RD Sharma Class 9 Solutions Chapter 12 Heron's Formula Ex 12.6

Question 1.
In $\triangle A B C$, if $\angle A=40^{\circ}$ and $\angle B=60^{\circ}$. Determine the longest and shortest sides of the triangle.
Solution:
In $\triangle A B C, \angle A=40^{\circ}, \angle B=60^{\circ}$
But $\angle A+\angle B+\angle C=180^{\circ}$

$\Rightarrow 40^{\circ}+60^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle C=180^{\circ}=\left(40^{\circ}+60^{\circ}\right)$
$=180^{\circ}-100^{\circ}=80^{\circ}$
$\because \angle C=80^{\circ}$, which is the greatest angle and
$\angle A=40^{\circ}$ is the smallest angle
\therefore Side AB which is opposite to the greatest angle is the longest and side BC which is opposite to the smallest angle is the shortest.

Question 2.

In a $\triangle A B C$, if $\angle B=\angle C=45^{\circ}$. which is the longest side?
Solution:
In $\triangle A B C, \angle B=\angle C=45^{\circ}$
But $\angle A+\angle B+\angle C=180^{\circ}$

$\Rightarrow \angle A+45^{\circ}+45^{\circ}=180^{\circ}$
$\Rightarrow \angle A+90^{\circ}=180^{\circ}$
$\therefore \angle \mathrm{A}=180^{\circ}-90^{\circ}=90^{\circ}$
$\therefore \angle \mathrm{A}$ is the greatest
\therefore Side BC opposite to it is the longest

Question 3.
In $\triangle A B C$, side $A B$ is produced to D so that $B D=B C$. If $\angle B=60^{\circ}$ and $\angle A=70^{\circ}$, prove that :
(i) $A D>C D$
(ii) $A D>A C$

Solution:
Given : In $A A B C$, side $B C$ is produced to D such that $B D=B C$
$\angle A=70^{\circ}$ and $\angle B=60^{\circ}$

To prove :
(i) $A D>C D$ (ii) $A D>A C$

Proof: In $\triangle A B C$,
$\angle A=70^{\circ}, \angle B=60^{\circ}$
But Ext. $\angle \mathrm{CBD}+\angle \mathrm{CBA}=180^{\circ}$ (Linear pair)
$\angle C B D+60^{\circ}=180^{\circ} 3$
$\Rightarrow \angle C B D=180^{\circ}-60^{\circ}=120^{\circ}$
But in $\triangle B C D$,
$B D=B C$
$\therefore \angle D=\angle B C D$
But $\angle D+\angle B C D=180^{\circ}-120^{\circ}=60^{\circ}$
$\therefore \angle D=\angle B C D=60 \circ 2=30^{\circ}$
and in $\triangle A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$
$\Rightarrow 70^{\circ}+60^{\circ}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow 130^{\circ}+\angle C=180^{\circ}$
$\therefore \angle \mathrm{C}=180^{\circ}-130^{\circ}=50^{\circ}$
Now $\angle A C D=\angle A C B+\angle B C D=50^{\circ}+30^{\circ}=80^{\circ}$
(i) Now in $\triangle A C B$,
$\angle A C D=80^{\circ}$ and $\angle A=70^{\circ}$
\therefore Side AD > CD
(Greater angle has greatest side opposite to it)
(ii) $\because \angle A C D=80^{\circ}$ and $\angle D=30^{\circ}$
$\therefore A D>A C$
Question 4.
Is it possible to draw a triangle with sides of length $2 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm ?
Solution:
We know that in a triangle, sum of any two sides is greater than the third side and 2

```
cm}+3\textrm{cm}=5\textrm{cm}\mathrm{ and 5 cm<7 cm
```

\therefore This triangle is not possible to draw

Question 5.

In $\triangle A B C, \angle B=35^{\circ}, \angle C=65^{\circ}$ and the bisector of $\angle B A C$ meets $B C$ in P. Arrange $A P, B P$ and $C P$ in descending order.
Solution:
In $\triangle A B C, \angle B=35^{\circ}, \angle C=65^{\circ}$ and $A P$ is the bisector of $\angle B A C$ which meets $B C$ in P.
Arrange $P A, P B$ and $P C$ in descending order In $\triangle A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$ (Sum of angles of a triangle)

$\Rightarrow \angle A+35^{\circ}+65^{\circ}=180^{\circ}$
$\angle A+100^{\circ}=180^{\circ}$
$\therefore \angle \mathrm{A}=180^{\circ}-100^{\circ}=80^{\circ}$
\because PA is a bisector of $\angle B A C$
$\therefore \angle 1=\angle 2=80.2=40^{\circ}$
Now in $\triangle A C P, \angle A C P>\angle C A P$
$\Rightarrow \angle C>\angle 2$
$\therefore \mathrm{AP}>\mathrm{CP}$
Similarly, in $\triangle A B P$,
$\angle B A P>\angle A B P \Rightarrow \angle 1>\angle B$
$\therefore \mathrm{BP}>\mathrm{AP} . .$. (ii)
From (i) and (ii)
$B P>A P>C P$
Question 6.
Prove that the perimeter of a triangle is greater than the sum of its altitudes
Solution:
Given : In $\triangle A B C$,
$A D, B E$ and $C F$ are altitudes

To prove: $A B+B C+C A>A D+B C+C F$
Proof : We know that side opposite to greater angle is greater.
In $\triangle A B D, \angle D=90^{\circ}$
$\therefore \angle D>\angle B$
$\therefore A B>A D$
Similarly, we can prove that
$B C>B E$ and
$\mathrm{CA}>\mathrm{CF}$
Adding we get,
$A B+B C+C A>A D+B E+C F$

Question 7.
In the figure, prove that:
(i) $C D+D A+A B+B C>2 A C$
(ii) $C D+D A+A B>B C$

Solution:
Given : In the figure, $A B C D$ is a quadrilateral and $A C$ is joined To prove:
(i) $C D+D A+A B+B C>2 A C$
(ii) $C D+D A+A B>B C$

Proof:
(i) In $\triangle A B C$,
$A B+B C>A C$...(i)
(Sum of two sides of a triangle is greater than its third side)

Similarly in $\triangle A D C$,
$C D+D A>A C$...(ii)
Adding (i) and (ii)
$C D+D A+A B+B C>A C+A C$
$\Rightarrow C D+D A+A B+B C>2 A C$
(ii) In $\triangle A C D$,
$C D+D A>C A$
(Sum of two sides of a triangle is greater than its third side)
Adding $A B$ to both sides,
$C D+D A+A B>C A+A B$
But $C A+A B>B C($ in $\triangle A B C)$
$\therefore C D+D A+A D>B C$

Question 8.

Which of the following statements are true (T) and which are false (F)?
(i) Sum of the three sides of a triangle is less than the sum of its three altitudes.
(ii) Sum of any two sides of a triangle is greater than twice the median drawn to the third side.
(iii) Sum of any two sides of a triangle is greater than the third side.
(iv) Difference of any two sides of a triangle is equal to the third side.
(v) If two angles of a triangle are unequal, then the greater angle has the larger side opposite to it.
(vi) Of all the line segments that can be drawn from a point to a line not containing it, the perpendicular line segment is the shortest one.
Solution:
(i) False. Sum of three sides of a triangle is greater than the sum of its altitudes.
(ii) True.
(iii) True.
(iv) False. Difference of any two sides is less than the third side.
(v) True.
(vi) True.

Question 9.
Fill in the blanks to make the following statements true.
(i) In a right triangle, the hypotenuse is the \qquad side.
(ii) The sum of three altitudes of a triangle is \qquad than its perimeter.
(iii) The sum of any two sides of a triangle is \qquad than the third side.
(iv) If two angles of a triangle are unequal, then the smaller angle has the \qquad side opposite to it.
(v) Difference of any two sides of a triangle is \qquad than the third side.
(vi) If two sides of a triangle are unequal, then the larger side has \qquad angle opposite to it.
Solution:
(i) In a right triangle, the hypotenuse is the longest side.
(ii) The sum of three altitudes of a triangle is less than its perimeter.
(iii) The sum of any two sides of a triangle is greater than the third side.
(iv) If two angles of a triangle are unequal, then the smaller angle has the smaller
side opposite to it.
(v) Difference of any two sides of a triangle is less than the third side.
(vi) If two sides of a triangle are unequal, then the larger side has greater angle opposite to it.

Question 10.
O is any point in the interior of $\triangle \mathrm{ABC}$. Prove that
(i) $A B+A C>O B+O C$
(ii) $A B+B C+C A>O A+O B+O C$
(iii) $O A+O B+O C>12(A B+B C+C A)$

Solution:
Given : In $\triangle A B C, O$ is any point in the interior of the $\triangle A B C, O A, O B$ and $O C$ are joined To prove :
(i) $A B+A C>O B+O C$
(ii) $A B+B C+C A>O A+O B+O C$
(iii) $O A+O B+O C>12(A B+B C+C A)$

Construction : Produce BO to meet AC in D.

Proof: In $\triangle \mathrm{ABD}$,
(i) $A B+A D>B D$ (Sum of any two sides of a triangle is greater than third)
$\Rightarrow A B+A D>B O+O D$...(i)
Similarly, in \triangle ODC,
OD + DC > OC ...(ii)
Adding (i) and (ii)
$A B+A D+O D+D C>O B+O D+O C$
$\Rightarrow A B+A D+D C>O B+O C$
$\Rightarrow A B+A C>O B+O C$
(ii) Similarly, we can prove that
$B C+A B>O A+O C$
and $C A+B C>O A+O B$
(iii) In $\triangle O A B, A O B C$ and $\triangle O C A$,
$\mathrm{OA}+\mathrm{OB}>\mathrm{AB}$
$O B+O C>B C$
and $O C+O A>C A$
Adding, we get
$2(O A+O B+O C)>A B+B C+C A$
$\therefore \mathrm{OA}+\mathrm{OB}+\mathrm{OO}>12(\mathrm{AB}+\mathrm{BC}+\mathrm{CA})$
Question 11.
Prove that in a quadrilateral the sum of all the sides is greater than the sum of its
diagonals.
Solution:
Given : In quadrilateral $A B C D, A C$ and $B D$ are its diagonals,

To prove: $A B+B C+C D+D A>A C+B D$
Proof: In $\triangle A B C$,
$A B+B C>A C$...(i)
(Sum of any two sides of a triangle is greater than its third side)
Similarly, in $\triangle A D C$,
DA + CD > AC ...(ii)
In $\triangle A B D$,
$A B+D A>B D$...(iii)
In $\triangle B C D$,
$B C+C D>B D$...(iv)
Adding (i), (ii), (iii) and (iv)
$2(A B+B C+C D+D A)>2 A C+2 B D$
$\Rightarrow 2(A B+B C+C D+D A)>2(A C+B D)$
$\therefore A B+B C+C D+D A>A C+B D$

