Surface Area and volume of A Right Circular cylinder 19.1

1.

Sol:

Given that
Radius of base of the cylinder $e_{r}=0.7 \mathrm{~m}$
Curved surface area of cylinder $=4 \cdot 4 m^{2}=2 \pi r h$
Let be the height of the cylinder
WKT,
$2 \pi r h=4.4 m^{2}$
$2 \times 3.14 \times 0.7 \times h=4.4$
$(4.4) \mathrm{hm}-4.4 \mathrm{~m}^{2}$
$h=1 m$
\therefore The height of the cylinder $=1 m$.
2.

Sol:

Given that
Height of cylinder $=$ length of cylindrical pipe $=28 \mathrm{~m}$.
Radius (r) of circular end of pipe $=\frac{9}{2} \mathrm{~cm}=2 \cdot 5 \mathrm{~cm}$
$=0.025 \mathrm{~m}$.
Curved surface area of cylindrical pipe $=2 \pi r h$
$=2 \times 3 \cdot 14 \times 0 \cdot 025 \times 28=4.4 \mathrm{~cm}$
\therefore The area of radiation surface of the system is $4.4 \mathrm{~m}^{2}$ or $44000 \mathrm{~cm}^{2}$
3.

Sol:

Given that
Height of the pillar $=3.5 \mathrm{~m}$
Radius of the circular end of the pillar $=\frac{50}{2} \mathrm{~cm}$.
$=25 \mathrm{~cm}=0.25 \mathrm{~m}$
Curved surface area of pillar $=2 \pi r h$
$=2 \times \frac{22}{7} \times 0.25 \times 3 \cdot 5 m^{2}$
$=5 \cdot 5 \mathrm{~m}^{2}$
Cost of painting $1 m^{2}$ area - Rs $12 \cdot 50$

Cost of painting $S \cdot 5 m^{2}$ area $=\operatorname{Rs}(5 \cdot 5 \times 12 \cdot 50)$
$=R s 68 \cdot 75$.
Thus, the cost of painting the CSA pillar is $R s 68,75$
4.

Sol:

Height of the cylindrical tank $(h)=1 m$.
Base radius of cylindrical tank $(r)=\frac{140}{2} m=70 \mathrm{~cm}$
$=0.7 \mathrm{~m}$
Area of sheet required - total surface area of tank $=2 \pi(r$ th)
$=2 \times 3 \cdot 14 \times 0 \cdot 7(0 \cdot 7+1) \mathrm{m}^{2}$
$=4.4 \times 1.7 \mathrm{~m}^{2}$
$=7.48 \mathrm{~m}^{2}$
\therefore So, it will required $7 \cdot 48 m^{2}$ of metal sheet.
5.

Sol:

We have
Curved surface area $=\frac{1}{3} \times$ total surface area
$\Rightarrow 2 \pi r h=\frac{1}{3}\left(2 \pi r h+2 \pi r^{2}\right)$
$\Rightarrow 6 \pi r h=2 \pi r h+2 \pi r^{2}$
$\Rightarrow 4 \pi r h=2 \pi r^{2}$
$\Rightarrow 2 h=r$
We know that,
Total surface area $=462$
\Rightarrow Curved surface Area $=\frac{1}{3} \times 462$
$\Rightarrow 2 \pi r h=154$
$\Rightarrow 2 \times 3 \cdot 14 \times 2 h^{2}=154$
$\Rightarrow h^{2}=\frac{154 \times 7}{2 \times 22 \times 2}$
$=\frac{49}{4}$

$$
\begin{aligned}
& \Rightarrow h=\frac{7}{2} \mathrm{~cm} \\
& \Rightarrow r=2 h \\
& \Rightarrow r=2 \times \frac{7}{2} \mathrm{~cm} \\
& \Rightarrow r=7 \mathrm{~cm} .
\end{aligned}
$$

6.

Sol:

Let the inner radii of hollow cylinder $\Rightarrow r \mathrm{~cm}$
Outer radii of hollow cylinder \Rightarrow Rcm
Then,
$\Rightarrow 2 \pi h(R+r)+2\left(\pi R^{2}-\pi r^{2}\right)=4620$ and $\pi R^{2}-m^{2}=115 \cdot 5$
$\Rightarrow 2 \pi h(R+r)+231=4620$ and $\pi\left(R^{2}-r^{2}\right)=115 \cdot 5$
$\Rightarrow 2 \pi \times 7(r+R)=4389$ and $\pi\left(R^{2}-r^{2}\right)=115 \cdot 5$
$\Rightarrow \pi(R+r)=313.5$ and $\pi(R+r)(R-r)=115 \cdot 5$
$\Rightarrow \frac{\pi(R+r)(R-r)}{\pi(R+r)}=\frac{115 \cdot 5}{313 \cdot 5}$
$\Rightarrow R-r=\frac{7}{19} \mathrm{~cm}$.
7.

Sol:

For cylinder, total surface Area $=2 \pi r(h+r)$
Curved surface area $=2 \pi r h$
$\therefore \frac{\text { Total surface area }}{\text { curved surface area }}=\frac{7 \cdot 5+3 \cdot 5}{7 \cdot 5}=\frac{11}{7 \cdot 5}$
$=\frac{11 \times 10}{7 \cdot 5}=\frac{22}{15}=22: 15$.
8.

Sol:

Given that,
External radius $(R)=8 \mathrm{~cm}$
Height $(h)=10 \mathrm{~cm}$
The total surface area of a hollow metal cylinder $=338 \mathrm{IT} \mathrm{cm}{ }^{2}$

We know that
$2 \pi R h+2 \pi r h+2 \pi R^{2}-2 \pi r^{2}=338 \pi$.
$\Rightarrow h(R+r)+(R+r)(R-r)=169$
$\Rightarrow 10(8+r)+(8+r)(8-r)=169$
$\Rightarrow 80+10 r+6 \cdot 4-x^{2}=169$
$\Rightarrow x^{2}-10 r+25=0$
$\Rightarrow r=5$
$\therefore R-r=8-5 \mathrm{~cm}=3 \mathrm{~cm}$
9.

Sol:

Given that
$r=70 \mathrm{~cm}, h=1 \cdot 4 \mathrm{~m}=140 \mathrm{~cm}$
\therefore Area to be tin coated $=2\left(2 \pi r h+\pi r^{2}\right)=2 \pi r(2 h+r)$
$=2 \times \frac{22}{7} \times 70(280+70)$
$=154000 \mathrm{~cm}^{2}$
Required cost $=\frac{154000 \times 3 \cdot 50}{1000}=R s 539$.
10.

Sol:
Inner radius (r) of circular well $=1.75 \mathrm{~m}$
Depth (n) of circular well $=10 \mathrm{~m}$
(i) Inner curved surface area $=2 \pi r h$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 1 \cdot 75 \times 10 \mathrm{~m}^{2} \\
& =144 \times 0 \cdot 25 \times 10) \mathrm{m}^{2} \\
& =110 \mathrm{~m}^{2}
\end{aligned}
$$

(ii) Cost of plastering $1 m^{2}$ area $=$ Rs 40 .

Cost of plastering $110 m^{2}$ area $=R s(110 \times 40)$
= Rs 4400
11.

Sol:

Height (h) cylindrical tank $=4 \cdot 5 \mathrm{~m}$
Radius (r) of circular end of cylindrical tank $=\frac{4 \cdot 2}{2} m=2 \cdot 1 m$.
(i) Lateral or curved surface area of tank $=2 \pi r h$

$$
\begin{aligned}
& \Rightarrow 2 \times 3 \cdot 14 \times 2 \cdot 1 \times 4 \cdot 5 \mathrm{~m}^{2} \\
& =59 \cdot 4 \mathrm{~m}^{2}
\end{aligned}
$$

(ii) Total surface area of tank $=2 \pi r(r+h)$

$$
\begin{aligned}
& =2\left[\frac{22}{7}\right] \times 2 \cdot 1(2 \cdot 1+4 \cdot 5) \mathrm{m}^{2} \\
& =87 \cdot 12 \mathrm{~m}^{2}
\end{aligned}
$$

Let $A m^{2}$ steel sheet be actually used in making the tank

$$
\begin{aligned}
& \therefore A\left(1-\frac{1}{12}\right)=87 \cdot 12 m^{2} \\
& \Rightarrow A=\left(\frac{12}{\pi} \times 87 \cdot 12\right) m^{2} \\
& \Rightarrow A=95 \cdot 04 \mathrm{~m}^{2}
\end{aligned}
$$

Thus, $95.04 \mathrm{~m}^{2}$ steel was used in actual while making the tank.
12.

Sol:

Radius of circular end of cylinder pen holder $=3 \mathrm{~cm}$
Height of pen holder $=10.5 \mathrm{~cm}$
Surface area of 1 pin holder $=$ CSA of penholder + Area of base of SA of 1 penholder $=$
$2 \pi r h+\pi r^{2}$
$=2 \times 3 \cdot 14 \times 3 \times 10 \cdot 5+3 \cdot 14138$
$=132 \times 1 \cdot 5+\frac{198}{7} \mathrm{~cm}^{2}$
$=198+\frac{198}{7} \mathrm{~cm}^{2}$
$=\frac{1584}{7} \mathrm{~cm}^{2}$
Area of car board sheet used by 1 competitor $=\frac{1584}{7} \mathrm{~cm}^{2}$
Area of car board sheet used by 35 competitors $=\frac{1584}{7} \times 35 \mathrm{~cm}^{2}=7920 \mathrm{~cm}^{2}$.
13.

Sol:

Given that,
Diameter of the roller $=84 \mathrm{~cm}=0 \cdot 84 \mathrm{~m}$.
Length of the roller $=1.5 \mathrm{~m}$.
Radius of the roller $=\frac{D}{2}=\frac{0 \cdot 84}{2}=0 \cdot 42$.
Area covered by the roller on one revolution = covered surface area of roller
Curved surface of roller $=2 \pi r h=2 \times \frac{22}{7} \times 0.42 \times 1 \cdot 5$
$=0.12 \times 22 \times 1.5 \mathrm{~m}^{2}$
Area of the playground $=100 \times$ Area covered by roller in one revolution
$=(100 \times 0 \cdot 12 \times 22 \times 1.5) \mathrm{m}^{2}$
$=396 \mathrm{~m}^{2}$
Now,
Cost of leveling $1 m^{2}=50 P=\frac{50}{100} \Rightarrow \operatorname{Re}=\frac{1}{2} r s$
Cost of leveling $396 m^{2}=\frac{1}{2} \times 396=R s \cdot 198$
Hence, cost of leveling $396 \mathrm{~m}^{2}$ is 198
14.

Sol:

Diameter of each pillar $=0.5 \mathrm{~m}$
Radius of each pillar $(r) \frac{a}{2}=\frac{0 \cdot 5}{2}=0.25 \mathrm{~m}$.
Height of each pillar $=4 \mathrm{~m}$.
Curved surface area of each pillar $=2 \pi r h$
$=2 \times 3 \cdot 14 \times 0 \cdot 25 \times 4 m^{2}$
$=\frac{44}{7} m^{2}$
Curved surface area of 20 pillars $=20 \times \frac{44}{7} \mathrm{~m}^{2}$
Given, cost of cleaning $=$ Rs $2 \cdot 50 \mathrm{per}$ square meter
\therefore Cost of cleaning 20 pillars $=$ Rs $2 \cdot 50 \times 20 \times \frac{44}{7}$
$=R s 314 \cdot 28$.

