Mark the correct alternative in each of the following:
Question 1.
Which of the following is not a measure of central tendency:
(a) Mean
(b) Median
(c) Mode
(d) Standard deviation

Solution:

Standard deviation is not a measure of central tendency. Only mean, median and mode are measures. (d)

Question 2.

The algebraic sum of the deviations of a frequency distribution from its mean is
(a) always positive
(b) always negative
(c) 0
(d) a non-zero number

Solution:

The algebraic sum of the deviations of a frequency distribution from its mean is zero Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots \ldots \mathrm{x}_{\mathrm{n}}$ are observations and X is the mean

$$
\begin{aligned}
\therefore & \left(\bar{x}-x_{1}\right)+\left(\bar{x}-x_{2}\right)+\left(\bar{x}-x_{3}\right)+\ldots \ldots .\left(\bar{x}-x_{n}\right) \\
& =n \bar{x}-\left(x_{1}+x_{2}+x_{3}+\ldots \ldots x_{n}\right) \\
& =n \bar{x}-n \bar{x}=0 \text { (c) }
\end{aligned}
$$

Question 3.
The arithmetic mean of $1,2,3, \ldots \ldots, n$ is
(a) $\frac{n+1}{2}$
(b) $\frac{n-1}{2}$
(c) $\frac{n}{2}$
(d) $\frac{n}{2}+1$

Solution:

Arithmetic mean of $1,2,3, \ldots \ldots n$ is

$$
=\frac{\sum x_{i}}{n}=\frac{n(n+1)}{n \times 2}=\frac{n+1}{2}
$$

Question 4.

For a frequency distribution, mean, median and mode are connected by the relation
(a) Mode $=3$ Mean - 2 Median
(b) Mode $=2$ Median -3 Mean
(c) Mode $=3$ Median -2 Mean
(d) Mode $=3$ Median +2 Mean

Solution:

The relation between mean, median and mode is: Mode $=3$ Median -2 Mean (c)

Question 5.

Which of the following cannot be determined graphically?
(a) Mean
(b) Median
(c) Mode
(d) None of these

Solution:
Mean cannot be determind graphically, (a)

Question 6.

The median of a given frequency distribution is found graphically with the help of
(a) Histogram
(b) Frequency curve
(c) Frequency polygon
(d) Ogive

Solution:
Median of a given frequency can be found graphically by an ogive, (d)

Question 7.

The mode of a frequency distribution can be determined graphically from
(a) Histogram
(b) Frequency polygon
(c) Ogive
(d) Frequency curve

Solution:
Mode of frequency can be found graphically by an ogive, (c)
Question 8.
Mode is
(a) least frequent value
(b) middle most value
(c) most frequent value
(d) None of these

Solution:

Mode is the most frequency value of observation or a class, (c)
Question 9.
The mean of \mathbf{n} observations is X. If the first item is increased by $\mathbf{1}$, second by 2 and so on,
then the new mean is
(a) $\overline{\mathrm{X}}+n$
(b) $\overline{\mathrm{X}}+\frac{n}{2}$
(c) $\overline{\mathrm{X}}+\frac{n+1}{2}$
(d) None of these

Solution:

Mean of n observations $=\mathrm{X}$
By adding 1 to the first item, 2 to second item and so on, the new mean will be
Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots . . \mathrm{x}_{\mathrm{n}}$ are the items whose mean is X , then mean of
$\left(\mathrm{x}_{1}+1\right)+\left(\mathrm{x}_{2}+2\right)+\left(\mathrm{x}_{3}+3\right)+\ldots \ldots\left(\mathrm{x}_{\mathrm{n}}+\mathrm{n}\right)$
$=$ Mean of $\left(x_{1}+x_{2}+x_{3}+\ldots . . x_{n}\right)+$ Mean of $(1+2+3+\ldots . .+n)$
$=\overline{\mathrm{X}}+\frac{n(n+1)}{2 \times n}=\overline{\mathrm{X}}+\frac{n+1}{2}$
(c)

Question 10.
One of the methods of determining mode is
(a) Mode $=2$ Median -3 Mean
(b) Mode $=2$ Median +3 Mean
(c) Mode $=3$ Median -2 Mean
(d) Mode $=3$ Median +2 Mean

Solution:
Mode $=3$ Median -2 Mean (c)
Question 11.
If the mean of the following distribution is 2.6 , then the value of y is

Variable (x)	1	2	3	4	5
Frequency	4	5	y	1	2

(a) 3
(b) 8
(c) 13
(d) 24

Solution:

Mean $=2.6$

Variable (x)	Frequency (f)	$f \times x$
1	4	4
2	5	10
3	y	$3 y$
4	1	4
5	2	10
Total	$12+y$	$28+3 y$

\therefore Mean $=\frac{\sum f x}{\sum f} \Rightarrow 2.6=\frac{28+3 y}{12+y}$
$\Rightarrow 2.6(12+y)=28+3 y \Rightarrow 31.2+2.6 y=28+3 y$
$\Rightarrow 3 y-2.6 y=31.2-28 \Rightarrow 0.4 y=3.2$
$\Rightarrow 4 y=32 \Rightarrow y=\frac{32}{4}=8$

$$
\begin{equation*}
y=8 \tag{b}
\end{equation*}
$$

Question 12.
The relationship between mean, median and mode for a moderately skewed distribution is
(a) Mode $=2$ Median - 3 Mean
(b) Mode $=$ Median -2 Mean
(c) Mode $=2$ Median - Mean
(d) Mode = 3 Median - 2 Mean

Solution:

The relationship between mean, median and mode is Mode $=3$ Median -2 Mean, (d)
Question 13.
The mean of a discrete frequency distribution $x_{i} / f_{i} ; i=1,2, \ldots \ldots . n$ is given by
(a) $\frac{\sum f_{i} x_{i}}{\sum f_{i}}$
(b) $\frac{1}{n} \sum_{i=1}^{n} f_{i} x_{i}$
(c)
$\frac{\sum_{i=1}^{n} f_{i} x_{i}}{\sum_{i=1}^{n} x_{i}}$
(d)
$\frac{\sum_{i=1}^{n} f_{i} x_{i}}{\sum_{i=1}^{n} i}$

Solution:

The mean of discrete frequency distribution $\frac{x_{i}}{f_{i}} ; i=1,2,3, \ldots . . n$, will be $\frac{\sum f_{i} \times x_{i}}{\sum f_{i}}$.

Question 14.

If the arithmetic mean of $x, x+3, x+6, x+9$, and $x+12$ is 10 , then $x=$
(a) 1
(b) 2
(c) 6
(d) 4

Solution:

$$
\begin{align*}
& \text { Mean of } x, x+3, x+6, x+9, x+12=10 \\
\Rightarrow & \frac{x+x+3+x+6+x+9+x+12}{5}=10 \\
\Rightarrow & \frac{5 x+30}{5}=10 \\
\Rightarrow & x+6=10 \\
\Rightarrow & x=10-6=4 \tag{d}
\end{align*}
$$

Question 15.
If the median of the data $: 24,25,26, x+2, x+3,30,31,34$ is 27.5 , then $x=$
(a) 27
(b) 25
(c) 28
(d) 30

Solution:

Median of $24,25,26, x+2, x+3,30,31$, 34 is 27.5
Here $n=8$ which is even

$$
\begin{align*}
& \therefore \text { Median }=\frac{1}{2}\left[\frac{n}{2} \text { th }+\left(\frac{n}{2}+1\right) \text { th }\right] \text { term } \\
&=\frac{1}{2}\left(\frac{8}{2}+\frac{8}{2}+1\right) \text { term } \\
&=\frac{1}{2}(4 \text { th }+5 \text { th }) \text { term } \\
&=\frac{1}{2}(x+2+x+3) 1 \\
&=\frac{1}{2}(2 x+5)=x+\frac{5}{2}=x+2.5 \\
& \therefore x+2.5=27.5 \Rightarrow x=27.5-2.5 \\
& \Rightarrow x=25 \tag{b}
\end{align*}
$$

Question 16.
If the median of the data: $6,7, x-2, x, 17,20$, written in ascending order, is 16 . Then x
(a) 15
(b) 16
(c) 17
(d) 18

Solution:

Median of $6,7, x-2, x, 17,20$ is 16
Here $n=6$
\therefore Median $=\frac{1}{2}\left[\frac{n}{2}\right.$ th $+\left(\frac{n}{2}+1\right)$ th $]$ term
$=\frac{1}{2}\left[\frac{6}{2}+\left(\frac{6}{2}+1\right)\right]$ term
$=\frac{1}{2}(3 \mathrm{rd}+4 \mathrm{th})$ term
$=\frac{1}{2}(x-2+x)$
$=\frac{1}{2}(2 x-2)=x-1$
$\therefore x-1=16 \Rightarrow x=16+1=17$

Question 17.
The median of first 10 prime numbers is
(a) 11
(b) 12
(c) 13
(d) 14

Solution:

First 10 prime numbers are
$2,3,5,7,11,13,17,19,23,29$
Here $n=10$

$$
\begin{align*}
\therefore & \text { Median }=\frac{1}{2}\left[\frac{n}{2} \text { th }+\left(\frac{n}{2}+1\right) \text { th }\right] \text { term } \\
& =\frac{1}{2}\left[\frac{10}{2} \text { th }+\left(\frac{10}{2}+1\right) \text { th }\right] \text { term } \\
& =\frac{1}{2}[5 \text { th }+6 \text { th }] \text { term } \\
& =\frac{1}{2}[11+13]=\frac{1}{2} \times 24=12 \tag{b}
\end{align*}
$$

Question 18.
If the mode of the data: $64,60,48, x, 43,48,43,34$ is 43 , then $x+3=$
(a) 44
(b) 45
(c) 46
(d) 48

Solution:
Mode of 64, 60, 48, $x, 43,48,43,34$ is 43
\because By definition mode is a number which has maximum frequency which is 43
$\therefore \mathrm{x}=43$
$\therefore \mathrm{x}+3=43+3=46$ (c)
Question 19.
If the mode of the data : $16,15,17,16,15, x, 19,17,14$ is 15 , then $x=$
(a) 15
(b) 16
(c) 17
(d) 19

Solution:
Mode of $16,15,17,16,15, x, 19,17,14$ is 15
\because By definition mode of a number which has maximum frequency which is 15
$\therefore \mathrm{x}=15$ (a)
Question 20.
The mean of $1,3,4,5,7,4$ is m . The number $3,2,2,4,3,3, p$ have mean $m-1$ and median \mathbf{q}. Then $\mathbf{p}+\mathbf{q}=$
(a) 4
(b) 5
(c) 6
(d) 7

Solution:

Mean of $1,3,4,5,7,4$ is m

$$
\therefore \frac{1+3+4+5+7+4}{6}=m
$$

$\Rightarrow \frac{24}{6}=m \Rightarrow m=4$
Mean of $3,2,2,4,3,3, p$ is $m=1$
$\Rightarrow \frac{3+2+2+4+3+3+p}{7}=m-1$
$\Rightarrow \frac{17+p}{7}=4-1 \Rightarrow \frac{17+p}{7}=3$
$\Rightarrow 17+p=21 \Rightarrow p=21-17=4$
Median of $3,2,2,4,3,3, p$ is q
$3,2,2,4,3,3,4$ is q
Arranging in order, we get
$4,4,3,3,3,2,2$
Here $n=7$
\therefore Median $=\frac{7+1}{2}$ th term $=4$ th term

$$
=3
$$

$\therefore q=3$
$\therefore p+q=4+3=7$
(d)

Question 21.

If the mean of a frequency distribution is 8.1 and $\Sigma f_{i x i}=132+5 k, \Sigma f_{i}=20$, then $k=$
(a) 3
(b) 4
(c) 5
(d) 6

Solution:

$$
\begin{align*}
& \text { Mean }=8.1 \\
& \Sigma f_{1} x_{1}=132+5 k \\
& \Sigma f_{1}=20 \\
\therefore & \text { Mean }=\frac{\Sigma f_{1} x_{1}}{\Sigma f_{1}} \Rightarrow 8.1=\frac{132+5 k}{20} \\
\Rightarrow & 132+5 k=8.1 \times 20=162 \\
\Rightarrow & 5 k=162-132=30 \\
\Rightarrow & k=\frac{30}{5}=6 \tag{d}
\end{align*}
$$

Question 22.
If the mean of $6,7, x, 8, y, 14$ is 9 , then
(a) $x+y=21$
(b) $x+y=19$
(c) $\mathrm{x}-\mathrm{y}=19$
(d) $v-y=21$

Solution:

Mean of $6,7, x, 8, y, 14$ is 9

$$
\begin{equation*}
\Rightarrow \frac{6+7+x+8+y+14}{6}=9 \tag{n=6}
\end{equation*}
$$

$$
\Rightarrow \frac{35+x+y}{6}=9 \Rightarrow 35+x+y=54
$$

$$
\Rightarrow x+y=54-35=19
$$

Question 23.

The mean of n observations is x If the first observation is increased by 1 , the second by 2 , the third by 3 , and so on, then the new mean is
(a) $\bar{x}+(2 n+1)$
(b) $\bar{x}+\frac{n+1}{2}$
(c) $\bar{x}+(n+1)$
(d) $\bar{x}-\frac{n-1}{2}$

Solution:

Mean of n observations $=\bar{x}$.
Increasing first observation by 1 , second by
2 , third by 3 and so on,
\therefore Sum of increased number $=\frac{n(n+1)}{2}$

$$
\text { and mean }=\frac{n(n+1)}{2 \times n}=\frac{n+1}{2}
$$

Question 24.

If the mean of first \mathbf{n} natural numbers is 5 n 9 then $\mathrm{n}=$
(a) 5
(b) 4
(c) 9
(d) 10

Solution:

$$
\begin{align*}
& \text { Mean of } n \text { natural numbers }=\frac{5 n}{9} \\
& \Rightarrow \frac{n(n+1)}{2 n}=\frac{5 n}{9} \\
&\left\{\because \text { Sum of first natural numbers }=\frac{n(n+1)}{2}\right\} \\
& \Rightarrow \frac{n+1}{2}=\frac{5 n}{9} \Rightarrow 10 n=9 n+9 \\
& \Rightarrow 10 n-9 n=9 \Rightarrow n=9 \\
& \therefore n=9 \tag{c}
\end{align*}
$$

Question 25.
The arithmetic mean and mode of a data are 24 and 12 respectively, then its median is
(a) 25
(b) 18
(c) 20
(d) 22

Solution:

Arithmetic mean $=24$
Mode $=12$
\therefore But mode $=3$ median -2 mean
$\Rightarrow 12=3$ median -2×24
$\Rightarrow 12=3$ median $=-48$
$\Rightarrow 12+48=3$ median
$\Rightarrow 3$ median $=60$
Median $=603=20(c)$

Question 26.

The mean of first \mathbf{n} odd natural number is
(a) $\frac{n+1}{2}$
(b) $\frac{n}{2}$

Solution:
(c) n
(d) n^{2}

Question 27.
The mean of first \mathbf{n} odd natural numbers is $\mathbf{n 2 8 1}$, then $\mathbf{n}=81$
(a) 9
(b) 81
(c) 27
(d) 18

Solution:

Mean of first n odd natural numbers $=\frac{n^{2}}{81}$
$\therefore n=\frac{n^{2}}{81} \Rightarrow 81 n=n^{2}$
$(\because$ mean of n odd number $=n)$
$\Rightarrow n=81$
(b)

Question 28.
If the difference of mode and median of a data is 24 , then the difference of median and mean is
(a) 12
(b) 24
(c) 8
(d) 36

Solution:

Difference of mode and median $=24$
Mode $=3$ median -2 mean
\Rightarrow Mode - median $=2$ median -2 mean
$\Rightarrow 24=2$ (median - mean)
\Rightarrow Median - mean $=242=12$ (a)
Question 29.
If the arithmetic mean of $\mathbf{7 , 8}, \mathbf{x}, 11,14$ is \mathbf{x}, then $\mathrm{x}=$
(a) 9
(b) 9.5
(c) 10
(d) 10.5

Solution:

Arithmetic mean of $7,8, x, 11,14$ is x

$$
\begin{align*}
& \Rightarrow \frac{7+8+x+11+14}{5}=x \\
& \Rightarrow \frac{40+x}{5}=x \Rightarrow 40+x=5 x \\
& \Rightarrow 5 x-x=40 \Rightarrow 4 x=40 \\
& \Rightarrow x=\frac{40}{4}=10 \tag{c}
\end{align*}
$$

Question 30.

If mode of a series exceeds its mean by 12 , then mode exceeds the median by
(a) 4
(b) 8
(c) 6
(d) 10

Solution:

Mode of a series $=$ Its mean +12
Mean $=$ mode -12
Mode $=3$ median -2 mean
Mode $=3$ median -2 (mode -12)
\Rightarrow Mode $=3$ median -2 mode +24
\Rightarrow Mode +2 mode -3 median $=24$
$\Rightarrow 3$ mode -3 median $=24$
$\Rightarrow 3($ mode - median $)=24$
\Rightarrow Mode - medain $=243=8$ (b)

Question 31.

If the mean of first n natural number is 15 , then $\mathrm{n}=$
(a) 15
(b) 30
(c) 14
(d) 29

Solution:

Mean of first n natural number $=15$

$$
\begin{align*}
& \frac{n(n+1)}{2 n}=15 \\
& \frac{n+1}{2}=15 \Rightarrow n+1=30 \\
& n=30-1=29 \tag{d}
\end{align*}
$$

Question 32.

If the mean of observations $x_{1}, x_{2}, \ldots, x_{n}$ is x^{-}, then the mean of $x_{1}+a, x_{2}+a, \ldots, x_{n}+$
a is
(a) $a \bar{x}$
(b) $\bar{x}-a$
(c) $\overline{\boldsymbol{x}}+a$
(d) $\frac{\bar{x}}{a}$

Solution:
Mean of observations $x_{1}, x_{2}, \ldots, x_{n}$ is \bar{x}

$$
\begin{aligned}
& \frac{x_{1}+x_{2}+x_{3} \ldots+x_{n}}{n}=\bar{x} \\
& x_{1}+a+x_{2}+a+x_{3}+a+\ldots . x_{n}+a \\
& =x_{1}+x_{2}+x_{3}+\ldots . . x_{n}+n a
\end{aligned}
$$

\therefore Mean of $\left(x_{1}+x_{2}+x_{3} \ldots . .+x_{n}\right)+n a$

$$
\begin{equation*}
=\bar{x}+\frac{n a}{n}=\bar{x}+a \tag{c}
\end{equation*}
$$

Question 33.

Mean of a certain number of observations is x - If each observation is divided by m $(\mathbf{m} \neq 0)$ and increased by n, then the mean of new observation is
(a) $\frac{\bar{x}}{m}+n$
(b) $\frac{\bar{x}}{n}+m$
(c) $\bar{x}+\frac{n}{m}$
(d) $\bar{x}+\frac{m}{n}$

Solution:

Mean of some observations $=x$
If each observation is divided by m and increased by n
Then mean will be $=x-m+n$

Question 34.

If $u_{i}=\mathbf{x i} \mathbf{- 2 5 1 0} \boldsymbol{\Sigma} f_{i} u_{i}=\mathbf{2 0}, \Sigma f_{i}=100$, then x
(a) 23
(b) 24
(c) 27
(d) 25

Solution:

$$
u_{i}=\frac{x_{i}-25}{10}, \Sigma f_{i} u_{i}=20, \Sigma f_{i}=100
$$

Here assumed mean $=25$
and class interval $(h)=10$

$$
\begin{align*}
\therefore & \bar{x}=\mathrm{A}+\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}} \times h=25+\frac{20}{100} \times 10 \\
& =25+2=27 \tag{c}
\end{align*}
$$

Question 35.
If 35 is removed from the data : $30,34,35,36,37,38,39,40$, then the median increases by
(a) 2
(b) 1.5
(c) 1
(d) 0.5

Solution:

Given data $=30,34,35,36,37,38,39,40$
Here $n=8$ which is even

$$
\begin{align*}
\therefore & \text { Median }=\frac{1}{2}\left[\frac{n}{2} \text { th }+\left(\frac{n}{2}+1\right) \text { th }\right] \text { term }=\frac{1}{2}(4 \text { th }+5 \text { th term }) \\
& =\frac{1}{2}(36+37)=\frac{73}{2}=36.5 \\
& \text { After removing } 35, \text { then } n=7 \\
\therefore & \text { New median }=\frac{7+1}{2} \text { th term }=4 \text { th term }=37 \\
\therefore & \text { Increase in median }=37-36.5=0.5 \quad \text { (d) } \tag{d}
\end{align*}
$$

Question 36.

While computing mean of grouped data, we assume that the frequencies are
(a) evenly distributed over all the classes.
(b) centred at the class marks of the classes.
(c) centred at the upper limit of the classes.
(d) centred at the lower limit of the classes.

Solution:

In computing the mean of grouped data, the frequencies are centred at the class marks of the classes. (b)

Question 37.
37. In the formula $\overline{\mathrm{X}}=a+h\left(\frac{1}{N} \Sigma f_{i} u_{i}\right)$, for finding the mean of grouped frequency distribution $u_{i}=$
(a) $\frac{x_{i}+a}{h}$
(b) $h\left(x_{i}-a\right)$
(c) $\frac{x_{i}-a}{h}$
(d) $\frac{a-x_{i}}{h}$

Solution:
Given $\overline{\mathrm{X}}=a+h\left(\frac{1}{\mathrm{~N}} \Sigma f_{i} u_{i}\right)$
Above formula is a step deviation formula.

$$
\begin{equation*}
u_{i}=\frac{x_{i}-a}{h} \tag{c}
\end{equation*}
$$

Question 38.
For the following distribution:

Class:	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$
Frequency:	10	15	12	20	9

the sum of the lower limits of the median and modal class is
(a) 15
(b) 25
(c) 30
(d) 35

Solution:

Class	Frequency	Cumulative frequency
$0-5$	10	10
$5-10$	15	25
$10-15$	12	37
$15-20$	20	57
$20-25$	9	66

Now, $\mathrm{N} 2=662=33$, which lies in the interval 10-15.
Therefore, lower limit of the median class is 10 .
The highest frequency is 20 , which lies in the interval 15-20.
Therefore, lower limit of modal class is 15 .
Hence, required sum is $10+15=25$. (b)
Question 39.
For the following distribution:

Below:	10	20	30	40	50	60
Number of students:	3	12	27	57	75	80

the modal class is
(a) $\mathbf{1 0 - 2 0}$
(b) 20-30
(c) 30-40
(d) 50-60

Solution:

Marks	Number of students	Cumulative frequency
Below 10	$3=3$	3
$10-20$	$(12-3)=9$	12
$20-30$	$(27-12)=15$	27
$30-40$	$(57-27)=30$	57
$40-50$	$(75-57)=18$	75
$50-60$	$(80-75)=5$	80

Here, we see that the highest frequency is 30 , which lies in the interval 30-40. (c)
Question 40.
Consider the following frequency distribution:

Class	$65-85$	$85-105$	$105-125$	$125-145$	$145-165$	$165-185$	$185-205$
Frequency:	4	5	13	20	14	7	4

The difference of the upper limit of the median class and the lower limit of the modal class is
(a) 0
(b) 19
(c) 20
(d) 38

Solution:

Class	Frequency	Cumulative frequency
$65-85$	4	4
$85-105$	5	9
$105-125$	13	22
$125-145$	20	42
$145-165$	14	56
$165-185$	7	63
$185-205$	4	67

Here, $\mathrm{N} 2=672=33.5$ which lies in the interval 125-145.
Hence, upper limit of median class is 145 .
Here, we see that the highest frequency is 20 which lies in 125-145.
Hence, the lower limit of modal class is 125.
\therefore Required difference $=$ Upper limit of median class - Lower limit of modal class
$=145-125=2$ (C)

Question 41.

In the formula $X=a+\Sigma$ fidi Σ fif for finding the mean of grouped data di's are deviations from a of
(a) lower limits of classes
(b) upper limits of classes
(c) mid-points of classes
(d) frequency of the class marks

Solution:

We know that, $\mathrm{d}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}}-\mathrm{a}$
i .e, $\mathrm{d}_{\mathrm{i}}{ }^{〔}$ s are the deviation from a mid-points of the classes. (c)

Question 42.

The abscissa of the point of intersection of less than type and of the more than type cumulative frequency curves of a grouped data gives its
(a) mean
(b) median
(c) mode
(d) all the three above

Solution:

Since, the intersection point of less than ogive and more than ogive gives the median on the abscissa. (b)

Question 43.
Consider the following frequency distribution:

Class:	$0-5$	$6-11$	$12-17$	$18-23$	$24-29$
Frequency:	13	10	15	8	11

The upper limit of the median class is
(a) 17
(b) 17.5
(c) 18
(d) 18.5

Solution:

Given, classes are not continuous, so we make continuous by subtracting 0.5 from lower limit and adding 0.5 to upper limit of each class.

Class	Frequency	Cumulative frequency
$-0.5-5.5$	13	13
$5.5-11.5$	10	23
$11.5-17.5$	15	38
$17.5-23.5$	8	46
$23.5-29.5$	11	57

Here, $\mathrm{N} 2=572=28.5$, which lies in the interval 11.5-17.5.
Hence, the upper limit is 17.5 .

