Binary Operations Ex 3.1 Q1(i)

We have,
$a * b=a^{b}$ for all $a, b \in N$

Let $a \in N$ and $b \in N$

$$
\begin{array}{ll}
\Rightarrow & a^{b} \in N \\
\Rightarrow & a * b \in N
\end{array}
$$

The operation * defines a binary operation on N

Binary Operations Ex 3.1 Q1(ii)
We have,

$$
a \circ b=a^{b} \text { for all } a, b \in Z
$$

Let $a \in Z$ and $b \in Z$
$\Rightarrow \quad a^{b} \notin Z \quad \Rightarrow a \circ b \notin Z$

For example, if $\quad a=2, b=-2$
$\Rightarrow \quad a^{b}=2^{-2}=\frac{1}{4} \notin Z$
$\therefore \quad$ The operation 'o' does not define a binary operation on Z.

Binary Operations Ex 3.1 Q1(iii)

We have,

$$
a * b=a+b-2 \text { for all } a, b \in N
$$

Let $a \in N$ and $b \in N$

Then, $a+b-2 \notin N$ for all $a, b \in N$

$$
\Rightarrow \quad a * b \notin N
$$

For example $a=1, b=1$

$$
\Rightarrow \quad a+b-2=0 \notin N
$$

$\therefore \quad$ The operation $*$ does not define a binary operation on N

Binary Operations Ex 3.1 Q1(iv)

We have,

$$
S=\{1,2,3,4,5\}
$$

and, $\quad a \times{ }_{6} b=$ Remainder when $a b$ is divided by 6

Let $a \in S$ and $b \in S$
$\Rightarrow \quad a \times_{6} b \notin S$ for all $a, b \in S$

For example, $a=2, b=3$
$\Rightarrow \quad 2 \times 6=$ Remainder when 6 is divided by $6=0 \notin S$
$\therefore \quad x_{6}$ does not define a binary oparation on S

Binary Operations Ex 3.1 Q1(v)

We have,
$S=\{0,1,2,3,4,5\}$
and, $\quad a+{ }_{6} b=\left\{\begin{array}{l}a+b ; \text { if } a+b<6 \\ a+b-6 ; \text { if } a+b \geq 6\end{array}\right.$

Let $a \in S$ and $b \in S$ such that $a+b<6$

Then $\quad a+{ }_{6} b=a+b \in S \quad[\because a+b<6=0,1,2,3,4,5]$

Let $a \in S$ and $b \in S$ such that $a+b>6$

Then

$$
a+6 b=a+b-6 \in S[\because \text { if } a+b \geq 6 \text { then } a+b-6 \geq 0=0,1,2,3,4,5]
$$

$\therefore \quad a+6 b \in S$ for $a, b \in S$
$\therefore \quad+_{6}$ defines a binary oparation on S

Binary Operations Ex 3.1 Q1(vi)

We have,

$$
a \circ b=a^{b}+b^{a} \text { for all } a, b \in N
$$

Let $a \in N$ and $b \in N$

```
\(\Rightarrow \quad a^{b} \in N\) and \(b^{a} \in N\)
\(\Rightarrow \quad a^{b}+b^{a} \in N\)
\(\Rightarrow \quad a \circ b \in N\)
```

Thus, the operation 'o' defines a binary relation on N

Binary Operations Ex 3.1 Q1(vii)

We have,

$$
a * b=\frac{a-1}{b+1} \text { for all } a, b \in Q
$$

Let $a \in Q$ and $b \in Q$

Then $\frac{a-1}{b+1} \notin Q$ for $b=-1$
$\Rightarrow \quad a * b \notin Q$ for all $a, b \in Q$

Thus, the operation * does not define a binary operation on Q
Binary Operations Ex 3.1 Q2
(i) On $\mathbf{Z}^{+}, *$ is defined by $a * b=a-b$.

It is not a binary operation as the image of $(1,2)$ under $*$ is $1 * 2=1-2$
$=-1 \notin \mathbf{Z}^{+}$.
(ii) On $\mathbf{Z}^{+},{ }^{*}$ is defined by $a^{*} b=a b$.

It is seen that for each $a, b \in \mathbf{Z}^{+}$, there is a unique element $a b$ in \mathbf{Z}^{+}.
This means that * carries each pair (a, b) to a unique element $a^{*} b=a b$ in \mathbf{Z}^{+}. Therefore, * is a binary operation.
(iii) On \mathbf{R}^{*} * is defined by $a * b=a b^{2}$.

It is seen that for each $a, b \in \mathbf{R}$, there is a unique element $a b^{2}$ in \mathbf{R}.
This means that * carries each pair (a, b) to a unique element $a * b=a b^{2}$ in \mathbf{R}. Therefore, * is a binary operation.
(iv) On $\mathbf{Z}^{+},{ }^{*}$ is defined by $a * b=|a-b|$.

It is seen that for each $a, b \in \mathbf{Z}^{+}$, there is a unique element $|a-b|$ in \mathbf{Z}^{+}.
This means that * carries each pair (a, b) to a unique element $a * b=$ $|a-b|$ in \mathbf{Z}^{+}.
Therefore, * is a binary operation.
(v) On $\mathbf{Z}^{+}, *$ is defined by $a^{*} b=a$.

* carries each pair (a, b) to a unique element $a^{*} b=a$ in \mathbf{Z}^{+}.

Therefore, * is a binary operation.
(vi) on R, * is defined $b y a * b=a+4 b^{2}$
it is seen that for each element $a, b \in R$, there is unique element $a+4 b^{2}$ in R
This means that * carries each pair (a, b) to a unique element $a * b=$
$a+4 b^{2} \ln R$.
Therefore, * is a binary operation.

Binary Operations Ex 3.1 Q3

It is given that, $a^{*} b=2 a+b-3$
Now

$$
3 * 4=2 \times 3+4-3
$$

$$
=10-3
$$

$$
=7
$$

Binary Operations Ex 3.1 Q4

The operation * on the set $A=\{1,2,3,4,5\}$ is defined as $a^{*} b=$ L.C.M. of a and b.
$2^{*} 3=$ L.C.M of 2 and $3=6$. But 6 does not belong to the given set. Hence, the given operation * is not a binary operation.

Binary Operations Ex 3.1 Q5

We have,

$$
S=\{a, b, c\}
$$

We know that the total number of binary operation on a set S with n element is $r^{r^{2}}$
$\Rightarrow \quad$ Total number of binary operation on

$$
S=\{a, b, c\}=3^{3^{2}}=3^{9}
$$

Binary Operations Ex 3.1 Q6

We have,

$$
S=\{a, b\}
$$

Binary Operations Ex 3.1 Q7

We have,

$$
M=\left\{\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]: a, b \in R-\{0\}\right\} \text { and }
$$

$A * B=A B$ for all $A, B \in M$

Let $A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right] \in M$ and $B=\left[\begin{array}{ll}c & 0 \\ 0 & d\end{array}\right] \in M$
Now, $\quad A B=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]\left[\begin{array}{ll}c & 0 \\ 0 & d\end{array}\right]=\left[\begin{array}{cc}a c & 0 \\ 0 & b d\end{array}\right]$
$\therefore \quad a \in R, b \in R, c \in R, \& d \in R$
$\Rightarrow \quad a c \in R$ and $b d^{\prime} \in R$
$\Rightarrow \quad\left[\begin{array}{cc}a c & 0 \\ 0 & b d\end{array}\right] \in M$
$\Rightarrow \quad A * B \in M$

Thus, the operater * difines a binary operation on M

Binary Operations Ex 3.1 Q8

$s=$ set of rational numbers of the form $\frac{m}{n}$ where $m \in Z$ and $n=1,2,3$

Also, $a * b=a b$

Let $a \in S$ and $b \in S$
$\Rightarrow \quad a b \notin S$

For example $a=\frac{7}{3}$ and $b=\frac{5}{2}$
$\Rightarrow \quad a b=\frac{35}{6} \notin S$
$\therefore \quad a * b \notin S$

Hence, the operater * does not define a binary operation on S

Binary Operations Ex 3.1 Q9

It is given that, $a^{*} b=2 a+b$
Now

$$
\begin{aligned}
\left(2^{*} 3\right) & =2 \times 2+3 \\
& =4+3 \\
& =7 \\
\left(2^{*} 3\right)^{*} 4=7^{*} 4 & =2 \times 7+4 \\
& =14+4 \\
& =18
\end{aligned}
$$

Binary Operations Ex 3.1 Q10

It is given that, $a^{*} b=\operatorname{LCM}(a, b)$
Now

$$
\begin{aligned}
5 * 7 & =\operatorname{LCM}(5,7) \\
& =35
\end{aligned}
$$

