Solutions
Class 9 Maths
Chapter 24
Ex 24.1

Q.1: If the heights of 5 persons are 140 cm, 150 cm, 152 cm, 158 cm and 161 cm respectively. Find the mean height.

SOLUTION:

Given: the heights of 5 persons are 140 cm, 150 cm, 152 cm, 158 cm and 161 cm

$$= \frac{140+150+152+158+161}{5}$$

$$=\frac{761}{5}$$
 =152.2

Q 2 . Find the mean of 994 , 996 , 998 , 1000 , 1002.

SOLUTION:

Given:

Numbers are 994, 996, 998, 1000, 1002.

$$\therefore Mean = \frac{sum of numbers}{total numbers}$$

$$= \frac{994 + 996 + 998 + 1000 + 1002}{5}$$

$$=\frac{4990}{5}=998$$

Mean = 998

Q 3. Find the mean of first five natural numbers.

SOLUTION:

The first five odd numbers are 1, 2, 3, 4, 5

$$\therefore Mean = \frac{\text{sum of numbers}}{\text{total numbers}}$$

$$= \frac{1+2+3+4+5}{5}$$

$$=\frac{15}{5}=3$$

Mean = 3

Q 4. Find the mean of all factors of 10.

SOLUTION:

All factors of 6 are 1, 2, 5, 10.

$$\therefore Mean = \frac{sum of factors}{total factors}$$

$$=\frac{1+2+5+10}{4}=4.5$$

Mean = 4.5

Q 5. Find the mean of first ten even natural numbers.

SOLUTION:

The first five even natural numbers are 2, 4, 6, 8, 10, 12, 14, 16, 18, 20

: Mean =
$$\frac{\text{sum of numbers}}{\text{total numbers}}$$

= $\frac{2+4+6+8+10+12+14+16+18+20}{10}$ = 11

Mean = 11

Q 6. Find the mean of x, x + 2, x + 4, x + 6, x + 8.

SOLUTION:

Numbers are x, x + 2, x + 4, x + 6, x + 8.

$$\therefore Mean = \frac{\text{sum of numbers}}{\text{total numbers}}$$

$$= \frac{x+x+2+x+4+x+6+x+8}{5}$$

$$= \frac{5x+20}{5}$$

$$=5\left(\frac{x+4}{5}\right)$$

= x + 4

Q 7 . Find the mean of first five multiples of 3.

SOLUTION:

First five multiples of 3 are 3, 6, 9, 12, 15.

$$\therefore Mean = \frac{\text{sum of numbers}}{\text{total numbers}}$$

$$= \frac{3+6+9+12+15}{5}$$
=9

Mean = 9

Q 8 . Following are the weights of 10 new born babies in a hospital on a particular day : 3.4, 3.6, 4.2, 4.5, 3.9, 4.1, 3.8, 4.5, 4.4, 3.6 (in kg). Find the mean.

SOLUTION:

The weights (in kg) of 10 new born babies are: 3.4, 3.6, 4.2, 4.5, 3.9, 4.1, 3.8, 4.5, 4.4, 3.6

: Mean Weight =
$$\frac{\text{sum of weights}}{\text{total no. of babies}}$$

= $\frac{3.4+3.6+4.2+4.5+3.9+4.1+3.8+4.5+4.4+3.6}{10}$

=4 kg

Q 9 . The percentage marks obtained by students of a class in mathematics are as follows: 64, 36, 47, 23, 0, 19, 81, 93, 72, 35, 3, 1. Find their mean.

SOLUTION:

The percentage marks obtained by students are 64, 36, 47, 23, 0, 19, 81, 93, 72, 35, 3, 1

$$\therefore Mean marks = \frac{sum of marks}{total numbers of marks}$$

$$= \frac{64+36+47+23+0+19+81+93+72+35+3+1}{5} = 39.5$$

Mean Marks = 39.5

Q 10. The numbers of children in 10 families of a locality are 2, 4, 3, 4, 2, 3, 5, 1, 1, 5. Find the number of children per family.

SOLUTION:

The numbers of children in 10 families are: 2,4,3,4,2,3,5,1,1,5

$$\therefore Mean = \frac{total no. children}{total families}$$

$$= \frac{2+4+3+4+2+3+5+1+1+5}{10} = 3$$

Q~11 . If M is the mean of $x_1,x_2,x_3,x_4,x_5~and~x_6$, Prove that

$$(x_1 - M) + (x_2 - M) + (x_3 - M) + (x_4 - M) + (x_5 - M) + (x_6 - M) = 0.$$

SOLUTION:

Let M be the mean of x_1, x_2, x_3, x_4, x_5 and x_6

Then M=
$$\frac{x_1+x_2+x_3+x_4+x_5+x_6}{6}$$

$$= x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 6M$$

To Prove :-
$$(x_1 - M) + (x_2 - M) + (x_3 - M) + (x_4 - M) + (x_5 - M) + (x_6 - M) = 0$$

Proof:-L.H.S

$$= (x_1 - M) + (x_2 - M) + (x_3 - M) + (x_4 - M) + (x_5 - M) + (x_6 - M)$$

$$= (x_1 + x_2 + x_3 + x_4 + x_5 + x_6) - (M + M + M + M + M + M + M)$$

$$= 6M - 6M$$

= 0

Q 12 . Duration of sunshine(in hours) in Amritsar for first 10 days of August 1997 as reported by the Meterological Department are given as follows: 9.6, 5.2, 3.5, 1.5, 1.6, 2.4, 2.6, 8.4, 10.3, 10.9

1. Find the mean \overline{X}

2.Verify that
$$\sum_{i=1}^{10} (xi - X) = 0$$

SOLUTION:

Duration of sunshine (in hours) for 10 days are =9.6, 5.2, 3.5, 1.5, 1.6, 2.4, 2.6, 8.4, 10.3, 10.9

(i) Mean
$$X = \frac{\text{sum of numbers}}{\text{total numbers}}$$

$$=\frac{56}{10}=5.6$$

(ii) L.H.S =
$$\sum_{i=1}^{10} (x_i - \overline{X})$$

= $(x_1 - \overline{x}) + (x_2 - \overline{x}) + (x_3 - \overline{x}) + \dots + (x_{10} - \overline{x})$
= $(9.6 - 5.6) + (5.2 - 5.6) + (3.5 - 5.6) + (1.5 - 5.6) + (1.6 - 5.6) + (2.4 - 5.6) + (2.6 - 5.6)$
+ $(8.4 - 5.6) + (10.3 - 5.6) + (10.9 - 5.6)$
= $4 - 0.4 - 2.1 - 4.1 - 4 - 3.2 - 3 + 2.8 + 4.7 + 5.3$
= $16.8 - 16.8 = 0$
= R.H.S

Q 13. Explain, by taking a suitable example, how the arithmetic mean alters by (i) adding a constant k to each term, (ii) Subtracting a constant k from each term, (iii) multiplying each term by a constant k and (iv) dividing each term by non-zero constant k.

SOLUTION:

Let say numbers are 3, 4, 5

∴ Mean =
$$\frac{\text{sum of numbers}}{\text{total numbers}}$$

= $\frac{3+4+5}{3}$ = 4

$$\therefore Mean = \frac{sum of numbers}{total numbers}$$
$$= \frac{5+6+7}{3}$$

∴ Mean =
$$\frac{\text{sum of numbers}}{\text{total numbers}}$$

= $\frac{3+4+5}{3} = 4$
(i). Adding constant term k = 2 in each term.
New numbers are = 5, 6, 7
∴ Mean = $\frac{\text{sum of numbers}}{\text{total numbers}}$
= $\frac{5+6+7}{3}$
= 6 = 4 + 2
∴ new mean will be 2 more than the original mean.
(ii). Subtracting constant term k = 2 in each term.
New numbers are = 1, 2, 3
∴ Mean = $\frac{\text{sum of numbers}}{\text{total numbers}}$
= $\frac{1+2+3}{3}$
= 2 = 4 - 2

- ∴ new mean will be 2 less than the original mean.
- (iii). Multiplying by constant term k = 2 in each term.

New numbers are = 6,8,10

∴ Mean =
$$\frac{\text{sum of numbers}}{\text{total numbers}}$$

= $\frac{6+8+10}{3}$
= $8 = 4 \times 2$

∴ new mean will be 2 times of the original mean.

(iv). Divide the constant term k = 2 in each term.

New numbers are = 1.5, 2, 2.5.

$$\therefore Mean = \frac{sum of numbers}{total numbers}$$

$$= \frac{1.5 + 2 + 2.5}{3}$$

$$= 2 = \frac{4}{2}$$

∴ new mean will be half of the original mean.

Q 14. The mean of marks scored by 100 students was found to be 40. Later on, it was discovered that a score of 53 was misread as 83. Find the correct mean.

SOLUTION:

Mean marks of 100 students = 40

Sum of marks of 100 students = 100×40

= 4000

Correct value = 53

Incorrect value = 83

Correct sum = 4000 - 83 + 53 = 3970

∴ correct mean =
$$\frac{3970}{100}$$
 = 39.7

Q 15 . The traffic police recorded the speed (in km/hr) of 10 motorists as 47 , 53 , 49 , 60 , 39 , 42 , 55 , 57 , 52 , 48 . Later on, an error in recording instrument was found. Find the correct average speed of the motorists if the instrument is recorded 5 km/hr less in each case.

SOLUTION:

The speed of 10 motorists are 47, 53, 49, 60, 39, 42, 55, 57, 52, 48.

Later on it was discovered that the instrument recorded 5 km/hr less than in each case

$$\therefore \text{ correct mean = } \frac{52+58+54+65+44+47+60+62+57+53}{10}$$

$$=\frac{552}{10}$$
 =55.2 km/hr

Q 16. The mean of five numbers is 27. If one number is excluded, their mean is 25. Find the excluded number.

SOLUTION:

The mean of five numbers is 27

The sum of five numbers = $5 \times 27 = 135$

If one number is excluded, the new mean is 25

$$\therefore$$
Sum of 4 numbers = $4 \times 25 = 100$

∴ Excluded number = 135 - 100 = 35

Q 17. The mean weight per student in a group of 7 students is 55 kg. The individual weights of 6 of them (in kg) are 52, 54, 55, 53, 56 and 54. Find the weight of the seventh student.

SOLUTION:

The mean weight per student in a group of 7 students = 55 kg

Weight of 6 students (in kg) = 52, 54, 55, 53, 56 and 54

Let the weight of seventh student = x kg

$$\Rightarrow 55 = \frac{52 + 54 + 55 + 53 + 56 + 54 + x}{7}$$

$$\Rightarrow 385 = 324 + x$$

$$\Rightarrow$$
 x = 385 - 324

$$\Rightarrow x = 61 \text{ kg}$$

∴ weight of seventh student = 61 kg.

Q 18. The mean weight of 8 numbers is 15. If each number is multiplied by 2 what will be the new mean?

SOLUTION:

We have,

The mean weight of 8 numbers is 15

Then , the sum of 8 numbers = 8×15 = 120

If each number is multiplied by 2

Then , new mean = $120 \times 2 = 240$

$$\therefore \text{ new mean} = \frac{240}{8} = 30.$$

Q 19. The mean of 5 numbers is 18. If one number is excluded, their mean is 16. Find the excluded number.

SOLUTION:

The mean of 5 numbers is 18

Then , the sum of 5 numbers = $5 \times 18 = 90$

If one number is excluded

Then, the mean of 4 numbers = 16

 \therefore sum of 4 numbers = $4 \times 16 = 64$

Excluded number = 90 - 64 = 26.

Q 20. The mean of 200 items was 50. Later on, it was on discovered that the two items were misread as 92 and 8 instead of 192 and 88. Find the correct mean.

SOLUTION:

The mean of 200 items = 50

Then the sum of 200 items = $200 \times 50 = 10,000$

Correct values = 192 and 88.

Incorrect values = 92 and 8.

 \therefore correct sum = 10000 - 92 - 8 + 192 + 88 = 10180

∴ correct mean =
$$\frac{10180}{200}$$
 = $\frac{101.8}{2}$ = 50.9.

$\mbox{\bf Q}$ 21 . Find the values of n and $X\mbox{\bf in}$ each of the following cases :

(i).
$$\sum_{i=1}^{n} (x_i - 12) = -10$$
 and $\sum_{i=1}^{n} (x_i - 3) = 62$

(ii).
$$\sum_{i=1}^{n} (x_i - 10) = 30$$
 and $\sum_{i=1}^{n} (x_i - 6) = 150$

SOLUTION:

(i). Given
$$\sum_{i=1}^{n} (x_i - 12) = -10$$

$$\Rightarrow$$
 $(x_1 - 12) + (x_2 - 12) + \dots + (x_n - 12) = -10$

$$\Rightarrow (x_1 + x_2 + x_3 + x_4 + x_5 + \dots + x_n) - (12 + 12 + 12 + 12 + \dots + 12) = -10$$

$$\Rightarrow \sum x - 12n = -10 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (1)$$

And
$$\sum_{n=1}^{i=1} (x_i - 3) = 62$$

$$\Rightarrow$$
 $(x_1 - 3) + (x_2 - 3) + \cdots + (x_n - 3) = 62$

$$\Rightarrow$$
 $(x_1 + x_2 + \dots + x_n) - (3 + 3 + 3 + \dots + 3) = 62$

$$\Rightarrow \sum x - 3n = 62 \cdot \cdot \cdot \cdot \cdot \cdot (2)$$

By subtracting equation (1) from equation(2), we get

$$\sum x - 3n - \sum x + 12n = 62 + 10$$

$$\Rightarrow 9n = 72$$

$$\Rightarrow$$
 n = $\frac{72}{9}$ = 8

Put value of n in equation (1)

$$\sum x - 12 \times 8 = -10$$

$$\Rightarrow \sum x - 96 = -10$$

$$\Rightarrow \sum x = 96 - 10 = 86$$

$$\therefore \overline{x} = \frac{\sum x}{n} = \frac{86}{8} = 10.75$$

(ii). Given
$$\sum_{i=1}^{n} (x_i - 10) = 30$$

$$(x_1 - 10) + (x_2 - 10) + \dots + (x_n - 10) = 30$$

$$\Rightarrow$$
 $(x_1 + x_2 + x_3 + x_4 + x_5 + \dots + x_n) - (10 + 10 + 10 + 10 + \dots + 10) = 30$

$$\Rightarrow \sum x - 10n = 30 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (1)$$

And
$$\sum_{n=1}^{i=1} (x_i - 6) = 150$$

$$\Rightarrow$$
 $(x_1 - 6) + (x_2 - 6) + \cdots + (x_n - 6) = 150$

$$\Rightarrow$$
 $(x_1 + x_2 + \cdots + x_n) - (6 + 6 + 6 + \cdots + 6) = 150$

$$\Rightarrow \sum x - 6n = 150 \cdot \cdot \cdot \cdot \cdot \cdot (2)$$

By subtracting equation (1) from equation(2), we get

$$\sum x - 6n - \sum x + 10n = 150 - 30$$

$$\Rightarrow 4n = 120$$

$$\Rightarrow n = \frac{120}{4} = 30$$

Put value of n in equation (1)

$$\sum x - 10 \times 30 = 30$$

$$\Rightarrow \sum x - 300 = 30$$

$$\Rightarrow \sum x = 30 + 300 = 330$$

$$\therefore \overline{X} = \frac{\sum x}{n} = \frac{330}{30} = 11.$$

Q 22 . The sum of the deviations of a set of n values $x_1, x_2, x_3, \cdots, x_n$ measured from 15 and -3 are -90 and 54 respectively. Find the value of n and mean.

SOLUTION:

Given:

$$\sum_{n=1}^{i=1} (x_i - 15) = -90$$

$$\Rightarrow$$
 $(x_1 - 15) + (x_2 - 15) + \cdots + (x_n - 15) = -90$

$$\Rightarrow (x_1 + x_2 + \dots + x_n) - (15 + 15 + 15 + \dots + 15) = -90$$

$$\Rightarrow \sum x - 15x = -90 \cdot \dots (1)$$
And $\sum_{i=1}^{i=1} (x_i + 3) = 54$

$$\Rightarrow (x_i + 3) + (x_i + 3) + \dots + (x_i + 3) = 54$$

$$\Rightarrow \sum x - 15n = -90 \cdot \cdot \cdot \cdot \cdot (1)$$

And
$$\sum_{n=1}^{i=1} (x_i + 3) = 54$$

$$\Rightarrow$$
 $(x_1 + 3) + (x_2 + 3) + \cdots + (x_n + 3) = 54$

$$\Rightarrow (x_1 + x_2 + \dots + x_n) + (3 + 3 + 3 + \dots + 3) = 54$$

$$\Rightarrow \sum x + 3n = 54 \cdot \cdot \cdot \cdot \cdot (2)$$

By subtracting equation (1) from equation(2), we get

$$\sum x + 3n - \sum x + 15n = 54 + 90$$

$$\Rightarrow 18n = 144$$

$$\Rightarrow n = \frac{144}{18} = 8$$

Put value of n in equation(1)

$$\sum x - 15 \times 8 = -90$$

$$\sum x - 120 = -90$$

$$\sum x = 120 - 90 = 30$$

$$\therefore \overline{x} = \frac{\sum x}{n} = \frac{30}{8} = 3.75.$$

Q 23 . Find the sum of the deviations of the variate values 3 , 4 , 6 , 7 , 8 , 14 from their mean.

SOLUTION:

Values 3, 4, 6, 7, 8, 14

$$\therefore Mean = \frac{sum \ of \ numbers}{total \ numbers}$$

$$\therefore Mean = \frac{3+4+6+7+8+14}{6}$$

$$\therefore$$
 Mean = $\frac{42}{6}$

=7

: Sum of deviation of values from their mean

$$= (3-7)+(4-7)+(6-7)+(7-7)+(8-7)+(14-7)$$

$$= -4 - 3 - 1 + 0 + 1 + 7$$

$$= -8 + 8 = 0$$

Q 24 . If X is the mean of the ten natural numbers $x_1, x_2, x_3, \cdot \cdot \cdot, x_{10}$ show that

$$(x_1 - X) + (x_2 - X) + \cdots + (x_{10} - X) = 0$$

SOLUTION:

We have ,
$$\overline{x}=\frac{x_1+x_2+\cdots+x_{10}}{10}$$

$$\Rightarrow x_1 + x_2 + \dots + x_{10} = 10\overline{x} \cdot \dots \cdot (1)$$

Now,
$$(x_1 - \overline{X}) + (x_2 - \overline{X}) + \cdots + (x_{10} - \overline{X})$$

$$=(x_1 + x_2 + \cdots + x_{10}) - (\bar{x} + \bar{x} + \bar{x} + upto \ 10 \ terms)$$

$$=10\overline{x} - 10\overline{x}$$
 [By equation (i)]

$$\therefore (x_1 - \overline{X}) + (x_2 - \overline{X}) + \dots + (x_{10} - \overline{X}) = 0$$