1.

Sol:

(i) Given that,

Radius of cone $(r)=6 \mathrm{~m}$
Height of cone $(h)=7 \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times(6)^{2} \times 7$
$=264 \mathrm{~cm}^{3}$
(ii) Given,

Radius of cone $(r)=3 \cdot 5 \mathrm{~cm}$
Height of cone $(h)=12 \mathrm{~cm}$
Volume of cone $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times(3 \cdot 5)^{2} \times 12$
$=154 \mathrm{~cm}^{3}$
(iii) From the relation
$l^{2}=r^{2}+h^{2}$, we have
$r=\sqrt{l^{2}-h^{2}}=\sqrt{(28)^{2}-}(21)^{2}=7 \sqrt{7} \mathrm{~cm}$
So, volume of cone $=\frac{1}{3} \times \pi r^{2} \times h$
$=\frac{1}{3} \times \frac{22}{7} \times(2)^{2} \times(7 \sqrt{7})^{2}$
$=7546 \mathrm{~cm}^{3}$
2.

Sol:

(i) Radius of cone $(r)=7 \mathrm{~cm}$

Slant height (l) of cone $=25 \mathrm{~cm}$
Height (h) of cone $=\sqrt{l^{2}-r^{2}}$
$=\sqrt{(25)^{2}-b^{2}}=\sqrt{25^{2}-7^{2}}=24 \mathrm{~cm}$.
Volume of cone $=\frac{1}{3} \pi r^{2} h=\left[\frac{1}{3} \times \frac{22}{7} \times(7)^{2} \times 24\right] \mathrm{cm}^{3}$

$$
=1232 \mathrm{~cm}^{3} .
$$

(ii) Height (h) of cone $=12 \mathrm{~cm}$.

Slant height of cone $(l)=13 \mathrm{~cm}$.
Radius (r) of cone $=\sqrt{l^{2}-r^{2}}=\sqrt{13^{2}-12^{2}} \mathrm{~cm}$
$=5 \mathrm{~cm}$.
Volume of cone $\left.=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times(5)^{2} \times 12\right] \mathrm{cm}^{3}$
$=\frac{2200}{7} \mathrm{~cm}^{3}$
Capacity of the conical vessel $=\left(\frac{2200}{7000}\right)$ liters
$=\frac{11}{35}$ liters
3.

Sol:

Given that, let height $\rightarrow h$ say
Height of $1^{\text {st }}$ cone $=h$
Height of $2^{\text {nd }}$ cone $=3 h$
Let the ratio of radii be r
\therefore Radius of $1^{\text {st }}$ cone $=3 r$
Radius of $2^{\text {nd }}$ cone $=r$
\therefore ratio of volume $=\frac{V_{1}}{V_{2}}$

$$
\Rightarrow \frac{V_{1}}{V_{2}}=\frac{\frac{1}{3} \pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2} h_{2}}=\frac{r_{1}^{2} h_{1}}{r_{2}^{2} h_{2}}
$$

$=\frac{(3 r)^{2} \times h}{r^{2} \times 3 h}$
$=\frac{9 r^{2} h}{3 r^{2} h}$
$=\frac{3}{1}$
$\Rightarrow \frac{V_{1}}{V_{2}}=\frac{3}{1}$.
4.

Sol:

Let thee ratio be x
\therefore Radius ' r ' $=5 x$
Height ' h ' $=12 x$
WKT,
\therefore Slant height $=\sqrt{r^{2}+h^{2}}=\sqrt{(5 x)^{2}+(12 x)^{2}}=13 x$
Now volume $=314 \mathrm{~m}^{3}$
[given data]
$\Rightarrow \frac{1}{3} \pi r^{2} h=314 m^{3}$
$\Rightarrow \frac{1}{3} \times 3 \cdot 14 \times 25 x^{2} \times 12 x=314$
$\Rightarrow x^{3}=\frac{314 \times 3}{3 \cdot 14 \times 25 \times 12}$
$\Rightarrow x^{3}=1 \Rightarrow x=1$
\therefore Slant height $=13 x=13 \mathrm{~m}$
Radius $=5 x=5 \mathrm{~m}$.
5.

Sol:

Let the ratio be x
Radius ' r ' $=5 x$
Height ' h ' $=12 x$
\therefore Slant height ' I ' $=\sqrt{r^{2}+h^{2}}=\sqrt{(5 x)^{2}+(12 x)^{2}}=13 x$.
Now volume $=2512 \mathrm{~cm}^{3}$
$\Rightarrow \frac{1}{3} \times \pi \times(5 x)^{2} \times 12 x=2512$
$\Rightarrow \frac{1}{3} \times 3 \cdot 14 \times 2 \cdot 5 x^{2} \times 128 x=2512$
$\Rightarrow x^{3}=\frac{2512 \times 3}{314 \times 25 \times 2}$
$\Rightarrow x=2$.
\therefore Slant height $=13 x=13 \times 2=26 \mathrm{~cm}$
And, Radius of cone $=5 x=5 \times 2=10 \mathrm{~cm}$.
6.

Sol:

Let ratio of radius be ' r '

Radius of $1^{\text {st }}$ cone $=2 r$
Radius of $2^{\text {nd }}$ cone $=3 r$
Similarly
Let volume ratio be ' v '
Volume of $1^{\text {st }}$ cone $\rightarrow 4 v$
Similarly volume of $2^{\text {nd }}$ cone $\rightarrow 5 v$
$\therefore \frac{V_{1}}{V_{2}}=\frac{4 v}{5 v}=\frac{4}{5}$
$\Rightarrow \frac{\frac{1}{3} \pi r_{1}^{2} h_{1}}{\frac{1}{3} \pi r_{2}^{2} h_{2}}=\frac{4}{5}$
$\Rightarrow \frac{h_{1}(2 r)^{2}}{h_{2}(3 r)^{2}}=\frac{4}{5}$
$\Rightarrow \frac{h_{1}}{h_{2}} \times \frac{4 r^{2}}{9 r^{2}}=\frac{4}{5}$
$\Rightarrow \frac{h_{1}}{h_{2}} \times \frac{36}{20}=\frac{18}{20}=\frac{9}{5}$
\therefore Ratio of the inner height is 9:5
7.

Sol:

Given that,
A cylinder and a cone have equal radii of their equal bases and heights
Let t_{1} radius of cone $=$ radius of cylinder $=r$
Let t_{1} height of cone $=$ height of cylinder $=\mathrm{h}$
Let $V_{1}=$ volume of cone
$V_{2}=$ volume of cylinder
$\Rightarrow \frac{V_{1}}{V_{2}}=\frac{\frac{1}{3} \pi r^{2} h}{\pi r^{2} h}=\frac{1}{3}$
$\Rightarrow \frac{V_{2}}{V_{1}}=\frac{3}{1}$
Hence their volumes are in the ratio $3: 4$.
8.

Sol:

Let radius of cone is r and height is h
Volume $V_{1}=\frac{1}{3} \pi r^{2} h$.
In another case,
Radius of cone $=$ half of radius $=\frac{r}{2}$
Height $=h$
\therefore Volume $=\left(V_{2}\right)=\frac{1}{3} \pi\left(\frac{1}{2} r\right)^{2} h$
$=\frac{1}{3} \pi \times \frac{r^{2}}{4} \times h$
$=\frac{1}{12} \pi r^{2} h$.
$\therefore \frac{V_{1}}{V_{2}}=\frac{\frac{1}{12} \pi r^{2} h}{\frac{1}{3} \pi r^{2} h}=\frac{3}{12}=\frac{1}{4}$.
\therefore Ratio will be $(1: 4)$.
9.

Sol:

Diameter of heap $d=9 \mathrm{~m}$
Radius $=\frac{9}{2} m=4 \cdot 5 m$.
Height $(h)=3 \cdot 5 m$.
Volume of heap $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3}\left[3 \cdot 14 \times(4 \cdot 5)^{2} \times 3 \cdot 4\right] \mathrm{m}^{3}$
$=74 \cdot 18 \mathrm{~m}^{3}$
Slant height $l=\sqrt{r^{2}+h^{2}}=\sqrt{(4 \cdot 5)^{2}+(3 \cdot 5)^{2}}$
$=5.70 \mathrm{~m}$.
Area of canvas required $=$ CSA of cone
$=\pi r l$
$=3 \cdot 14 \times 4.5 \times 5 \cdot 7 \mathrm{~m}^{2}$
$=80 \cdot 54 \mathrm{~m}^{2}$
10.

Sol:

Given diameter of cone 14 cm
\therefore Radius of cone $=7 \mathrm{~cm}$
Height of cone $=51 \mathrm{~cm}$.
\therefore Volume of cone $=\frac{1}{3} \times \pi r^{2} h$
$=\frac{1}{3} \times \frac{22}{7} \times 7 \times 5 \times 51$
$=2618 \mathrm{~cm}^{3}$
No with is given that $1 \mathrm{~cm}^{3}$ weight 105 m
$\therefore 2618 \mathrm{~cm}^{3}$ weight $(261 \times 10) \mathrm{gm}$
i.e., $26 \cdot 180 \mathrm{~kg}$.
11.

Sol:

Given, radius of cone $(r)=6 \cdot 3 \mathrm{~cm}$
Height of cone $(h)=10 \mathrm{~cm}$
\therefore WKT, Slant height $+(1)=\sqrt{(6 \cdot 3)^{2}+(10)^{2}}$
$=11 \cdot 819 \mathrm{~cm}\left[l=\sqrt{r^{2}+h^{2}}\right]$
\therefore Volume of cone $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times 3 \cdot 14 \times(6 \cdot 3)^{2} \times 10=4158 \mathrm{~cm}^{3}$
And CSA of cone $=\pi r l$
$=\frac{22}{7} \times 6 \cdot 3 \times 11 \cdot 819=234 \cdot 01 \mathrm{~cm}^{2}$
12.

Sol:

For largest circular cone radius of the base of the cone $=\frac{1}{2}$ edge of cube
$=\frac{1}{2} \times 14=7 \mathrm{~cm}$
And height of the cone $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times 3.4 \times 7 \times 7 \times 14$
$=718 \cdot 666 \mathrm{~cm}^{3}$.
13.

Sol:
(i) Radius of cone $=\left(\frac{28}{2}\right) \mathrm{cm}=14 \mathrm{~cm}$

Let height of cone is h
Volume of cone $=9856 \mathrm{~cm}^{3}$
$\Rightarrow \frac{1}{3} \pi r^{2} h=9856 \mathrm{~cm}^{2}$
$\left.\Rightarrow \frac{1}{3} \times \frac{22}{7} \times(14)^{2} \times h\right] \mathrm{cm}^{2}=9856 \mathrm{~cm}^{3}$
$h=48 \mathrm{~cm}$.
Thus the height of the cone is 48 cm .
(ii) Slant height (l) of cone $=\sqrt{r^{2}+h^{2}}$

$$
\begin{aligned}
& =\left(\sqrt{(14)^{2}+(48)^{2}} \mathrm{~cm}\right. \\
& =\sqrt{196+2304}=\sqrt{2500} \mathrm{~cm} \\
& =50 \mathrm{~cm}
\end{aligned}
$$

Thus, the slant height of cone is 50 cm .
(iii) CSA of cone $=\pi r l=\left(\frac{22}{7} \times 14 \times 50\right) \mathrm{cm}^{2}$

$$
=2200 \mathrm{~cm}^{2} .
$$

14.

Sol:

Radius (r) of pit $=\frac{3 \cdot 5}{2} m=1 \cdot 75 m$.
Depth (h) of pit $=12 \mathrm{~m}$.
Volume of pit $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \frac{22}{7} \times(1 \cdot 75)^{2} \times 12$
$=38 \cdot 5 \mathrm{~m}^{3}$
\therefore Capacity of the pit $=(38 \cdot 5 \times 1)$ Kilometers
$=38 \cdot 5$ Kilo liters
15.

Sol:

Given that,
Area of canvas $=551 m^{2}$ and area of the canvas 10 st in wastage is $1 \mathrm{~m}^{2}$
\therefore area of canvas available for making the tent is $(551-1) \mathrm{m}^{2}=550 \mathrm{~m}^{2}$.
SA of tent $=550 \mathrm{~m}^{2}$ required \cdot base radius of conical tent $=7 \mathrm{~m}$.
CSA of tent $=550 \mathrm{~m}^{2}$
$\pi r l=550 m^{2}$
$\Rightarrow \frac{22}{7} \times 7 \times l=550$
$\Rightarrow l=\frac{550}{22}=25 \mathrm{~m}$
Now, WKT
$l^{2}=r^{2}+h^{2}$
$\Rightarrow(25)^{2}-(7)^{2}=h^{2}$
$\Rightarrow h=\sqrt{625-49}$
$=\sqrt{576}=24 \mathrm{~m}$
So, the volume of the conical tent $=\frac{1}{3} \pi r^{2} h$
$=\frac{1}{3} \times 3 \cdot 14 \times(7 \times 7)(24) m^{3}=1232 \mathrm{~m}^{3}$.

