Exercise -1.4

1.

Sol:

A number which can neither be expressed as a terminating decimal nor as a repeating decimal is called an irrational number. For example,

Sol:

A number which can neither be expressed as a terminating decimal nor as a repeating decimal is called an irrational number, For example, 0.33033003300033...

On the other hand, every rational number is expressible either as a terminating decimal or as a repeating decimal. For examples, $3 \overline{24}$ and 6.2876 are rational numbers
2.

Sol:

$\sqrt{7}$ is not a perfect square root, so it is an irrational number.
We have,

$$
\sqrt{4}=2=\frac{2}{1}
$$

$\sqrt{4}$ can be expressed in the form of $\frac{p}{q}$, so it is a rational number.
The decimal representation of $\sqrt{4}$ is 2.0 .
2 is a rational number, whereas $\sqrt{3}$ is an irrational number.
Because, sum of a rational number and an irrational number is an irrational number, so
$2+\sqrt{3}$ is an irrational number.
$\sqrt{2}$ is an irrational number. Also $\sqrt{3}$ is an irrational number.
The sum of two irrational numbers is irrational.
$\therefore \sqrt{3}+\sqrt{2}$ is an irrational number.
$\sqrt{5}$ is an irrational number. Also $\sqrt{3}$ is an irrational number.
The sum of two irrational numbers is irrational.
$\therefore \sqrt{3}+\sqrt{5}$ is an irrational number.
We have,
$(\sqrt{2}-2)^{2}=(\sqrt{2})^{2}-2 \times \sqrt{2} \times 2+(2)^{2}$
$=2-4 \sqrt{2}+4$
$=6-4 \sqrt{2}$

Now, 6 is a rational number, whereas $4 \sqrt{2}$ is an irrational number.
The difference of a rational number and an irrational number is an irrational number.
So, $6-4 \sqrt{2}$ is an irrational number.
$\therefore(\sqrt{2}-2)^{2}$ is an irrational number.
We have,
$(2-\sqrt{2})(2+\sqrt{2})=(2)^{2}-(\sqrt{2})^{2} \quad\left[\because(a-b)(a+b)=a^{2}-b^{2}\right]$
$=4-2$
$=2=\frac{2}{1}$
Since, 2 is a rational number.
$\therefore(2-\sqrt{2})(2+\sqrt{2})$ is a rational number.
We have,
$(\sqrt{2}+\sqrt{3})^{2}=(\sqrt{2})^{2}+2 \times \sqrt{2} \times \sqrt{3}+(\sqrt{3})^{2}$
$=2+2 \sqrt{6}+3$
$=5+2 \sqrt{6}$
The sum of a rational number and an irrational number is an irrational number, so $5+2 \sqrt{6}$ is an irrational number.
$\therefore(\sqrt{2}+\sqrt{3})^{2}$ is an irrational number.
The difference of a rational number and an irrational number is an irrational number
$\therefore \sqrt{5}-2$ is an irrational number.
$\sqrt{23}=4.79583152331$.
$\sqrt{225}=15=\frac{15}{1}$
Rational number as it can be represented in $\frac{p}{q}$ form.
0.3796

As decimal expansion of this number is terminating, so it is a rational number.
7.478478. $=7 . \overline{478}$
As decimal expansion of this number is non-terminating recurring so it is a rational number.
3.

Sol:

We have
$\sqrt{4}=2=\frac{2}{1}$
$\sqrt{4}$ can be written in the form of $\frac{p}{q}$, so it is a rational number.
Its decimal representation is 2.0.
We have,
$3 \sqrt{18}=3 \sqrt{2 \times 3 \times 3}$
$=3 \times 3 \sqrt{2}$
$=9 \sqrt{2}$
Since, the product of a rations and an irrational is an irrational number.
$\therefore 9 \sqrt{2}$ is an irrational
$\Rightarrow 3 \sqrt{18}$ is an irrational number.
We have,
$\sqrt{1 \cdot 44}=\sqrt{\frac{144}{100}}$
$=\frac{12}{10}$
$=1.2$
Every terminating decimal is a rational number, so 1.2 is a rational number.
Its decimal representation is 1.2 .
We have,
$\sqrt{\frac{9}{27}}=\frac{3}{\sqrt{27}}=\frac{3}{\sqrt{3 \times 3 \times 3}}$
$=\frac{3}{3 \sqrt{3}}$
$=\frac{1}{\sqrt{3}}$
Quotient of a rational and an irrational number is irrational numbers so $\frac{1}{\sqrt{3}}$ is an irrational number.
$\Rightarrow \sqrt{\frac{9}{27}}$ is an irrational number.
We have,
$-\sqrt{64}=-\sqrt{8 \times 8}$
$=-8$
$=-\frac{8}{1}$
$-\sqrt{64}$ can be expressed in the form of $\frac{p}{q}$, so $-\sqrt{64}$ is a rotational number.
Its decimal representation is -8.0.
We have,
$\sqrt{100}=10$
$=\frac{10}{1}$
$\sqrt{100}$ can be expressed in the form of $\frac{p}{q}$. so $\sqrt{100}$ is a rational number.
The decimal representation of $\sqrt{100}$ is 10.0 .
4.

Sol:

(i) We have
$x^{2}=5$
Taking square root on both sides.
$\Rightarrow \sqrt{x^{2}}=\sqrt{5}$
$\Rightarrow x=\sqrt{5}$
$\sqrt{5}$ is not a perfect square root, so it is an irrational number.
(ii) We have
$y^{2}=9$
$\Rightarrow y=\sqrt{9}$
$=3$
$=\frac{3}{1}$
$\sqrt{9}$ can be expressed in the form of $\frac{p}{q}$, so it a rational number.
(iii) We have
$z^{2}=0.04$
Taking square root on the both sides, we get,
$\sqrt{\mathrm{z}^{2}}=\sqrt{0.04}$
$\Rightarrow z=\sqrt{0.04}$
$=0.2$
$=\frac{2}{10}$
$=\frac{1}{5}$
z can be expressed in the form of $\frac{p}{q}$, so it is a rational number.
(iv) We have
$u^{2}=\frac{17}{4}$
Taking square root on both sides, we get,
$\sqrt{u^{2}}=\sqrt{\frac{17}{4}}$
$\Rightarrow u=\sqrt{\frac{17}{2}}$
Quotient of an irrational and a rational number is irrational, so u is an irrational number.
(v) We have
$v^{2}=3$
Taking square root on both sides, we get,
$\sqrt{v^{2}}=\sqrt{13}$
$\Rightarrow v=\sqrt{3}$
$\sqrt{3}$ is not a perfect square root, so y is an irrational number.
(vi) We have
$w^{2}=27$
Taking square root on both des, we get,
$\sqrt{w^{2}}=\sqrt{27}$
$\Rightarrow w=\sqrt{3 \times 3 \times 3}$
$=3 \sqrt{3}$
Product of a rational and an irrational is irrational number, so w is an irrational number.
(vii) We have
$t^{2}=0.4$
Taking square root on both sides, we get
$\sqrt{t^{2}}=\sqrt{0.4}$
$\Rightarrow t=\sqrt{\frac{4}{10}}$
$=\frac{2}{\sqrt{10}}$
Since, quotient of a rational and an irrational number is irrational number, so t is an irrational number.
5.

Sol:

(i) $\sqrt{3}$ is an irrational number.

Now, $(\sqrt{3})-(\sqrt{3})=0$
0 is the rational number.
(ii) Let two irrational numbers are $5 \sqrt{2}$ and $\sqrt{2}$

Now, $(5 \sqrt{2})-(\sqrt{2})=4 \sqrt{2}$
$4 \sqrt{2}$ is the rational number.
(iii) Let two irrational numbers are $\sqrt{11}$ and $-\sqrt{11}$

Now, $(\sqrt{11})+(-\sqrt{11})=0$
0 is the rational number.
(iv) Let two irrational numbers are $4 \sqrt{6}$ and $\sqrt{6}$

Now, $(4 \sqrt{6})+(\sqrt{6})=5 \sqrt{6}$
$5 \sqrt{6}$ is the rational number.
(v) Let two irrational numbers are $2 \sqrt{3}$ and $\sqrt{3}$

Now, $2 \sqrt{3} \times \sqrt{3}=2 \times 3$
$=6$
6 is the rational number.
(vi) Let two irrational numbers are $\sqrt{2}$ and $\sqrt{5}$

Now, $2 \sqrt{3} \times \sqrt{5}=\sqrt{10}$
$\sqrt{10}$ is the rational number.
(vii) Let two irrational numbers are $3 \sqrt{6}$ and $\sqrt{6}$

Now, $\frac{3 \sqrt{6}}{\sqrt{6}}=3$
3 is the rational number.
(viii) Let two irrational numbers are $\sqrt{6}$ and $\sqrt{2}$

$$
\begin{aligned}
& \text { Now, } \frac{\sqrt{6}}{\sqrt{2}}=\frac{\sqrt{3+2}}{\sqrt{2}} \\
& =\frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2}} \\
& =\sqrt{3} \\
& \sqrt{3} \text { is an irrational number. }
\end{aligned}
$$

6.

Sol:

Let, 2 = 0.212112111211112
And, $\mathrm{b}=0.232332333233332 \ldots$
Clearly, $a<b$ because in the second decimal place a has digit 1 and b has digit 3
If we consider rational numbers in which the second decimal place has the digit 2 , then they will lie between a and b .
Let,
$x=0.22$
$y=0.22112211$...
Then,

$$
a<x<y<b
$$

Hence, x, and y are required rational numbers.
7.

Sol:

Let, $\mathrm{a}=0.515115111511115$.
And, $\mathrm{b}=0.5353353335$.
We observe that in the second decimal place a has digit 1 and b has digit 3, therefore,
$a<b$. So if we consider rational numbers

$$
x=0.52
$$

$$
y=0.52052052 \ldots
$$

We find that,

$$
a<x<y<b
$$

Hence x, and y are required rational numbers.
8.

Sol:

Let, $\mathrm{a}=0.2101$
And, $\mathrm{b}=0.2222 \ldots$
We observe that in the second decimal place a has digit 1 and b has digit 2, therefore $a<b$. in the third decimal place a has digit 0 . So, if we consider irrational numbers

$$
x=0.211011001100011 \ldots
$$

We find that

$$
a<x<b
$$

Hence, x is required irrational number.
9.

Sol:

Let, $a=0.3010010001$
And, $b=0.3030030003$...
We observe that in the third decimal place a has digit 1 and b has digit 3, therefore $a<b$. in the third decimal place a has digit 1 . so, if we consider rational and irrational numbers

$$
x=0.302
$$

$$
y=0.302002000200002 . \ldots . .
$$

We find that

$$
a<x<b
$$

And, $a<y<b$
Hence, x and y are required rational and irrational numbers respectively.
10.

Sol:

Let $a=0.5=0.50$
And, $b=0.55$
We observe that in the second decimal place a has digit 0 and b has digit 5, therefore $a<b$. so, if we consider irrational numbers

$$
x=0.51051005100051 \ldots
$$

$$
y=0.530535305353530 \ldots
$$

We find that
$a<x<y<b$
Hence, x and y are required irrational numbers.
11.

Sol:

Let, $a=0.1=0.10$
And, $b=0.12$
We observe that in the second decimal place a has digit 0 and b has digit 2 , Therefore
$a<b$. So, if we consider irrational numbers
$x=0.11011001100011 \ldots$
$y=0.111011110111110 \ldots$
We find that,

$$
a<x<y<b
$$

Hence, x and y are required irrational numbers.
12.

Sol:

If possible, let $\sqrt{3}+\sqrt{5}$ be a rational number equal to x. Then,
$x=\sqrt{3}+\sqrt{5}$
$\Rightarrow x^{2}=(\sqrt{3}+\sqrt{5})^{2}$
$\Rightarrow x^{2}=(\sqrt{3})^{2}+(\sqrt{5})^{2}+2 \times \sqrt{3} \times \sqrt{5}$

$$
=3+5+2 \sqrt{15}
$$

$$
=8+2 \sqrt{15}
$$

$\Rightarrow x^{2}-8=2 \sqrt{15}$
$\Rightarrow \frac{x^{2}-8}{2}=\sqrt{15}$
Now, x is rational
$\Rightarrow x^{2}$ is rational
$\Rightarrow \frac{x^{2}-8}{2}$ is rational
$\Rightarrow \sqrt{15}$ is rational
But, $\sqrt{15}$ is rational
Thus, we arrive at a contradiction. So, our supposition that $\sqrt{3}+\sqrt{5}$ is rational is wrong.
Hence, $\sqrt{3}+\sqrt{5}$ is an irrational number.
13.

Sol:

$\frac{5}{7}=0 . \overline{714285}$
$\frac{9}{11}=0 . \overline{81}$
3 irrational numbers are
0.730730073000730000073.......
0.75075007500075000075.......
0.790790079000790000079......

