RD Sharma Class 9 Solutions Chapter 12 Heron's Formula Ex 12.4

Question 1.
In the figure, it is given that $A B=C D$ and $A D=B C$. Prove that $\triangle A D C \cong \triangle C B A$.

Solution:
Given : In the figure, $A B=C D, A D=B C$

To prove: $\triangle A D C=\triangle C B A$
Proof: In $\triangle A D C$ and $\triangle C B A$
$C D=A B$ (Given)
$A D=B C$ (Given)
CA = CA (Common)
$\therefore \triangle \mathrm{ADC} \cong \triangle \mathrm{CBA}(\mathrm{SSS}$ axiom)

Question 2.

In a $A P Q R$, if $P Q=Q R$ and L, M and N are the mid-points of the sides $P Q, Q R$ and $R P$ respectively. Prove that $\mathrm{LN}=\mathrm{MN}$.
Solution:
Given : In $\triangle P Q R, P Q=Q R$
L, M and N are the mid-points of sides PQ, QR and RP respectively. Join LM, MN and LN

To prove: $\angle \mathrm{PNM}=\angle \mathrm{PLM}$
Proof : In $\triangle P Q R$,
$\because \mathrm{M}$ and N are the mid points of sides PR and QR respectively
$\therefore \mathrm{MN} \| \mathrm{PQ}$ and $\mathrm{MN}=12 \mathrm{PQ} . . .(\mathrm{i})$
$\therefore \mathrm{MN}=\mathrm{PL}$
Similarly, we can prove that
LM = PN
Now in \triangle NML and $\triangle L P N$
MN = PL (Proved)
LM = PN (Proved)
LN = LN (Common)
$\therefore \triangle \mathrm{NML}=\triangle \mathrm{LPN}($ SSS axiom $)$
$\therefore \angle \mathrm{MNL}=\angle \mathrm{PLN}$ (c.p.c.t.)
and $\angle \mathrm{MLN}=\angle \mathrm{LNP}$ (c.p.c.t.)
$\Rightarrow \angle \mathrm{MNL}=\angle L N P=\angle \mathrm{PLM}=\angle \mathrm{MLN}$
$\Rightarrow \angle \mathrm{PNM}=\angle \mathrm{PLM}$

