Number System-1.6

1.

Sol:

The following steps for successive magnification to visualise 2.665 are:
(1) We observe that 2.665 is located somewhere between 2 and 3 on the number line. So, let us look at the portion of the number line between 2 and 3 .

(2) We divide this portion into 10 equal parts and mark each point of division. The first mark to the right of 2 will represent 2.1, the next 2.2 and soon. Again we observe that 2.665 lies between 2.6 and 2.7.

(3) We mark these points A_{1} and A_{2} respectively. The first mark on the right side of A_{1}, will represent 2.61, the number 2.62, and soon. We observe 2.665 lies between 2.66 and 2.67.

(4) Let us mark 2.66 as B_{1} and 2.67 as B_{2}. Again divide the $B_{1} B_{2}$ into ten equal parts. The first mark on the right side of B_{1} will represent 2.661 . Then next 2.662 , and so on. Clearly, fifth point will represent 2.665 .

2.

Sol:

Once again we proceed by successive magnification, and successively decrease the lengths of the portions of the number line in which $5.3 \overline{7}$ is located. First, we see that $5.3 \overline{7}$ is located between 5 and 6 . In the next step, we locate $5.3 \overline{7}$ between 5.3 and 5.4. To get a more accurate visualization of the representation, we divide this portion of the number line into lo equal parts and use a magnifying glass to visualize that $5 \cdot 3 \overline{7}$ lies between 5.37 and 5.38. To visualize $5.3 \overline{7}$ more accurately, we again divide the portion between 5.37 and 5.38 into ten equal parts and use a magnifying glass to visualize that S.S lies between 5.377 and 5.378 . Now to visualize $5.3 \overline{7}$ still more accurately, we divide the portion between
5.377 and 5.378 into 10 equal parts, and visualize the representation of $5.3 \overline{7}$ as in fig.,(iv) .

Notice that $5.3 \overline{7}$ is located closer to 5.3778 than to 5.3777 (iv)

