Answer each of the following questions either in one word or one sentence or as per the requirement of the question :
 Question 1.

Write the value of k for which the quadratic equation $x^{2}-k x+4=0$ has equal roots.

Solution:

$\mathrm{x}^{2}-\mathrm{kx}+4=0$
Here $\mathrm{a}=1, \mathrm{~b}=-\mathrm{k}, \mathrm{c}=4$
Discriminant (D) $=b^{2}-4 a c$
$=(-\mathrm{k})^{2}-4 \times 1 \times 4=\mathrm{k}^{2}-16$
The roots are equal
$\mathrm{D}=0 \Rightarrow \mathrm{k}^{2}-16=0$
$=>(\mathrm{k}+4)(\mathrm{k}-4)=0$.
Either $\mathrm{k}+4=0$, then $\mathrm{k}=-4$
or $\mathrm{k}-4=0$, then $\mathrm{k}=4$
$\mathrm{k}=4,-4$

Question 2.

What is the nature of roots of the quadratic equation $4 x^{2}-12 x-9=0$?

Solution:

$4 x^{2}-12 x-9=0$
Here $a=4, b=-12, c=-9$
Discriminant $(D)=b^{2}-4 a c=(-12)^{2}-4 \times 4 \times(-9)$
$=144+144=288$
D >0
Roots are real and distinct

Question 3.

If $1+\sqrt{ } 2$ is a root of a quadratic equation with rational coefficients, write its other root.

Solution:

The roots of the quadratic equation with rational coefficients are conjugate
The other root will be $1-\sqrt{2}$

Question 4.

Write the number of real roots of the equation $x^{2}+3|x|+2=0$.

Solution:

$$
\begin{aligned}
& x^{2}+3|x|+2+0 \Rightarrow x^{2}+3 x+2=0 \\
& \text { Here } a=1, b=3, c=2 \quad(\because|x|=x) \\
& \mathrm{D}=b^{2}-4 a c=(3)^{2}-4 \times 1 \times 2 \\
& =9-8=1 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-3 \pm \sqrt{1}}{2 \times 1}=\frac{-3 \pm 1}{2} \\
& x_{1}=\frac{-3+1}{2}=\frac{-2}{2}=-1 \\
& \\
& \text { and } x_{2}=\frac{-3-2}{2}=\frac{-4}{2}=-2 \\
& \therefore \text { Real roots are }-1,-2
\end{aligned}
$$

Question 5.

Write the sum of the real roots of the equation $x^{2}+|x|-6=0$.

Solution:

$$
x^{2}+|x|-6=0 \Rightarrow x^{2}+x-6=0(\because|x|=x)
$$

Here $a=1, b=1, c=-6$
\therefore Sum of roots $=\frac{-b}{a}=\frac{-1}{1}=-1$

Question 6.

Write the set of yalues of ' a ' for which the equation $x^{2}+a x-1=0$, has real roots.

Solution:

$x^{2}+a x-1=0$
Here $\mathrm{a}=1, \mathrm{~b}=\mathrm{a}, \mathrm{c}=-1$
$D=b^{2}-4 a c=(a)^{2}-4 \times 1 \times(-1)=a^{2}+4$
Roots are real
$D \geq 0=>a^{2}+4 \geq 0$
For all real values of a the equation has real roots.

Question 7.

In there any real value of ' a ' for which the equation $x^{2}+2 x+\left(a^{2}+1\right)=0$ has real roots?

Solution:

$\mathrm{x}^{2}+2 \mathrm{x}+\left(\mathrm{a}^{2}+1\right)=0$
$D=(-b)^{2}-4 a c=(2)^{2}-4 \times 1\left(a^{2}+1\right)=4-4 a^{2}-4=-4 a^{2}$
For real value of $\mathrm{x}, \mathrm{D} \geq 0$
But $-4 a^{2} \leq 0$
So it is not possible
There is no real value of a

Question 8.

Write the value of λ, for which $x^{2}+4 x+\lambda$ is a perfect square.

Solution:

In $x^{2}+4 x+\lambda$
$\mathrm{a}=1, \mathrm{~b}=4, \mathrm{c}=\lambda$
$x^{2}+4 x+\lambda$ will be a perfect square if $x^{2}+4 x+\lambda=0$ has equal roots
$D=b^{2}-4 a c=(4)^{2}-4 \times 1 \times \lambda=16-4 \lambda$
$\mathrm{D}=0$
$=>16-4 \lambda=0$
$=>16=4 \mathrm{~A}$
$\Rightarrow \lambda=4$
Hence $\lambda=4$

Question 9.

Write the condition to be satisfied for which equations $a x^{2}+2 b x+c=0$ and $b x^{2}-2 \sqrt{ } a c x+b$ $=0$ have equal roots.

Solution:

In $a x^{2}+2 b x+c=0$

$$
\begin{aligned}
& D_{1}=(-2 b)^{2}-4 \times a \times c \\
& =4 b^{2}-4 a c
\end{aligned}
$$

\because Roots are equal
$\therefore D_{1}=0$
$\therefore 4 b^{2}-4 a c=0 \Rightarrow 4 b^{2}=4 a c$
$\Rightarrow b^{2}=a c$

$$
\begin{aligned}
& \text { and in } b x^{2}-2 \sqrt{a c} x+b=0 \\
& \mathrm{D}_{2}=(-2 \sqrt{a c})^{2}-4 \times b \times b \\
& =4 a c-4 b^{2}
\end{aligned}
$$

\because Roots are equal
$\therefore 4 a c=4 b^{2} \Rightarrow b^{2}=a c$
\therefore The required condition is $b^{2}=a c$

Question 10.

Write the set of values of k for which the quadratic equation has $2 \mathrm{x}^{2}+\mathrm{kx}-8=0$ has real roots.

Solution:

In $2 \mathrm{x}^{2}+\mathrm{kx}-8=0$
$\mathrm{D}=\mathrm{b}^{2}-4 \mathrm{ac}=(\mathrm{k})^{2}-4 \times 2 \times(-8)=\mathrm{k}^{2}+64$
The roots are real
$\mathrm{D} \geq 0$
$k^{2}+64 \geq 0$
For all real values of k, the equation has real roots.

Question 11.

Write a quadratic polynomial, a sum of whose zeros is $2 \sqrt{3}$ and their product is 2 .

Solution:

Sum of zeros $=2 \sqrt{ } 3$
and product of zeros $=2$
The required polynomial will be
$k\left(x^{2}-\frac{b}{a} x+\frac{c}{a}\right)$ where k is any real
number

Whose $\frac{b}{a}=2 \sqrt{3}$ and $\frac{c}{a}=2$
$\therefore k\left(x^{2}-2 \sqrt{3} x+2\right)$ whose k is any real

number

Question 12.

Show that $x=-3$ is a solution of $x^{2}+6 x+9=0$ (C.B.S.E. 2008)

Solution:

The given equation is $\mathrm{x}^{2}+6 \mathrm{x}+9=0$
If $x=-3$ is its solution then it will satisfy it
L.H.S. $=(-3)^{2}+6(-3)+9=9-18+9=18-18=0=$ R.H.S.

Hence $x=-3$ is its one root (solution)

Question 13.

Show that $x=-2$ is a solution of $3 x^{2}+13 x+14=0$. (C.B.S.E. 2008)

Solution:

The given equation is $3 x^{2}+13 x+14=0$
If $x=-2$ is its solution, then it will satisfy it
L.H.S. $=3(-2)^{2}+13(-2)+14=3 \times 4-26+14$
$=12-26+14=26-26=0=$ R.H.S.
Hence $x=-2$ is its solution

Question 14.

Find the discriminant of the quadratic equation $3 \sqrt{3} x^{2}+10 x+\sqrt{3}=0$. (C.B.S.E. 2009)

Solution:

$$
\begin{aligned}
& 3 \sqrt{3} x^{2}+10 x+\sqrt{3}=0 \\
& \text { Here } a=3 \sqrt{3}, b=10, c=\sqrt{3}
\end{aligned}
$$

\therefore Discriminant $\mathrm{D}=b^{2}-4 a c$

$$
\begin{aligned}
& =(10)^{2}-4 \times 3 \sqrt{3} \times \sqrt{3} \\
& =100-12 \times 3=100-36=64
\end{aligned}
$$

Question 15.

If $x=-12$, is a solution of the quadratic equation $3 x^{2}+2 k x-3=0$, find the value of k. [CBSE 2015]

Solution:

$x=\frac{-1}{2}$ is the solution of $3 x^{2}+2 k x-3=0$
Substituting the value of x in the given equation
$3\left(\frac{-1}{2}\right)^{2}-2 k\left(\frac{-1}{2}\right)-3=0$
$3 \times \frac{1}{4}+k-3=0 \Rightarrow k=3-\frac{3}{4}=\frac{9}{4}$
Hence $k=\frac{9}{4}$

