_2 = b_1b_2 \neq c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$
 $k_3 = 21 \neq -5 - 1 \frac{k}{3} = \frac{2}{1} \neq \frac{-5}{-1}$ $k_3 = 21 \frac{k}{3} = \frac{2}{1} \Rightarrow k = 6 \Rightarrow k = 6$

Therefore, the given system of equations will have no solution, if a=6a=6.

(29) For what value of c, the following system of equation have infinitely many solution (where $c \neq 0$)?

$$6x+3y=c-36x+3y=c-3$$

12x+cy=c
$$12x + cy = c$$

Soln:

The given system may be written as

$$6x+3y-(c-3)=06x+3y-(c-3)=0$$
 $12x+cy-c=012x+cy-c=0$

$$\mathbf{a_1x} + \mathbf{b_1y} - \mathbf{c_1} = \mathbf{0} \\ \mathbf{a_1x} + \mathbf{b_1y} - \mathbf{c_1} = 0 \\ \mathbf{a_2x} + \mathbf{b_2y} - \mathbf{c_2} = \mathbf{0} \\ \mathbf{a_2x} + \mathbf{b_2y} - \mathbf{c_2} = 0$$

Where,
$$a_1=6$$
, $b_1=3$, $c_1=-(c-3)a_1=6$, $b_1=3$, $c_1=-(c-3)$

$$a_2=12,b_2=c,c_2=-ca_2=12,b_2=c,c_2=-c$$

For infinitely many solution, we have

$$a_1a_2 = b_1b_2 = c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 612 = 3c = -(c-3)-c $\frac{6}{12} = \frac{3}{c} = \frac{-(c-3)}{-c}$ 12 = 3c and 3c = -(c-3)-c $\frac{1}{2} = \frac{3}{c}$ and $\frac{3}{c} = \frac{-(c-3)}{-c}$ \Rightarrow c=6andc-3=3 \Rightarrow c=6 and c = 3 \Rightarrow c=6andc=6 \Rightarrow c=6 and c = 6

Therefore, the given system of equations will have infinitely many solution, if c=6c=6.

(30) Find the value of k, for which the following system of equation have

- (i) Unique solution
- (ii) No solution
- (iii) Infinitely many solution

$$2x+ky=12x+ky=1$$

$$3x-5y=73x-5y=7$$

Soln:

The given system may be written as

$$2x+ky=12x+ky=1$$
 $3x-5y=73x-5y=7$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=k,c_1=-1$$
 $a_1=2,b_1=k,c_1=-1$

$$a_2=3,b_2=-5,c_2=-7$$
 $a_2=3,b_2=-5,c_2=-7$

(i) For unique solution, we have

$$\mathsf{a_1a_2} \neq \mathsf{b_1b_2} \, \frac{\mathsf{a_1}}{\mathsf{a_2}} \neq \frac{\mathsf{b_1}}{\mathsf{b_2}} \ \, \mathsf{23} \neq \mathsf{-k-5} \, \frac{2}{3} \neq \frac{\mathsf{-k}}{\mathsf{-5}} \ \, \mathsf{k} \neq \mathsf{-103} \, \mathsf{k} \neq \frac{\mathsf{-10}}{3}$$

Therefore, the given system of equations will have unique solution, if k≠-103 k $\neq \frac{-10}{3}$.

(ii) For no solution, we have

$$\begin{array}{ll} a_{1}a_{2}=b_{1}b_{2}\neq c_{1}c_{2}\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}\neq\frac{c_{1}}{c_{2}} \quad 23=\text{k-5}\,\text{neq}\,\text{-1-7}\,\frac{2}{3}=\frac{k}{-5}\,\text{neq}\,\frac{-1}{-7}\,\,23=\text{k-5}\,\text{and}\,\text{k-5}\,\text{neq}\,\text{17}\\ \frac{2}{3}=\frac{k}{-5}\,\,\text{and}\,\,\frac{k}{-5}\,\text{neq}\,\frac{1}{7}\,\,\Rightarrow\text{k=-103}\,\text{andkneq-57}\Rightarrow k=\frac{-10}{3}\,\,\text{and}\,\,k\text{neq}\,\frac{-5}{7}\,\,\Rightarrow\text{k=-103}\Rightarrow k=\frac{-10}{3}\\ \end{array}$$

Therefore, the given system of equations will have no solution, if $k = -103 \, k = \frac{-10}{3}$.

(iii) For the given system to have infinitely many solution, we have

$$a_1a_2 = b_1b_2 = c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 $23 = k-5 = -1-7 \frac{2}{3} = \frac{k}{-5} = \frac{-1}{-7}$

Clearly $a_1a_2 \neq c_1c_2 \frac{a_1}{a_2} \neq \frac{c_1}{c_2}$,

So there is no value of k for which the given system of equation has infinitely many solution.

(31) For what value of k, the following system of equation will represent the coincident lines?

$$x+2y+7=0x+2y+7=0$$

$$2x+ky+14=02x+ky+14=0$$

Soln:

The given system may be written as

$$x+2y+7=0x+2y+7=0$$
 2x+ky+14=02x+ky+14=0

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1$$
=1, b_1 =2, c_1 =7 a_1 = 1, b_1 = 2, c_1 = 7

$$a_2=2,b_2=k,c_2=14a_2=2,b_2=k,c_2=14$$

The given system of equation will represent the coincident lines if they have infinitely many solution.

$$a_1a_2 = b_1b_2 = c_1c_2\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 $12 = 2k = 714\frac{1}{2} = \frac{2}{k} = \frac{7}{14}$ $12 = 2k = 12\frac{1}{2} = \frac{2}{k} = \frac{1}{2}$ $\Rightarrow k=4 \Rightarrow k=4$

Therefore, the given system of equations will have infinitely many solution, if ${\bf k=4}{\rm k}=4$.

(32) (30) Find the value of k, for which the following system of equation have unique solution.

$$ax+by=cax+by=c$$

$$\textbf{lx+my} = nl_X + my = n$$

Soln:

The given system may be written as

$$ax+by-c=0ax + by - c = 0$$
 $lx+my-n=0lx + my - n = 0$

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=a,b_1=b,c_1=-ca_1=a,b_1=b,c_1=-c$$

$$a_2=1,b_2=m,c_2=-na_2=1,b_2=m,c_2=-n$$

For unique solution, we have

$$a_1a_2 \neq b_1b_2 \frac{a_1}{a_2} \neq \frac{b_1}{b_2} \Rightarrow al \neq bm \Rightarrow \frac{a}{l} \neq \frac{b}{m} \Rightarrow am \neq bl \Rightarrow am \neq bl$$

Therefore, the given system of equations will have unique solution, if $am \neq blam \neq bl$.

(33) Find the value of a and b such that the following system of linear equation have infinitely many solution:

$$(2a-1)x+3y-5=0(2a-1)x+3y-5=0$$

$$3x+(b-1)y-2=03x+(b-1)y-2=0$$

Soln:

The given system of equation may be written as,

$$(2a-1)x+3y-5=0(2a-1)x+3y-5=0$$
 $3x+(b-1)y-2=03x+(b-1)y-2=0$

The given system of equation is of the form

The given system of equation is of the form
$$a_1x+b_1y-c_1=0 \quad a_2x+b_2y-c_2=0 \\ a_$$

Where,
$$a_1 = (2a-1), b_1 = 3, c_1 = -5a_1 = (2a-1), b_1 = 3, c_1 = -5$$

$$a_2=3,b_2=b-1,c_2=-2a_2=3,b_2=b-1,c_2=-2$$

The given system of equation will have infinitely many solution, if

$$\begin{array}{l} a_{1}a_{2}=b_{1}b_{2}=c_{1}c_{2}\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \quad (2a-1)3=3b-1=-5-2\frac{(2a-1)}{3} \Rightarrow \frac{3}{b-1}=\frac{-5}{-2} \quad (2a-1)3=52 \text{ and } 3b-1=52 \\ \frac{(2a-1)}{3}=\frac{5}{2} \quad \text{and } \frac{3}{b-1}=\frac{5}{2} \quad \Rightarrow 2(2a-1)=15 \text{ and } 6=5(b-1) \\ \Rightarrow 2(2a-1)=15 \quad \text{and } 6=5(b-1) \quad \Rightarrow 4a-2=15 \text{ and } 6=5b-5 \\ \Rightarrow 4a-2=15 \quad \text{and } 6=5b-5 \quad \Rightarrow 4a=17 \text{ and } 5b=11 \quad \Rightarrow a=174 \text{ and } b=115 \\ \Rightarrow a=\frac{17}{4} \quad \text{and } b=\frac{11}{5} \end{array}$$

(34) Find the value of a and b such that the following system of linear equation have infinitely many solution:

$$2x-3y=72x-3y=7$$

$$(a+b)x-(a+b-3)y=4a+b(a+b)x-(a+b-3)y=4a+b$$

Soln:

The given system of equation may be written as,

$$2x-3y-7=02x-3y-7=0$$
 (a+b)x-(a+b-3)y-(4a+b)=0(a+b)x-(a+b-3)y-(4a+b)=0

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=-3,c_1=-7a_1=2,b_1=-3,c_1=-7$$

$$a_2=(a+b), b_2=-(a+b-3), c_2=-(4a+b)a_2=(a+b), b_2=-(a+b-3), c_2=-(4a+b)$$

The given system of equation will have infinitely many solution, if

$$a_{1}a_{2} = b_{1}b_{2} = c_{1}c_{2}\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}} \quad 2(a+b) = -3-(a+b-3) = -7-(4a+b)$$

$$\frac{2}{(a+b)} = \frac{-3}{-(a+b-3)} = \frac{-7}{-(4a+b)} \quad 2(a+b) = 3(a+b-3) \text{ and } 3(a+b-3) = 7(4a+b)$$

$$\frac{2}{(a+b)} = \frac{3}{(a+b-3)} \quad \text{and } \frac{3}{(a+b-3)} = \frac{7}{(4a+b)} \Rightarrow 2(a+b-3) = 3(a+b) \text{ and } 3(4a+b) = 7(a+b-3)$$

$$\Rightarrow 2(a+b-3) = 3(a+b) \text{ and } 3(4a+b) = 7(a+b-3) \qquad \Rightarrow 2a+2b-6=3a+3b \text{ and } 12a+3b=7a+7b-21$$

$$\Rightarrow 2a+2b-6=3a+3b \text{ and } 12a+3b=7a+7b-21 \qquad \Rightarrow a+b=-6 \text{ and } 5a-4b=-21$$

a+b = -6

$$\Rightarrow$$
a=-6-b \Rightarrow a=-6-b

Substituting the value of a in 5a-4b=-215a-4b=-21 we have

$$\Rightarrow$$
 -5b-30-4b=-21 \Rightarrow -5b-30-4b=-21 \Rightarrow 9b=-9 \Rightarrow 9b=-1 \Rightarrow b=-1

As a=-6-b

$$\Rightarrow$$
a=-6+1=-5 \Rightarrow **a** = -6+1=-5

Hence the given system of equation will have infinitely many solution if

a=-5 and b=-1.

(35) Find the value of p and q such that the following system of linear equation have infinitely many solution:

$$2x-3y=92x-3y=9$$

$$(p+q)x+(2p-q)y=3(p+q+1)(p+q)x+(2p-q)y=3(p+q+1)$$

Soln:

The given system of equation may be written as,

$$2x-3y-9=02x-3y-9=0 \quad \text{(p+q)}x+(2p-q)y-3(p+q+1)=0\\ (p+q)x+(2p-q)y-3(p+q+1)=0\\ (p+q)x+(2p-q)x+(2p-q)y-3(p+q+1)=0\\ (p+q)x+(2p-q)x+($$

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=3,c_1=-9a_1=2,b_1=3,c_1=-9a_1=2$$

$$a_2=(p+q), b_2=(2p-q), c_2=-3(p+q+1)a_2=(p+q), b_2=(2p-q), c_2=-3(p+q+1)a_2=(p+q), b_2=(2p-q), c_2=-3(p+q+1)a_2=(p+q), b_2=(2p-q), c_2=-3(p+q+1)a_2=(p+q), b_2=(2p-q), c_2=-3(p+q+1)a_2=(p+q), b_2=(p+q), b_2=($$

The given system of equation will have infinitely many solution, if

$$\begin{array}{l} a_{1}a_{2}=b_{1}b_{2}=c_{1}c_{2}\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \quad 2(p+q)=3(2p-q)=-9-3(p+q+1) \\ \frac{2}{(p+q)}=\frac{3}{(2p-q)}=\frac{-9}{-3(p+q+1)} \quad 2(p+q)=3(2p-q) \text{ and } 3(2p-q)=3(p+q+1) \\ \frac{2}{(p+q)}=\frac{3}{(2p-q)} \text{ and } \frac{3}{(2p-q)}=\frac{3}{(p+q+1)} \quad 2(2p-q)=3(p+q) \text{and } (p+q+1)=2p-q \\ 2(2p-q)=3(p+q) \text{ and } (p+q+1)=2p-q \quad \Rightarrow 4p-2q=3p+3q \text{ and } -p+2q=-1 \\ \Rightarrow 4p-2q=3p+3q \text{ and } -p+2q=-1 \quad \Rightarrow p=5q \text{ and } p-2q=1 \\ \end{array}$$

Substituting the value of p in p-2q=1, we have

3q = 1

$$\Rightarrow$$
q=13 \Rightarrow q = $\frac{1}{3}$

Substituting the value of p in p=5qp=5q we have

$$p = 53p = \frac{5}{3}$$

Hence the given system of equation will have infinitely many solution if

$$p=53p=\frac{5}{3}$$
 and $q=13q=\frac{1}{3}$.

(36) Find the values of a and b for which the following system of equation has infinitely many solution:

(i)
$$(2a-1)x+3y=5(2a-1)x+3y=5$$

$$3x+(b-2)y=33x+(b-2)y=3$$

Soln:

The given system of equation may be written as,

$$(2a-1)x+3y-5=0$$
 $(2a-1)x+3y-5=0$ $3x+(b-2)y-3=0$ $3x+(b-2)y-3=0$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2a-1$$
, $b_1=3$, $c_1=-5a_1=2a-1$, $b_1=3$, $c_1=-5$

$$a_2=3,b_2=b-2,c_2=-3(p+q+1)a_2=3,b_2=b-2,c_2=-3(p+q+1)$$

The given system of equation will have infinitely many solution, if

$$\begin{array}{l} a_{1}a_{2}=b_{1}b_{2}=c_{1}c_{2}\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}} \quad 2a-13=-3b-2=-5-3\frac{2a-1}{3}=\frac{-3}{b-2}=\frac{-5}{-3} \quad 2a-13=53\,\text{and} \quad -3b-2=53\\ \frac{2a-1}{3}=\frac{5}{3} \quad \text{and} \quad \frac{-3}{b-2}=\frac{5}{3} \quad 2a-1=5\,\text{and} \quad -9=5(b-2)2a-1=5\,\text{and} \quad -9=5(b-2) \quad \Rightarrow a=3\,\text{and} \quad -9=5b-10\\ \Rightarrow a=3\,\text{and} \quad -9=5b-10 \quad \Rightarrow a=3\,\text{and} \quad b=\frac{1}{5} \end{array}$$

Hence the given system of equation will have infinitely many solution if

$$a=3a=3$$
 and $b=15b=\frac{1}{5}$.

(ii)
$$2x-(2a+5)y=52x-(2a+5)y=5$$

$$(2b+1)x-9y=15(2b+1)x-9y=15$$

Soln:

The given system of equation may be written as,

$$2x-(2a+5)y=52x-(2a+5)y=5$$
 (2b+1)x-9y=15(2b+1)x-9y=15

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=-(2a+5),c_1=-5a_1=2,b_1=-(2a+5),c_1=-5$$

$$a_2=(2b+1), b_2=-9, c_2=-15a_2=(2b+1), b_2=-9, c_2=-15$$

The given system of equation will have infinitely many solution, if

$$a_{1}a_{2} = b_{1}b_{2} = c_{1}c_{2}\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}} \quad 22b+1 = -(2a+5)-9 = -5-15\frac{2}{2b+1} = \frac{-(2a+5)}{-9} = \frac{-5}{-15} \quad 22b+1 = 13 \text{ and } (2a+5)9 = 13$$

$$\frac{2}{2b+1} = \frac{1}{3} \text{ and } \frac{(2a+5)}{9} = \frac{1}{3} \quad \Rightarrow 6 = 2b+1 \text{ and } 2a+5 = 3 \quad \Rightarrow b = 52 \text{ and } a = -1$$

$$\Rightarrow b = \frac{5}{2} \text{ and } a = -1$$

Hence the given system of equation will have infinitely many solution if

$$a=-1a=-1$$
 and $b=52b=\frac{5}{2}$.

(iii)
$$(a-1)x+3y=2(a-1)x+3y=2$$

$$6x+(1-2b)y=66x+(1-2b)y=6$$

Soln:

The given system of equation may be written as,

$$(a-1)x+3y=2(a-1)x+3y=2$$
 $6x+(1-2b)y=66x+(1-2b)y=6$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=a-1, b_1=3, c_1=-2a_1=a-1, b_1=3, c_1=-2$$

$$a_2=6,b_2=1-2b,c_2=-6a_2=6,b_2=1-2b,c_2=-6$$

The given system of equation will have infinitely many solution, if

$$a_1a_2 = b_1b_2 = c_1c_2\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 $a-16 = 31-2b = 26\frac{a-1}{6} = \frac{3}{1-2b} = \frac{2}{6}$ $a-16 = 13$ and $a-16 =$

Hence the given system of equation will have infinitely many solution if

$$a=3a=3$$
 and $b=-4b=-4$.

(iv)
$$3x+4y=123x+4y=12$$

$$(a+b)x+2(a-b)y=5a-1(a+b)x+2(a-b)y=5a-1$$

Soln:

The given system of equation may be written as,

$$3x+4y-12=03x+4y-12=0$$
 (a+b)x+2(a-b)y-(5a-1)=0(a+b)x+2(a-b)y-(5a-1)=0

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=3$$
, $b_1=4$, $c_1=-12a_1=3$, $b_1=4$, $c_1=-12$

$$a_2=(a+b), b_2=2(a-b), c_2=-(5a-1)a_2=(a+b), c_2=-(5a-1)a_2=(a+b$$

The given system of equation will have infinitely many solution, if

$$a_{1}a_{2} = b_{1}b_{2} = c_{1}c_{2}\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}} \quad 3a+b = 42(a-b) = 125a-1 \quad \frac{3}{a+b} = \frac{4}{2(a-b)} = \frac{12}{5a-1} \quad 3a+b = 2a+b \text{ and } 2a+b = 125a-1 \quad \frac{3}{a+b} = \frac{2}{a+b} \quad \text{and} \quad \frac{2}{a+b} = \frac{12}{5a-1} \quad \Rightarrow 3(a-b) = 2a+2b \text{ and} \quad 2(5a-1) = 12(a-b) \quad \Rightarrow 3(a-b) = 2a+2b \text{ and} \quad 2(5a-1) = 12(a-b) \quad \Rightarrow a = 5b \text{ and} \quad -2a = -12b+2$$

$$\Rightarrow a = 5b \text{ and} \quad -2a = -12b+2$$

Substituting a=5b in -2a=-12b+2, we have

$$-2(5b)=-12b+2$$

$$\Rightarrow$$
 -10b=-12b+2 \Rightarrow -10b = -12b+2 \Rightarrow b=1 \Rightarrow b = 1

Thus a=5

Hence the given system of equation will have infinitely many solution if

$$a=5a=5$$
 and $b=1b=1$.

(v)
$$2x+3y=72x+3y=7$$

$$(a-1)x+(a+1)y=3a-1(a-1)x+(a+1)y=3a-1$$

Soln:

The given system of equation may be written as,

$$2x+3y-7=02x+3y-7=0$$
 (a-1)x+(a+1)y-(3a-1)=0(a-1)x+(a+1)y-(3a-1)=0

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=3,c_1=-7$$
 $a_1=2,b_1=3,c_1=-7$

$$a_2=(a-1), b_2=(a+1), c_2=-(3a-1)a_2=(a-1), b_2=(a+1), c_2=-(3a-1)$$

The given system of equation will have infinitely many solution, if

$$a_{1}a_{2} = b_{1}b_{2} = c_{1}c_{2} \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}} \quad 2a - b = 3a + 1) = -73a - 1 \frac{2}{a - b} = \frac{3}{a + 1} = \frac{-7}{3a - 1} \quad 2a - b = 3a + 1) \text{ and } 3a + 1) = -73a - 1 \frac{2}{a - b} = \frac{3}{a + 1} \quad \text{and } \frac{3}{a + 1} = \frac{-7}{3a - 1} \quad \Rightarrow 2(a + 1) = 3(a - 1) \text{ and } 3(3a - 1) = 7(a + 1)$$

$$\Rightarrow 2(a + 1) = 3(a - 1) \text{ and } 3(3a - 1) = 7(a + 1) \quad \Rightarrow 2a - 3a = -3 - 2 \text{ and } 9a - 3 = 7a + 7 \quad \Rightarrow a = 5 \text{ and } a = 5$$

$$\Rightarrow 2a - 3a = -3 - 2 \text{ and } 9a - 3 = 7a + 7 \quad \Rightarrow a = 5 \text{ and } a = 5$$

Hence the given system of equation will have infinitely many solution if

$$a=5a=5$$
 and $b=1b=1$.

(vi)
$$2x+3y=72x+3y=7$$

$$(a-1)x+(a+2)y=3a(a-1)x+(a+2)y=3a$$

Soln:

The given system of equation may be written as,

$$2x+3y-7=02x+3y-7=0$$
 $(a-1)x+(a+2)y-3a=0(a-1)x+(a+2)y-3a=0$

The given system of equation is of the form

$$a_1x+b_1y-c_1=0$$
 $a_1x+b_1y-c_1=0$ $a_2x+b_2y-c_2=0$ $a_2x+b_2y-c_2=0$

Where,
$$a_1=2,b_1=3,c_1=-7$$
 $a_1=2,b_1=3,c_1=-7$

$$a_2=(a-1),b_2=(a+2),c_2=-3aa_2=(a-1),b_2=(a+2),c_2=-3a$$

The given system of equation will have infinitely many solution, if

$$a_1a_2 = b_1b_2 = c_1c_2 \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$
 $2a-b=3a+2) = -7-3a \frac{2}{a-b} = \frac{3}{a+2)} = \frac{-7}{-3a}$ $2a-b=3a+2)$ and $3a+2) = 73a \frac{2}{a-b} = \frac{3}{a+2}$ and $\frac{3}{a+2} = \frac{7}{3a} \Rightarrow 2(a+2) = 3(a-1)$ and $3(3a) = 7(a+2)$ $\Rightarrow 2(a+2) = 3(a-1)$ and $3(3a) = 7(a+2) \Rightarrow 2a+4=3a-3$ and $9a=7a+14 \Rightarrow 2a+4=3a-3$ and $9a=7a+14 \Rightarrow a=7$ and $a=7$

Hence the given system of equation will have infinitely many solution if

$$a=7a = 7$$
 and $b=1b = 1$.