Surface Area and volume of cuboid and cube-18.1

1.

Sol:

It is given that
Cuboid length $=80 \mathrm{~cm}=L$
Breath $=40 \mathrm{~cm}=$
Height $=20 \mathrm{~cm}=h$
WKT,
Total surface area $=2[l b+b h+h l]$
$=2[(80)(40)+40(20)+20(80)]$
$=2[3200+800+1600]$
$=2[5600]$
$=11,200 \mathrm{~m}^{2}$
Lateral surface area $=2[l+b] h=2[80+40] 20$
$=40(120)$
$=4800 \mathrm{~cm}^{2}$
2.

Sol:

Cube of edge $a=10 \mathrm{~cm}$
WKT,
Cube lateral surface area $=4 a^{2}$
$=4 \times 10 \times 10 \quad[\because a=10]$
$=400 \mathrm{~cm}^{2}$
Total surface area $a=6 a^{2}$
$=6 \times(10)^{2}$
$=600 \mathrm{~cm}^{2}$
3.

Sol:

Cube total surface area $=6 a^{2}$
Where, $a=$ edge of cube
And, lateral surface area $=L S A=4 a^{2}$
Where $a=$ edge of cube
\therefore Ratio of TSA and LSA $=\frac{6 a^{2}}{4 a^{2}}$ is $\frac{3}{2}$ is $3: 2$
4.

Sol:

Given that mary wants to paste the paper on the outer surface of the box; The quantity of the paper required would be equal to the surface area of the box which is of the shape of cuboid. The dimension of the box are
Length $(l)=80 \mathrm{~cm}$ Breath $(b)=40 \mathrm{~cm}$ and height $(\mathrm{h})=2 \mathrm{~cm}$
The surface area of thee box $=2[l b+b h+h l]$
$=2[80(40)+40(20)+20(80)]$
$=2(5600)=11,200 \mathrm{~cm}^{2}$
The area of the each sheet of paper $=40 \times 10 \mathrm{~cm}^{2}$
$=1600 \mathrm{~cm}^{2}$
\therefore Number of sheets required $=\frac{\text { Surface areaa of box }}{\text { area of one sheet of paper }}$
$=\frac{11,200}{1600}=7$
5.

Sol:

Total area to be washed $=l b+2(l+b) h$
Where length $(l)=5 \mathrm{~m}$
Breath $(b)=4 c m$
Height $(h)=3 \mathrm{~cm}$
\therefore Total area to be white washed $=(5 \times 4)+2(5+4) \times 3$
$=20+54=74 \mathrm{~m}^{2}$
Now,
Cost of white washing $1 m^{2}$ is Rs $7 \cdot 50$
\therefore Cost of white washing $74 \mathrm{~m}^{2}$ is $\operatorname{Rs}(74 \times 7 \cdot 50)$
= Rs 555
6.

Sol:

Length of new cuboid $=3 a$
Breadth of cuboid $=a$

Height of new cuboid $=a$
The total surface area of new cuboid

$$
\begin{aligned}
& \Rightarrow(T S A)_{1}=2[l b+b h+h l] \\
& \Rightarrow(T S A)_{1}=2[3 a \times a+a \times a+3 a \times a] \\
& \Rightarrow(T S A)_{1}=14 a^{2}
\end{aligned}
$$

Total surface area of three cubes

$$
\begin{aligned}
& \Rightarrow(T S A)_{2}=3 \times 6 a^{2}=18 a^{2} \\
& \therefore \frac{(T S A)_{1}}{(T S A)_{2}}=\frac{14 a^{2}}{18 a^{2}}=\frac{7}{9}
\end{aligned}
$$

\therefore Ratio is $7: 9$

7.

Sol:

Edge of cube $=4 \mathrm{~cm}$
Volume of 4 cm cube $=(4 \mathrm{~cm})^{3}=64 \mathrm{~cm}^{2}$
Edge of cube $=1 \mathrm{~cm}$
Volume of 1 cm cube $=(1 \mathrm{~cm})^{3}=1 \mathrm{~cm}^{3}$
\therefore Total number of small cubes $=\frac{64 \mathrm{~cm}^{3}}{1 \mathrm{~cm}^{3}}=64$
\therefore Total surface area of 64 cm all cubes
$=64 \times 6 \times(1 \mathrm{~cm})^{2}$
$=384 \mathrm{~cm}^{2}$
8.

Sol:

Length of the hall $=18 \mathrm{~m}$
Width of hall $=112 \mathrm{~m}$
Now given,
Area of the floor and the flat roof $=$ sum of the areas of four walls.
$\Rightarrow 2 l b=2 l h+2 b h$
$\Rightarrow l b=l h+b h$
$\Rightarrow h=\frac{l b}{l+b}=\frac{18 \times 12}{18+12}=\frac{216}{30}$
$=7 \cdot 2 \mathrm{~m}$.
9.

Sol:

Given that
Hameed is giving 5 outer faces of the tank covered with titles he would need to know the surface area of the tank, to decide on the number of tiles required.
Edge of the cubic tank $=1 \cdot 5 \mathrm{~m}=150 \mathrm{~cm}=a$
So, surface area of tank $=5 \times 150 \times 150 \mathrm{~cm}^{2}$
Area of each square title $=\frac{\text { surface area of } \tan k}{\text { area of each title }}$

$$
=\frac{5 \times 150 \times 150}{25 \times 25}=180
$$

Cost of 1 dozen titles i.e., cost of 12 tiles $=$ Rs 360
Therefore, cost of 12 balls titles $=$ Rs 360
\therefore cost of one tube $=\frac{360}{12}=$ Rs 30
\therefore The cost of 180 tiles $=180 \times$ Rs 30
$=$ Rs 5, 400
10.

Sol:

Let d be the edge of the cube
\therefore surface area of cube $=6 \times a^{2}$
i.e, $S_{1}=6 a^{2}$

According to problem when edge increased by 50\% then the new edge becomes
$=a+\frac{50}{100} \times a$
$=\frac{3}{2} a$

New surface area becomes $=6 \times\left(\frac{3}{2} a\right)^{2}$
i.e., $S_{2}=6 \times \frac{9}{4} a^{2}$
$S_{2}=\frac{27}{2} a^{2}$
\therefore Increased in surface Area $=\frac{27}{2} a^{2}-6 a a^{2}$
$=\frac{15}{2} a^{2}$

So, increase in surface area $=\frac{\frac{15}{2} a^{2}}{6 a^{2}} \times 100$
$=\frac{15}{12} \times 100$
$=125 \%$
11.

Sol:

Let the ratio be x
\therefore length $=2 x$
Breath $=3 x$
Height $=4 x$
\therefore Total surface area $=2[l b+b h+h l]$
$=2\left[6 x^{2}+12 x^{2}+8 x^{2}\right]$
$=52 x^{2} m^{2}$
When cost is at Rs 8 per m^{2}
\therefore Total cost of $52 x^{2} m^{2}=R s 8 \times 52 x^{2}$
$=R s 416 x^{2}$
And when the cost is at 95 per m^{2}
\therefore Total cost of $52 x^{2} m^{2}=$ Rs $9 \cdot 5 \times 52 x^{2}$
$=R s 499 x^{2}$
\therefore Different in cost $=$ Rs $494 x^{2}-R s 416 x^{2}$
$\Rightarrow 1248=494 x^{2}-416 x^{2}$
$\Rightarrow 78 x^{2}=1248$
$\Rightarrow x^{2}=16$
$\Rightarrow x=4$
12.

Sol:

Given length $=12 \mathrm{~m}$, Breadth $=9 \mathrm{~m}$ and Height $=4 \mathrm{~m}$.
Total surface area of tank $=2(l b+b h+h l)$
$=2[12 \times 9+9 \times 4+12 \times 4]$
$=2[108+36+48]$
$=384 \mathrm{~m}^{2}$

Now length of iron sheet $=\frac{384}{\text { width of iron sheet }}$
$=\frac{384}{2}=192 \mathrm{~m}$.
Cost of iron sheet $=$ length of sheet \times cost rate
$=192 \times 5=$ Rs 960 .
13.

Sol:

Given that
Shelter length $=4 \mathrm{~m}$
Breadth $=3 \mathrm{~m}$
Height $=2.5 \mathrm{~m}$
The tarpaulin will be required for to P and four sides of the shelter
Area of tarpaulin in required $=2(l b+b h+h l)$
$=[2(4) \times 2 \cdot 5+(3 \times 2 \cdot 5)]+4 \times 3] \mathrm{m}^{2}$
$=[2(10+7 \cdot 5)+12] m^{2}$
$=47 \mathrm{~m}^{2}=47 \mathrm{~m}^{2}$.
14.

Sol:

Given
Length $=1.48 \mathrm{~m}=148 \mathrm{~cm}$.
Breath $=1 \cdot 16 \mathrm{~m}=116 \mathrm{~cm}$
Height $=8 \cdot 3 d m=83 \mathrm{~cm}$
Thickness of wood $=3 \mathrm{~cm}$
\therefore inner dimensions:
Length $(148-2 \times 3) \mathrm{cm}=142 \mathrm{~cm}$
Breadth $(116-2 \times 3) \mathrm{cm}=110 \mathrm{~cm}$
Height $=(83-3) \mathrm{cm}=80 \mathrm{~cm}$.
Inner surface area $=2(l+b)+l b$
$=2[(142)+100) 80+142 \times 110 \mathrm{~cm}^{2}$
$=2(252)[80]+142 \times 110 \mathrm{~cm}^{2}=55,940 \mathrm{~cm}^{2}$
$=55940 \mathrm{~m}^{2}$
Hence, cost of painting inner surface area
$=5,5940 \times R s 50$
= Rs $279 \cdot 70$
15.

Sol:

Given that
Length of room $=12 \mathrm{~m}$.
Let a height of room be ' n ' m.
Area of 4 walls $=2(l+b) \times h$
According to question
$\Rightarrow 2(l+b) \times h \times 1 \cdot 35=340 \cdot 20$
$\Rightarrow 2(12+b) \times h \times 1 \cdot 35=340 \cdot 20$
$\Rightarrow(12+b) \times h=\frac{170 \cdot 10}{1 \cdot 35}=126$
Also area of floor $=l \times b$
$\therefore l \times b \times 0.85=91.80$
$\Rightarrow 12 \times b \times 0 \cdot 85=91.80$
$\Rightarrow b=9 \mathrm{~m}$
Substituting $b=9 m$ in equation (1)
$\Rightarrow(12 \times 9) \times h=126$
$\Rightarrow h=6 m$
16.

Sol:

Given length of room $=12 \cdot 5 \mathrm{~m}$
Breadth of room $=9 \mathrm{~m}$
Height of room $=7 \mathrm{~m}$
\therefore Total surface area of 4 walls
$=2(l+b) \times h$
$=2(12 \cdot 5+9) \times 7$
$=301 \mathrm{~m}^{2}$
Area of 2 doors $=2[2 \cdot 5 \times 1 \cdot 2]$
$=6 \mathrm{~m}^{2}$
Area to be painted on 4 walls
$=301-(6+6)$
$=301-12=289 \mathrm{~m}^{2}$
\therefore cost of painting $=289 \times 3 \cdot 50$
Rs 1011•5.
17.

Sol:

Let the length be 4 x and breadth be 3 x
Height $=5 \cdot 5 \mathrm{~m} \quad$ [given]
Now it is given that cost of decorating 4 walls at the rate of Rs $6 \cdot 601 m^{2}$ is Rs 5082
\Rightarrow Area of four walls \times rate $=$ total cost of painting
$\Rightarrow 7 x=\frac{5082}{5 \cdot 5 \times 2 \cdot 6 \times 2}$
$\Rightarrow 7 x=10$
$\Rightarrow x=10$
Length $=4 x=4 \times 10=40 \mathrm{~m}$
Breadth $=3 x=3 \times 10=30 \mathrm{~m}$
18.

Sol:

External length of book shelf $=85 \mathrm{~cm}=l$
Breadth $=25 \mathrm{~cm}$
Height $=110 \mathrm{~cm}$.
External surface area of shelf while leaving front face of shelf
$=(h+2(l b+b h)$
$=[85 \times 110+21(85 \times 25+25 \times 110)] \mathrm{cm}^{2}$
$=19100 \mathrm{~cm}^{2}$
Area of front face $=(85 \times 110-75 \times 100+2(75 \times 5)) \mathrm{cm}^{2}$
$=1850+750 \mathrm{~cm}^{2}$
$=2600 \mathrm{~cm}^{2}$
Area to be polished $=19100+2600 \mathrm{~cm}^{2}$
$=21700 \mathrm{~cm}^{2}$
Cost of polishing $1 \mathrm{~cm}^{2}$ area $=$ Rs $0 \cdot 20$
Cost of polishing $21700 \mathrm{~cm}^{2}$ area $=R s[21700 \times 0 \cdot 20]$
= Rs 4340
Now, length (l), breath (b), height (h) of each row of book shelf is $75 \mathrm{~cm}, 20 \mathrm{~cm}$ and 30 cm $=\left(\frac{110-20}{3}\right)$ respectively.

Area to be painted in row $=2(l+h) b+l h$
$=[2(75+30) \times 20+75 \times 30] \mathrm{cm}^{2}$
$=(4200+2250) \mathrm{cm}^{2}$
$=6450 \mathrm{~cm}^{2}$
Area to be painted in 3 rows $=(3 \times 6450) \mathrm{cm}^{2}$
$=19350 \mathrm{~cm}^{2}$
Cost of painting $1 \mathrm{~cm}^{2}$ area $=$ Rs $0 \cdot 10$.
Cost of painting 19350 area $=R s(19350 \times 0 \cdot 10)-R s 1935$
Total expense required for polishing and painting the surface of the bookshelf $=R s(4340+1935)=R s 6275$.
19.

Sol:

We know that
Total surface area of one brick $=2(l b+b h+h l)$
$=2[22 \cdot 5 \times 10+10 \times 7 \cdot 5+22 \cdot 5 \times 75] \mathrm{cm}^{2}$
$=2[468 \cdot 75) \mathrm{cm}^{2}$
$=937.5 \mathrm{~cm}^{2}$
Let n number of bricks be painted by the container
Area of brick $=937.50 \mathrm{~cm}^{2}$
Area that can be painted in the container
$=93755 \mathrm{~m}^{2}=93750 \mathrm{~cm}^{2}$
$93750=937 \cdot 5 n$
$n=100$
Thus, 100 bricks can be painted out by the container.

