RD Sharma Class 9 Solutions Chapter 12 Heron's Formula Ex 12.5

Question 1.
$A B C$ is a triangle and D is the mid-point of $B C$. The perpendiculars from D to $A B$ and $A C$ are equal. Prove that the triangle is isosceles.
Solution:
Given : In $\triangle A B C, D$ is mid-point of $B C$ and $D E \perp A B, D F \perp A C$ and $D E=D F$

To Prove: $\triangle A B C$ is an isosceles triangle
Proof : In right $\triangle \mathrm{BDE}$ and $\triangle \mathrm{CDF}$,
Side DE = DF
Hyp. BD = CD
$\therefore \triangle \mathrm{BDE} \cong \triangle \mathrm{CDF}$ (RHS axiom)
$\therefore \angle B=\angle C$ (c.p.c.t.)
Now in $\triangle A B C$,
$\angle B=\angle C$ (Prove)
$\therefore A C=A B$ (Sides opposite to equal angles)
$\therefore A A B C$ is an isosceles triangle

Question 2.
$A B C$ is a triangle in which $B E$ and CF-are, respectively, the perpendiculars to the sides $A C$ and $A B$. If $B E=C F$, prove that $\triangle A B C$ is an isosceles.
Solution:
Given : In $\triangle A B C$,
$B E \perp A C$ and $C F \perp A B$
$B E=C F$

To prove : AABC is an isosceles triangle

Proof : In right ABCE and ABCF Side
$\mathrm{BE}=\mathrm{CF}$ (Given)
Hyp. BC = BC (Common)
$\therefore \triangle B C E \cong \triangle B C F$ (RHS axiom)
$\therefore \angle B C E=\angle C B F$ (c.p.c.t.)
$\therefore A B=A C$ (Sides opposite to equal angles)
$\therefore \triangle A B C$ is an isosceles triangle

Question 3

If perpendiculars from any point within an angle on its arms are congruent, prove that it lies on the bisector of that angle.
Solution:
Given : A point P lies in the angle $A B C$ and $P L \perp B A$ and $P M \perp B C$ and $P L=P M . P B$ is joined

To prove: PB is the bisector $\angle A B C$,
Proof : In right $\triangle \mathrm{PLB}$ and $\triangle \mathrm{PMB}$
Side PL = PM (Given)
Hyp. PB = PB (Common)
$\therefore \triangle \mathrm{PLB} \cong \triangle \mathrm{PMB}$ (RHS axiom)
$\therefore \triangle \mathrm{PBL}=\triangle \mathrm{PBM}$ (c.p.c.t.)
$\therefore \mathrm{PB}$ is the bisector of $\angle A B C$

Question 4.
In the figure, $A D \perp C D$ and $C B \perp C D$. If $A Q=B P$ and $D P=C Q$, prove that $\angle D A Q=$ $\angle C B P$.

Solution:
Given : In the figure,

$$
\mathrm{AD} \perp \mathrm{CD} \text { and } \mathrm{CB} \perp \mathrm{CD}, \mathrm{AQ}=\mathrm{BP} \text { and } \mathrm{DP}=\mathrm{CQ}
$$

To prove: $\angle D A Q=\angle C B P$
Proof: $\because \mathrm{DP}=\mathrm{CQ}$
$\therefore \mathrm{DP}+\mathrm{PQ}=\mathrm{PQ}+\mathrm{QC}$
$\Rightarrow D Q=P C$
Now in right $\triangle A D Q$ and $\triangle B C P$
Side DQ = PC (Proved)
Hyp. AQ = BP
$\therefore \triangle \mathrm{ADQ} \cong \triangle \mathrm{BCP}$ (RHS axiom)
$\therefore \angle \mathrm{DAQ}=\angle \mathrm{CBP}$ (c.p.c.t.)

Question 5.

Which of the following statements are true (T) and which are false (F):
(i) Sides opposite to equal angles of a triangle may be unequal.
(ii) Angles opposite to equal sides of a triangle are equal.
(iii) The measure of each angle of an equilateral triangle is 60°.
(iv) If the altitude from one vertex of a triangle bisects the opposite side, then the triangle may be isosceles.
(v) The bisectors of two equal angles of a triangle are equal.
(vi) If the bisector of the vertical angle of a triangle bisects the base, then the triangle may be isosceles.
(vii) The two altitudes corresponding to two equal sides of a triangle need not be equal.
(viii)If any two sides of a right triangle are respectively equal to two sides of other right triangle, then the two triangles are congruent.
(ix) Two right triangles are congruent if hypotenuse and a side of one triangle are respectively equal to the hypotenuse and a side of the other triangle.
Solution:
(i) False : Sides opposite to equal angles of a triangle are equal.
(ii) True.
(iii) True.
(iv) False : The triangle is an isosceles triangle.
(v) True.
(vi) False : The triangle is an isosceles.
(vii) False : The altitude an equal.
(viii) False : If one side and hypotenuse of one right triangle on one side and hypotenuse of the other right triangle are equal, then triangles are congruent.
(ix) True.

Question 6.
Fill in the blanks in the following so that each of the following statements is true.
(i) Sides opposite to equal angles of a triangle are \qquad
(ii) Angle opposite to equal sides of a triangle are \qquad
(iii) In an equilateral triangle all angles are \qquad
(iv) In a $\triangle A B C$ if $\angle A=\angle C$, then $A B=$ \qquad
(v) If altitudes $C E$ and $B F$ of a triangle $A B C$ are equal, then $A B=$ \qquad
(vi) In an isosceles triangle $A B C$ with $A B=A C$, if $B D$ and $C E$ are its altitudes, then $B D$ is \qquad CE.
(vii) In right triangles $A B C$ and $D E F$, if hypotenuse $A B=E F$ and side $A C=D E$, then $\triangle A B C \cong \triangle \ldots \ldots$
Solution:
(i) Sides opposite to equal angles of a triangle are equal.
(ii) Angle opposite to equal sides of a triangle are equal.
(iii) In an equilateral triangle all angles are equal.
(iv) In a $\triangle A B C$, if $\angle A=\angle C$, then $A B=B C$.
(v) If altitudes $C E$ and $B F$ of a triangle $A B C$ are equal, then $A B=A C$.
(vi) In an isosceles triangle $A B C$ with $A B=A C$, if $B D$ and $C E$ are its altitudes, then $B D$ is equal to CE.
(vii) In right triangles $A B C$ and $D E F$, it hypotenuse $A B=E F$ and side $A C=D E$, then $\triangle A B C \cong \triangle E F D$.

Question 7.

$A B C D$ is a square, X and Y are points on sides $A D$ and $B C$ respectively such that $A Y=$ $B X$. Prove that $B Y=A X$ and $\angle B A Y=\angle A B X$.
Solution:
Given : In square $A B C D, X$ and Y are points on side $A D$ and $B C$ respectively and $A Y=$ BX

To prove : BY = AX
$\angle B A Y=\angle A B X$
Proof: In right $\triangle B A X$ and $\triangle A B Y$
$\mathrm{AB}=\mathrm{AB}$ (Common)
Hyp. BX = AY (Given)
$\therefore \triangle B A X \cong \triangle A B Y$ (RHS axiom)
$\therefore \mathrm{AX}=\mathrm{BY}$ (c.p.c.t.)
$\angle A B X=\angle B A Y$ (c.p.c.t.)
Hence, $B Y=A X$ and $\angle B A Y=\angle A B X$.

