Exercise 15.3

Question 1:

From the data given below state which group is more variable, A or B?

Marks	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Group A	9	17	32	33	40	10	9
Group B	10	20	30	25	43	15	7

Solution 1:

Firstly, the standard deviation of group A is calculated as follows.

Marks	Group f_{i}	Mid-point x_{i}	$\mathrm{y}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-45}{10}$	y_{i}^{2}	$f_{i} y_{i}$	$f_{i} y_{i}^{2}$
$10-20$	9	15	-3	9	-27	81
$20-30$	17	25	-2	4	-34	68
$30-40$	32	35	-1	1	-32	32
$40-50$	33	45	0	0	0	0
$50-60$	40	55	1	1	40	40
$60-70$	10	65	2	4	20	40
$70-80$	9	75	3	9	27	81
	150				-6	342

Here, $\mathrm{h}=10, \mathrm{~N}=150, \mathrm{~A}=45$
Mean $=A+\frac{\sum_{i=1}^{7} x_{i}}{N} \times h=45+\frac{(-6) \times 10}{150} \times 45-0.4=44.6$
$\sigma_{1}^{2}=\frac{\mathrm{h}^{2}}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum_{i=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\left(\sum_{i=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right]$
$=\frac{100}{22500}\left[150 \times 342-(-6)^{2}\right]$
$=\frac{1}{225}(51264)$
$=227.84$
\therefore Standard deviation $\left(\sigma_{1}\right)=\sqrt{227.84}=15.09$
The standard deviation of group B is calculated as follows.

Marks	Group f_{i}	Mid-point x_{i}	$\mathrm{y}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-45}{10}$	y_{i}^{2}	$f_{i} y_{i}$	$f_{i} y_{i}^{2}$
$10-20$	10	15	-3	9	-30	90
$20-30$	20	25	-2	4	-40	80
$30-40$	30	35	-1	1	-30	30
$40-50$	25	45	0	0	0	0
$50-60$	43	55	1	1	43	43
$60-70$	15	65	2	4	30	60
$70-80$	7	75	3	9	21	63
	150				-6	366

Mean $=A+\frac{\sum_{i=1}^{7} f_{i} y_{i}}{N} \times h=45+\frac{(-6) \times 10}{150} \times 45-0.4=44.6$
$\sigma_{2}^{2}=\frac{\mathrm{h}^{2}}{\mathrm{~N}^{2}}\left[\mathrm{~N} \sum_{i=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}^{2}-\left(\sum_{i=1}^{7} \mathrm{f}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right)^{2}\right]$
$=\frac{100}{22500}\left[150 \times 366-(-6)^{2}\right]$
$=\frac{1}{225}(54864)=243.84$
\therefore Standard deviation $\left(\sigma_{1}\right)=\sqrt{243.84}=15.61$
Since the mean of both the groups is same, the group with greater standard deviation will be more variable.
Thus, group B has more variability in the marks.

Question 2:

From the prices of shares X and Y below, find out which is more stable in value:

X	35	54	52	53	56	58	52	50	51	49
Y	108	107	105	105	106	107	104	103	104	101

Solution 2:

The prices of the shares X are
$35,54,52,53,56,58,52,50,51,49$
Here, the number of observations, $\mathrm{N}=10$
Mean, $\bar{x}=\frac{1}{N} \sum_{i=1}^{10} x_{i}=\frac{1}{10} \times 510=51$
The following table is obtained corresponding to shares X .

x_{i}	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)$	$\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
35	-16	256
54	3	9
52	1	1
53	2	4
56	5	25
58	7	49
52	1	1
50	-1	1
51	0	0
49	-2	4
		350

$\operatorname{Variance}\left(\sigma_{1}^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{i=1}^{10}\left(\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}=\frac{1}{10} \times 350=35$
\therefore Standard deviation $\left(\sigma_{1}\right)=\sqrt{35}=5.91$
C.V. $($ Shares X$)=\frac{\sigma_{1}}{\mathrm{X}} \times 100=\frac{5.91}{51} \times 100=11.58$

The prices of share Y are
$108,107,105,105,106,107,104,103,104,101$
Mean, $\bar{y}=\frac{1}{N} \sum_{i=1}^{10} y_{i}=\frac{1}{10} \times 1050=105$
The following table is obtained corresponding to shares Y.

x_{i}	$\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)$	$\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}$
108	3	9
107	2	4
105	0	0
105	0	0
106	1	1
107	2	4
104	-1	1
103	-2	4
104	-1	1
101	-4	16
		40

$\operatorname{Variance}\left(\sigma_{1}^{2}\right)=\frac{1}{N} \sum_{i=1}^{10}\left(y_{i}-\bar{y}\right)^{2}=\frac{1}{10} \times 40=4$
\therefore Standard deviation $\left(\sigma_{2}\right)=\sqrt{4}=2$
C.V. $($ Shares $Y)=\frac{\sigma_{2}}{\mathrm{y}} \times 100=\frac{2}{105} \times 100=1.9=11.58$
C.V. of prices of shares X is greater than the C.V. of prices of shares Y.

Thus, the prices of shares Y are more stable than the prices of shares X .

Question 3:

An analysis of monthly wages paid to workers in two firms A and B, belonging to the same industry, gives the following results:

	Firm A	Firm B
No. of wages earners	586	648
Mean of monthly wages	Rs. 5253	Rs. 5253
Variance of the distribution of wages	100	121

(i) Which firm A or B pays larger amount as monthly wages?
(ii) Which firm, A or B, shows greater variability in individual wages?

Solution 3:

(i) Monthly wages of firm A = Rs. 5253

Number of wage earners in firm $\mathrm{A}=586$
\therefore Total amount paid $=$ Rs. 5253×586
Monthly wages of firm B = Rs. 5253
Number of wage earners in firm B $=648$
\therefore Total amount paid $=$ Rs. 5253×648

Thus, firm B pays the larger amount as monthly wages as the number of wage earners in firm B are more than the number of wage earners in firm A.
(ii) Variance of the distribution of wages in firm $\mathrm{A}\left(\sigma_{1}^{2}\right)=100$
\therefore Standard deviation of the distribution of wages in firm A $\left(\sigma_{1}\right)=\sqrt{100}=10$
Variance of the distribution of wages in firm $\mathrm{B}\left(\sigma_{2}^{2}\right)=121$
\therefore Standard deviation of the distribution of wages in firm $\mathrm{B}\left(\sigma_{2}^{2}\right)=\sqrt{121}=11$
The mean of monthly wages of both the firms is same i.e., 5253. Therefore, the firm with greater standard deviation will have more variability.
Thus, firm B has greater variability in the individual wages.

Question 4:

The following is the record of goals scored by team A in a football session:

No. of goals scored	0	1	2	3	4
No. of matches	1	9	7	5	3

For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?

Solution 4:

The mean and the standard deviation of goals scored by team A are calculated as follows.

No. of goals scored	No. of matches	$f_{i} x_{i}$	x_{i}^{2}	$f_{i} x_{i}^{2}$
0	1	0	0	0
1	9	9	1	9
2	7	14	4	28
3	5	15	9	45
4	3	12	16	48
	25	50		130

Mean $=\sum_{i=1}^{15} f_{i} x_{i}=\frac{50}{25}=2$
Thus, the mean of both the teams is same.

$$
\begin{aligned}
& \sigma=\frac{1}{\mathrm{~N}} \sqrt{\mathrm{~N} \sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}^{2}-\left(\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)^{2}} \\
& =\frac{1}{25} \sqrt{25 \times 130-(50)^{2}} \\
& =\frac{1}{25} \sqrt{750} \\
& =\frac{1}{25} \times 27.38 \\
& =1.09
\end{aligned}
$$

The standard deviation of team B is 1.25 goals.
The average number of goals scored by both the teams is same i.e., 2 . Therefore, the team with lower standard deviation will be more consistent.

Question 5:

The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:
$\sum_{i=1}^{50} x_{i}=212, \sum_{i=1}^{50} x_{i}^{2}=902.8, \sum_{i=1}^{50} y_{i}=261, \sum_{i=1}^{50} y_{i}^{2}=1457.6$
Which is more varying, the length or weight?

Solution 5:

$\sum_{i=1}^{50} x_{i}=212, \sum_{i=1}^{50} x_{i}^{2}=902.8$
Here, $\mathrm{N}=50$
Mean, $\overline{\mathrm{x}}=\frac{\sum_{i=1}^{50} y_{i}}{N}=\frac{212}{50}=4.24$
$\operatorname{Variance}\left(\sigma_{1}^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{i=1}^{50}\left(x_{\mathrm{i}}-\overline{\mathrm{x}}\right)^{2}$
$=\frac{1}{50} \sum_{i=1}^{50}\left(x_{\mathrm{i}}-4.24\right)^{2}$
$=\frac{1}{50} \sum_{i=1}^{50}\left[\mathrm{x}_{\mathrm{i}}^{2}-8.48 x_{\mathrm{i}}+17.97\right]$
$=\frac{1}{50}\left[\sum_{i=1}^{50} \mathrm{x}_{\mathrm{i}}^{2}-8.48 \sum_{i=1}^{50} x_{\mathrm{i}}+17.97 \times 50\right]$
$=\frac{1}{50}[902.8-8.48 \times(212)+898.5]$
$=\frac{1}{50}[1801.3-1797.76]$
$=\frac{1}{50} \times 3.54$
$=0.07$
\therefore Standard deviation $\sigma_{1}($ Length $)=\sqrt{0.07}=0.26$
C.V. $($ Length $)=\frac{\text { Standard deviation }}{\text { Mean }} \times 100=\frac{0.26}{4.24} \times 100=6.13$
$\sum_{i=1}^{50} y_{i}=261, \sum_{i=1}^{50} y_{i}^{2}=1457.6$
Mean, $\bar{y}=\frac{1}{N} \sum_{i=1}^{50} y_{i}=\frac{1}{50} \times 261=5.22$
$\operatorname{Variance}\left(\sigma_{1}^{2}\right)=\frac{1}{\mathrm{~N}} \sum_{i=1}^{50}\left(\mathrm{y}_{\mathrm{i}}-\overline{\mathrm{y}}\right)^{2}$
$=\frac{1}{50} \sum_{i=1}^{50}\left(y_{i}-5.22\right)^{2}$
$=\frac{1}{50} \sum_{i=1}^{50}\left[y_{i}^{2}-10.44 y_{i}+27.24\right]$
$=\frac{1}{50}\left[\sum_{i=1}^{50} \mathrm{y}_{\mathrm{i}}^{2}-10.44 \sum_{i=1}^{50} \mathrm{y}_{\mathrm{i}}+27.24 \times 50\right]$
$=\frac{1}{50}[1457.6-10.44 \times(261)+1362]$
$=\frac{1}{50}[2819.6-2724.84]$
$=\frac{1}{50} \times 94.76$
$=1.89$
\therefore Standard deviation $\sigma_{2}($ Weight $)=\sqrt{1.89}=1.37$
C.V. $($ Weight $)=\frac{\text { Standard deviation }}{\text { Mean }} \times 100=\frac{1.37}{5.22} \times 100=26.24$

Thus, C.V. of weights is greater than the C.V. of lengths. Therefore, weights vary more than the lengths

