Answer each of the following questions either in one word or one sentence or as per the requirement of the question :

Question 1.

Write the value of k for which the quadratic equation $x^2 - kx + 4 = 0$ has equal roots.

Solution:

$$x^2 - kx + 4 = 0$$

Here $a = 1$, $b = -k$, $c = 4$
Discriminant (D) = $b^2 - 4ac$
= $(-k)^2 - 4 \times 1 \times 4 = k^2 - 16$
The roots are equal
D = 0 => $k^2 - 16 = 0$
=> $(k + 4) (k - 4) = 0$.
Either $k + 4 = 0$, then $k = -4$
or $k - 4 = 0$, then $k = 4$

Question 2.

k = 4, -4

What is the nature of roots of the quadratic equation $4x^2 - 12x - 9 = 0$?

Solution:

$$4x^2 - 12x - 9 = 0$$

Here $a = 4$, $b = -12$, $c = -9$
Discriminant (D) = $b^2 - 4ac = (-12)^2 - 4 \times 4 \times (-9)$
= $144 + 144 = 288$
D > 0

Roots are real and distinct

Question 3.

If $1 + \sqrt{2}$ is a root of a quadratic equation with rational coefficients, write its other root.

Solution:

The roots of the quadratic equation with rational coefficients are conjugate. The other root will be $1 - \sqrt{2}$

Ouestion 4.

Write the number of real roots of the equation $x^2 + 3|x| + 2 = 0$.

Solution:

$$x^{2} + 3 |x| + 2 + 0 \Rightarrow x^{2} + 3x + 2 = 0$$
Here $a = 1$, $b = 3$, $c = 2$ (: $|x| = x$)
$$D = b^{2} - 4ac = (3)^{2} - 4 \times 1 \times 2$$

$$= 9 - 8 = 1$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-3 \pm \sqrt{1}}{2 \times 1} = \frac{-3 \pm 1}{2}$$

$$x_{1} = \frac{-3 + 1}{2} = \frac{-2}{2} = -1$$
and $x_{2} = \frac{-3 - 2}{2} = \frac{-4}{2} = -2$

∴ Real roots are -1, -2

Question 5.

Write the sum of the real roots of the equation $x^2 + |x| - 6 = 0$.

Solution:

$$x^2 + |x| - 6 = 0 \Rightarrow x^2 + x - 6 = 0 \quad (\because |x| = x)$$

Here $a = 1, b = 1, c = -6$

$$\therefore \text{ Sum of roots} = \frac{-b}{a} = \frac{-1}{1} = -1$$

Question 6.

Write the set of values of 'a' for which the equation $x^2 + ax - 1 = 0$, has real roots.

Solution:

$$x^2 + ax - 1 = 0$$

Here
$$a = 1$$
, $b = a$, $c = -1$

$$D = b^2 - 4ac = (a)^2 - 4 \times 1 \times (-1) = a^2 + 4$$

Roots are real

$$D \ge 0 \Longrightarrow a^2 + 4 \ge 0$$

For all real values of a the equation has real roots.

Question 7.

In there any real value of 'a' for which the equation $x^2 + 2x + (a^2 + 1) = 0$ has real roots ? **Solution:**

$$x^2 + 2x + (a^2 + 1) = 0$$

$$D = (-b)^2 - 4ac = (2)^2 - 4 \times 1 (a^2 + 1) = 4 - 4a^2 - 4 = -4a^2$$

For real value of x, $D \ge 0$

But
$$-4a^2 \le 0$$

So it is not possible

There is no real value of a

Question 8.

Write the value of λ , for which $x^2 + 4x + \lambda$ is a perfect square.

Solution:

In
$$x^2 + 4x + \lambda$$

$$a = 1, b = 4, c = \lambda$$

 $x^2 + 4x + \lambda$ will be a perfect square if $x^2 + 4x + \lambda = 0$ has equal roots

$$D = b^2 - 4ac = (4)^2 - 4 \times 1 \times \lambda = 16 - 4\lambda$$

$$D = 0$$

$$=> 16 - 4\lambda = 0$$

$$=> 16 = 4A$$

$$=>\lambda=4$$

Hence $\lambda = 4$

Question 9.

Write the condition to be satisfied for which equations $ax^2 + 2bx + c = 0$ and $bx^2 - 2\sqrt{ac} x + b = 0$ have equal roots.

Solution:

$$In ax^2 + 2bx + c = 0$$

$$D_1 = (-2b)^2 - 4 \times a \times c$$
$$= 4b^2 - 4ac$$

: Roots are equal

$$D_1 = 0$$

$$\therefore 4b^2 - 4ac = 0 \Rightarrow 4b^2 = 4ac$$

$$\Rightarrow b^2 = ac$$

and in
$$bx^2 - 2\sqrt{ac}x + b = 0$$

$$D_2 = \left(-2\sqrt{ac}\right)^2 - 4 \times b \times b$$

$$= 4ac - 4b^2$$

- : Roots are equal
- $\therefore 4ac = 4b^2 \Rightarrow b^2 = ac$
- \therefore The required condition is $b^2 = ac$

Question 10.

Write the set of values of k for which the quadratic equation has $2x^2 + kx - 8 = 0$ has real roots.

Solution:

In
$$2x^2 + kx - 8 = 0$$

$$D = b^2 - 4ac = (k)^2 - 4 \times 2 \times (-8) = k^2 + 64$$

The roots are real

$$k^2 + 64 \ge 0$$

For all real values of k, the equation has real roots.

Question 11.

Write a quadratic polynomial, a sum of whose zeros is $2\sqrt{3}$ and their product is 2.

Solution:

Sum of zeros = $2\sqrt{3}$

and product of zeros = 2

The required polynomial will be

$$k\left(x^2 - \frac{b}{a}x + \frac{c}{a}\right)$$
 where k is any real

number

Whose
$$\frac{b}{a} = 2\sqrt{3}$$
 and $\frac{c}{a} = 2$

$$\therefore k (x^2 - 2\sqrt{3} x + 2) \text{ whose } k \text{ is any real number}$$

Ouestion 12.

Show that x = -3 is a solution of $x^2 + 6x + 9 = 0$ (C.B.S.E. 2008)

Solution:

The given equation is $x^2 + 6x + 9 = 0$

If x = -3 is its solution then it will satisfy it

L.H.S. =
$$(-3)^2 + 6(-3) + 9 = 9 - 18 + 9 = 18 - 18 = 0 = R.H.S.$$

Hence x = -3 is its one root (solution)

Question 13.

Show that x = -2 is a solution of $3x^2 + 13x + 14 = 0$. (C.B.S.E. 2008)

Solution:

The given equation is $3x^2 + 13x + 14 = 0$

If x = -2 is its solution, then it will satisfy it

L.H.S. =
$$3(-2)^2 + 13(-2) + 14 = 3 \times 4 - 26 + 14$$

$$= 12 - 26 + 14 = 26 - 26 = 0 = R.H.S.$$

Hence x = -2 is its solution

Question 14.

Find the discriminant of the quadratic equation $3\sqrt{3} x^2 + 10x + \sqrt{3} = 0$. (C.B.S.E. 2009) Solution:

$$3\sqrt{3}x^2 + 10x + \sqrt{3} = 0$$

Here
$$a = 3\sqrt{3}$$
, $b = 10$, $c = \sqrt{3}$

$$\therefore$$
 Discriminant D = $b^2 - 4ac$

$$=(10)^2-4\times 3\sqrt{3}\times \sqrt{3}$$

$$= 100 - 12 \times 3 = 100 - 36 = 64$$

Ouestion 15.

If x = -12, is a solution of the quadratic equation $3x^2 + 2kx - 3 = 0$, find the value of k. **[CBSE 2015]**

Solution:

$$x = \frac{-1}{2}$$
 is the solution of $3x^2 + 2kx - 3 = 0$

Substituting the value of x in the given equation

$$3\left(\frac{-1}{2}\right)^2 - 2k\left(\frac{-1}{2}\right) - 3 = 0$$

$$3 \times \frac{1}{4} + k - 3 = 0 \Rightarrow k = 3 - \frac{3}{4} = \frac{9}{4}$$

Hence
$$k = \frac{9}{4}$$

