RD Sharma

 Solutions
Class 11 Maths

$$
\text { Chapter } 30
$$

$$
\text { Ex } 30.5
$$

Derivatives Ex 30.5 Q1

Using quotient rule, we have

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{x^{2}+1}{x+1}\right) & =\frac{(x+1) \frac{d}{d x}\left(x^{2}+1\right)-\left(x^{2}+1\right) \frac{d}{d x}(x+1)}{(x+1)^{2}} \\
& =\frac{(x+1) \times 2 x-\left(x^{2}+1\right) \times 1}{(x+1)^{2}} \\
& =\frac{2 x^{2}+2 x-x^{2}-1}{(x+1)^{2}} \\
& =\frac{x^{2}+2 x-1}{(x+1)^{2}}
\end{aligned}
$$

Derivatives Ex 30.5 Q2

Using quotient rule, we have get, $\frac{d}{d x}\left(\frac{2 x-1}{x^{2}+1}\right)$
$=\frac{\left(x^{2}+1\right) \frac{d}{d x}(2 x-1)-(2 x-1) \frac{d}{d x}\left(x^{2}+1\right)}{\left(x^{2}+1\right)^{2}}$
$=\frac{\left(x^{2}+1\right) \times 2-(2 x-1) \times 2 x}{\left(x^{2}+1\right)^{2}}$
$=\frac{2 x^{2}+2-4 x^{2}+2 x}{\left(x^{2}+1\right)^{2}}$
$=\frac{-2 x^{2}+2 x+2}{\left(x^{2}+1\right)^{2}}$
$=\frac{2\left(-x^{2}+x+1\right)}{\left(x^{2}+1\right)^{2}}$
$=\frac{2\left(1+x-x^{2}\right)}{\left(1+x^{2}\right)^{2}}$

Derivatives Ex 30.5 Q3
By using quotient rule, we have,

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{x+e^{x}}{1+\log x}\right) \\
& =\frac{(1+\log x) \frac{d}{d x}\left(x+e^{x}\right)-\left(x+e^{x}\right) \frac{d}{d x}(1+\log x)}{(1+\log x)^{2}} \\
& =\frac{(1+\log x)\left(1+e^{x}\right)-\left(x+e^{x}\right) \times \frac{d}{d x}}{(1+\log x)^{2}} \\
& =\frac{x\left(1+\log x+e^{x}+e^{x} \log x\right)-x-e^{x}}{x(1+\log x)^{2}} \\
& =\frac{x+x \log x+x e^{x}+x e^{x} \log x-x-e^{x}}{x(1+\log x)^{2}} \\
& =\frac{x \log x\left(1+e^{x}\right)-e^{x}(1-x)}{x(1+\log x)^{2}}
\end{aligned}
$$

Derivatives Ex 30.5 Q4
Using quotient rule, we have,

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{e^{x}-\tan x}{\cot x-x^{n}}\right) \\
& =\frac{\left(\cot x-x^{n}\right) \frac{d}{d x}\left(e^{x}-\tan x\right)-\left(e^{x}-\tan x\right) \frac{d}{d x}\left(\cot x-x^{n}\right)}{\left(\cot x-x^{n}\right)^{2}} \\
& =\frac{\left(\cot x-x^{n}\right)\left(e^{x}-\sec ^{2} x\right)-\left(e^{x}-\tan x\right)\left(-\operatorname{cosec}^{2} x-n x^{n-1}\right)}{\left(\cot x-x^{n}\right)^{2}} \\
& =\frac{\left(\cot x-x^{n}\right)\left(e^{x}-\sec ^{2} x\right)+\left(e^{x}-\tan x\right)\left(\operatorname{cosec} 2 x+n x^{n-1}\right)}{\left(\cot x-x^{n}\right)^{2}}
\end{aligned}
$$

Derivatives Ex 30.5 Q5
Using quotient rule, we have,

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{a x^{2}+b x+c}{\left.p x^{2}+q x+r\right)}\right. \\
& =\frac{\left(p x^{2}+q x+r\right) \frac{d}{d x}\left(a x^{2}+b x+c\right)-\left(a x^{2}+b x+c\right) \frac{d}{d x}\left(p x^{2}+q x+r\right)}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{\left(p x^{2}+q x+r\right)(2 a x+b)-\left(a x^{2}+b x+c\right)(2 p x+q)}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{2 a p x^{3}+2 a q x^{2}+2 a x r+b p x^{2}+b q x+b r-\left(2 a p x^{3}+2 p b x^{2}+2 p c x+q a x^{2}+b q x+c q\right)}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{2 a p x^{3}-2 a p x^{3}+2 a q x^{2}+b p x^{2}-2 p b x^{2}-q a x^{2}+2 a r x+b q x-2 p c x-b q x+b r-c q}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{a q x^{2}-b p x^{2}+2 a r x-2 c p x+b r-c q}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{x^{2}(a q-b p)+2(a r-q p) x+b r-c q}{\left(p x^{2}+q x+r\right)^{2}} \\
& =\frac{(a q-b p) x^{2}+2(a r-q) x+b r-c q}{\left(p x^{2}+q x+r\right)^{2}}
\end{aligned}
$$

Derivatives Ex 30.5 Q6
Using quotient rule, we have,

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{x}{1+\tan x}\right) \\
& =\frac{(1+\tan x) \frac{d}{d x}(x)-x \frac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}} \\
& =\frac{(1+\tan x)-x\left(\sec ^{2} x\right)}{(1+\tan x)^{2}}
\end{aligned}
$$

$$
=\frac{1+\tan x-x \sec ^{2} x}{(1+\tan x)^{2}}
$$

Derivatives Ex 30.5 Q7
Using quotient rule, we have

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{1}{a x^{2}+b x+c}\right) \\
& =\frac{\left(a x^{2}+b x+c\right) \frac{d}{d x}(1)-1 \times \frac{d}{d x}\left(a x^{2}+b x+c\right)}{\left(a x^{2}+b x+c\right)^{2}} \\
& =\frac{-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}} \\
& \therefore \frac{d}{d x} \frac{1}{a x^{2}+b x+c}=\frac{-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}}
\end{aligned}
$$

Derivatives Ex 30.5 Q8
We have,

$$
\frac{d}{d x}\left(\frac{e^{x}}{1+x^{2}}\right)
$$

Using quotient rule,

$$
\begin{aligned}
& =\frac{\left(1+x^{2}\right) \frac{d}{d x}\left(e^{x}\right)-\left(e^{x}\right) \frac{d}{d x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{2}} \\
& =\frac{\left(1+x^{2}\right) e^{x}-e^{x} \times 2 x}{\left(1+x^{2}\right)^{2}} \\
& =\frac{e^{x}\left(1+x^{2}-2 x\right)}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

$=\frac{e^{x}(1-x)^{2}}{\left(1+x^{2}\right)^{2}}$

Derivatives Ex 30.5 Q9

We have,

$$
\frac{d}{d x}\left(\frac{e^{x}+\sin x}{1+\log x}\right)
$$

Using quotient rule, we get

$$
\begin{aligned}
& =\frac{(1+\log x) \frac{d}{d x}\left(e^{x}+\sin x\right)-\left(e^{x}+\sin x\right) \frac{d}{d x}(1+\log x)}{(1+\log x)^{2}} \\
& =\frac{(1+\log x)\left(e^{x}+\cos x\right)-\left(e^{x}+\sin x\right) \frac{1}{x}}{(1+\log x)^{2}} \\
& =\frac{x(1+\log x)\left(e^{x}+\cos x\right)-\left(e^{x}+\sin x\right)}{x(1+\log x)^{2}}
\end{aligned}
$$

Derivatives Ex 30.5 Q10

We have,
$\frac{d}{d x}\left(\frac{x \tan x}{\sec x+\tan x}\right)$

Using quotient rule, we get
$=\frac{(\sec x+\tan x) \frac{d}{d x}(x \tan x)-(x \tan x) \frac{d}{d x}(\sec x+\tan x)}{(\sec x+\tan x)^{2}}$
$=\frac{(\sec x+\tan x)\left(x \sec ^{2} x+\tan x\right)-(x \tan x)\left(\sec x \tan x+\sec ^{2} x\right)}{(\sec x+\tan x)^{2}}$ [Used product rule]
$=\frac{(\sec x+\tan x)\left(x \sec ^{2} x+\tan x\right)-x \sec x+\tan ^{2} x-x \tan x \sec ^{2} x}{(\sec x+\tan x)^{2}}$
$=\frac{(\sec x+\tan x)\left(x \sec ^{2} x+\tan x\right)-x \tan x\left(\sec x \tan x+\sec ^{2} x\right)}{(\sec x+\tan x)^{2}}$
$=\frac{(\sec x+\tan x)\left(x \sec ^{2} x+\tan x\right)-x \tan x \sec x(\sec x+\tan x)}{(\sec x+\tan x)^{2}}$
$=\frac{\left(x \sec ^{2} x+\tan x-x \tan x \sec x\right)(\sec x+\tan x)}{(\sec x+\tan x)^{2}}$
$=\frac{\left(x \sec ^{2} x+\tan x-x \tan x \sec x\right)}{(\sec x+\tan x)}$
$=\frac{x \sec x(\sec x-\tan x)+\tan x}{(\sec x+\tan x)}$

