Number System-1.6

1.

Sol:

The following steps for successive magnification to visualise 2.665 are:

(1) We observe that 2.665 is located somewhere between 2 and 3 on the number line. So, let us look at the portion of the number line between 2 and 3.

(2) We divide this portion into 10 equal parts and mark each point of division. The first mark to the right of 2 will represent 2.1, the next 2.2 and soon. Again we observe that 2.665 lies between 2.6 and 2.7.

(3) We mark these points A_1 and A_2 respectively. The first mark on the right side of A_1 , will represent 2.61, the number 2.62, and soon. We observe 2.665 lies between 2.66 and 2.67.

(4) Let us mark 2.66 as B_1 and 2.67 as B_2 . Again divide the B_1B_2 into ten equal parts. The first mark on the right side of B_1 will represent 2.661. Then next 2.662, and so on. Clearly, fifth point will represent 2.665.

2.

Sol:

Once again we proceed by successive magnification, and successively decrease the lengths of the portions of the number line in which $5.3\overline{7}$ is located. First, we see that $5.3\overline{7}$ is located between 5 and 6. In the next step, we locate $5.3\overline{7}$ between 5.3 and 5.4. To get a more accurate visualization of the representation, we divide this portion of the number line into lo equal parts and use a magnifying glass to visualize that $5.3\overline{7}$ lies between 5.37 and 5.38. To visualize $5.3\overline{7}$ more accurately, we again divide the portion between 5.37 and 5.38 into ten equal parts and use a magnifying glass to visualize that S.S lies between 5.377 and 5.378. Now to visualize $5.3\overline{7}$ still more accurately, we divide the portion between

5.377 and 5.378 into 10 equal parts, and visualize the representation of $5.3\overline{7}$ as in fig.,(iv). Notice that $5.3\overline{7}$ is located closer to 5.3778 than to 5.3777(iv)

