1) Three angles of a quadrilateral are respectively equal to 110^0 , 50^0 and 40^0 . Find its fourth angle.

Solution:

Given,

Three angles are 110^{0} , 50^{0} and 40^{0}

Let the fourth angle be 'x'

We have,

Sum of all angles of a quadrilateral = 360°

$$110^0 + 50^0 + 40^0 = 360^0$$

$$=> x = 360^{0} - 200^{0}$$

$$=>x = 160^{0}$$

Therefore, the required fourth angle is 160° .

2) In a quadrilateral ABCD, the angles A, B, C and D are in the ratio of 1:2:4:5. Find the measure of each angles of

the quadrilateral.

Solution:

Let the angles of the quadrilaterals be

$$A = x$$
, $B = 2x$, $C = 4x$ and $D = 5x$

Then,

$$A + B + C + D = 360^{\circ}$$

$$=> x + 2x + 4x + 5x = 360^{0}$$

$$=> 12x = 360^{0}$$

$$\Rightarrow$$
 X = $\frac{360^{\circ}}{12}$

$$=> x = 30^0$$

Therefore, $A = x = 30^{0}$

$$B = 2x = 60^0$$

$$C = 4x = 120^0$$

$$D = 5x = 150^{0}$$

3) In a quadrilateral ABCD, CO and Do are the bisectors of $\angle C$ and $\angle D$ respectively. Prove that $\angle COD = \frac{1}{2}(\angle A \text{ and} \angle B)$.

Solution:

In ΔDOC

$$\angle 1 + \angle COD + \angle 2 = 180^0$$
 [Angle sum property of a triangle]

$$\Rightarrow \angle COD = 180 - (\angle 1 - \angle 2)$$

$$\Rightarrow \angle COD = 180 - \angle 1 + \angle 2$$

⇒ ∠COD = $180 - \left[\frac{1}{2}LC + \frac{1}{2}LD\right]$ [: OC and Od are bisectors of LC and LD respectively]

$$\Rightarrow$$
 \angle COD = $180 - \frac{1}{2}(LC + LD)...(i)$

In quadrilateral ABCD

 $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ [Angle sum property of quadrilateral]

$$\angle C + \angle D = 360^{0} - (\angle A + \angle B)....(ii)$$

Substituting (ii) in (i)

$$=> \angle COD = 180 - \frac{1}{2}(360 - (\angle A + \angle B))$$

$$=> \angle COD = 180 - 180 + \frac{1}{2}(\angle A + \angle B)$$

$$\Rightarrow \angle COD = \frac{1}{2}(\angle A + \angle B)$$

4) The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.

Solution:

Let the common ratio between the angles is 't'

So the angles will be 3t, 5t, 9t and 13t respectively.

Since the sum of all interior angles of a quadrilateral is 360⁰

Therefore,
$$3t + 5t + 9t + 13t = 360^{\circ}$$

$$=>30t = 360^{0}$$

$$=>t=12^{0}$$

Hence, the angles are

$$3t = 3*12 = 36^0$$

$$5t = 5*12 = 60^0$$

$$9t = 9*12 = 108^0$$

$$13t = 13*12 = 156^0$$

