Exercise 15.3

Question 1:

From the data given below state which group is more variable, A or B?

Marks	10-20	20-30	30-40	40-50	50-60	60-70	70-80
Group A	9	17	32	33	40	10	9
Group B	10	20	30	25	43	15	7

Solution 1:

Firstly, the standard deviation of group A is calculated as follows.

Marks	Group A	Mid-point	$x_{i} - 45$	y_i^2	$f_i y_i$	$f_i y_i^2$
	f_i	X _i	$y_i = \frac{10}{10}$			0101
10-20	9	15	-3	9	-27	81
20-30	17	25	-2	4	-34	68
30-40	32	35	-1	1	-32	32
40-50	33	45	0	0	0	0
50-60	40	55	1	1	40	40
60-70	10	65	2	4	20	40
70-80	9	75	3	9	27	81
	150				-6	342
Here, $h = 10$,	N = 150, A =	45		V 65	AN AN A	
	7	<i>,</i> , ,		1	0	
$Moon = A + \frac{4}{i_1}$	$\sum_{i=1}^{2} x_{i} = 1$	$(-6) \times 10 \times 45$	0.1 - 11.6	Ch.	0	
	$\frac{1}{N} \times n = 43 \pm$	150	-0.4 - 44.0			
\mathbf{h}^2	7 (7	γ^2	(1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997)	Ann		
$\sigma_1^2 = \frac{\Pi}{N^2} N^2$	$\sum f_i y_i^2 - \sum f_i y$	i .		593		
\mathbf{N}^{2} $\begin{bmatrix} i \\ i \end{bmatrix}$	=1 ($i=1$			R.		
$-\frac{100}{150\times 342-(-6)^2}$						
$=\frac{1}{225}(51264)$	•) 🔨					

Here,
$$h = 10, N = 150, A = 45$$

Mean =
$$A + \frac{\sum_{i=1}^{N} x_i}{N} \times h = 45 + \frac{(-6) \times 10}{150} \times 45 - 0.4 = 44.6$$

$$\sigma_{1}^{2} = \frac{h^{2}}{N^{2}} \left[N \sum_{i=1}^{7} f_{i} y_{i}^{2} - \left(\sum_{i=1}^{7} f_{i} y_{i} \right) \right]$$
$$= \frac{100}{150 \times 342 - (-6)^{2}}$$

$$=\frac{100}{22500} \lfloor 150 \times 342 - (-1) \rfloor = \frac{1}{225} (51264)$$

$$-\frac{1}{225}(312)$$

= 227.84

: Standard deviation $(\sigma_1) = \sqrt{227.84} = 15.09$

The standard deviation of group B is calculated as follows.

Marks	Group B f_i	Mid-point x_i	$y_i = \frac{x_i - 45}{10}$	y_i^2	$f_i y_i$	$f_i y_i^2$
10-20	10	15	-3	9	-30	90
20-30	20	25	-2	4	-40	80
30-40	30	35	-1	1	-30	30
40-50	25	45	0	0	0	0
50-60	43	55	1	1	43	43
60-70	15	65	2	4	30	60
70-80	7	75	3	9	21	63
	150				-6	366

$$Mean = A + \frac{\sum_{i=1}^{7} f_i y_i}{N} \times h = 45 + \frac{(-6) \times 10}{150} \times 45 - 0.4 = 44.6$$
$$\sigma_2^2 = \frac{h^2}{N^2} \left[N \sum_{i=1}^{7} f_i y_i^2 - \left(\sum_{i=1}^{7} f_i y_i \right)^2 \right]$$
$$= \frac{100}{22500} \left[150 \times 366 - (-6)^2 \right]$$
$$= \frac{1}{225} (54864) = 243.84$$

: Standard deviation $(\sigma_1) = \sqrt{243.84} = 15.61$

Since the mean of both the groups is same, the group with greater standard deviation will be more variable.

Thus, group B has more variability in the marks.

Question 2:

From the prices of shares X and Y below, find out which is more stable in value:

Х	35	54	52	53	56	58	52	50	51	49
Y	108	107	105	105	106	107	104	103	104	101
Solution 2:										
The pric	The prices of the shares X are									
35, 54, 52, 53, 56, 58, 52, 50, 51, 49										
Here, the number of observations, $N = 10$										
M	$1 - \frac{1}{10} = 1 - \frac{1}{10} - \frac$									

Solution 2:

Mean,
$$\overline{x} = \frac{1}{N} \sum_{i=1}^{10} x_i = \frac{1}{10} \times 510 = 51$$

The following table is obtained corresponding to shares X.

x _i	$(\mathbf{x}_i - \overline{\mathbf{x}})$	$(\mathbf{x}_{i}-\overline{\mathbf{x}})^{2}$
35	-16	256
54	3	9
52	\mathbb{P}^{-}	1
53	2	4
56	5	25
58	7	49
52	1	1
50	-1	1
51	0	0
49	-2	4
		350

Variance $(\sigma_1^2) = \frac{1}{N} \sum_{i=1}^{10} (x_i - \overline{x})^2 = \frac{1}{10} \times 350 = 35$

: Standard deviation $(\sigma_1) = \sqrt{35} = 5.91$

C.V.(Shares X) =
$$\frac{\sigma_1}{X} \times 100 = \frac{5.91}{51} \times 100 = 11.58$$

The prices of share Y are 108, 107, 105, 105, 106, 107, 104, 103, 104, 101

Mean,
$$\overline{y} = \frac{1}{N} \sum_{i=1}^{10} y_i = \frac{1}{10} \times 1050 = 105$$

The following table is obtained corresponding to shares Y.

x _i	$(y_i - \overline{y})$	$(\mathbf{y}_{i}-\overline{\mathbf{y}})^{2}$
108	3	9
107	2	4
105	0	0
105	0	0
106	1	1
107	2	4
104	-1	1
103	-2	4
104	-1	1
101	-4	16
		40

CH BHBN

Variance
$$(\sigma_1^2) = \frac{1}{N} \sum_{i=1}^{10} (y_i - \overline{y})^2 = \frac{1}{10} \times 40 = 4$$

 \therefore Standard deviation $(\sigma_2) = \sqrt{4} = 2$

C.V.(Shares Y) =
$$\frac{\sigma_2}{y} \times 100 = \frac{2}{105} \times 100 = 1.9 = 11.58$$

C.V. of prices of shares X is greater than the C.V. of prices of shares Y. Thus, the prices of shares Y are more stable than the prices of shares X.

Question 3:

An analysis of monthly wages paid to workers in two firms A and B, belonging to the same industry, gives the following results:

	Firm A	Firm B
No. of wages earners	586	648
Mean of monthly wages	Rs. 5253	Rs. 5253
Variance of the distribution	100	121
of wages		

(i) Which firm A or B pays larger amount as monthly wages?

(ii) Which firm, A or B, shows greater variability in individual wages?

Solution 3:

(i) Monthly wages of firm A = Rs. 5253

Number of wage earners in firm A = 586

 \therefore Total amount paid = Rs. 5253 \times 586

Monthly wages of firm B = Rs. 5253

Number of wage earners in firm B = 648

: Total amount paid = Rs. 5253×648

Thus, firm B pays the larger amount as monthly wages as the number of wage earners in firm B are more than the number of wage earners in firm A.

(ii) Variance of the distribution of wages in firm A $(\sigma_1^2) = 100$

: Standard deviation of the distribution of wages in firm A $(\sigma_1) = \sqrt{100} = 10$

Variance of the distribution of wages in firm $B(\sigma_2^2) = 121$

: Standard deviation of the distribution of wages in firm $B(\sigma_2^2) = \sqrt{121} = 11$

The mean of monthly wages of both the firms is same i.e., 5253. Therefore, the firm with greater standard deviation will have more variability.

Thus, firm B has greater variability in the individual wages.

Question 4:

The following is the record of goals scored by team A in a football session:

No. of goals scored	0	1	2	3	4
No. of matches	1	9	7	5	3

For the team B, mean number of goals scored per match was 2 with a standard deviation 1.25 goals. Find which team may be considered more consistent?

Solution 4:

The mean and the standard deviation of goals scored by team A are calculated as follows.

No. of goals scored	No. of matches	$f_i x_i$	x_i^2	$f_i x_i^2$
0	1	0	0	0
1	9	9	1	9
2	7	14	4	28
3	5	15	9	45
4	3	12	16	48
	25	50		130

Mean = $\sum_{i=1}^{15} f_i x_i = \frac{50}{25} = 2$

Thus, the mean of both the teams is same.

$$\sigma = \frac{1}{N} \sqrt{N \sum f_i x_i^2 - (\sum f_i x_i)^2}$$

= $\frac{1}{25} \sqrt{25 \times 130 - (50)^2}$
= $\frac{1}{25} \sqrt{750}$
= $\frac{1}{25} \times 27.38$
= 1.09

The standard deviation of team B is 1.25 goals.

The average number of goals scored by both the teams is same i.e., 2. Therefore, the team with lower standard deviation will be more consistent.

Question 5:

The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below:

$$\sum_{i=1}^{50} x_i = 212, \ \sum_{i=1}^{50} x_i^2 = 902.8, \ \sum_{i=1}^{50} y_i = 261, \ \sum_{i=1}^{50} y_i^2 = 1457.6$$

Which is more varying, the length or weight?

Solution 5:

$$\begin{split} &\sum_{i=1}^{50} \mathbf{x}_{i} = 212, \ \sum_{i=1}^{50} \mathbf{x}_{i}^{2} = 902.8 \\ &\text{Here, N} = 50 \\ &\text{Mean, } \mathbf{\bar{x}} = \frac{\sum_{i=1}^{50} y_{i}}{N} = \frac{212}{50} = 4.24 \\ &\text{Variance}\left(\sigma_{1}^{2}\right) = \frac{1}{N} \sum_{i=1}^{50} (x_{i} \cdot \mathbf{\bar{x}})^{2} \\ &= \frac{1}{50} \sum_{i=1}^{50} (x_{i} \cdot 4.24)^{2} \\ &= \frac{1}{50} \sum_{i=1}^{50} [x_{i}^{2} - 8.48x_{i} + 17.97] \\ &= \frac{1}{50} \left[\sum_{i=1}^{50} x_{i}^{2} - 8.48 \sum_{i=1}^{50} x_{i} + 17.97 \times 50 \right] \\ &= \frac{1}{50} \left[902.8 - 8.48 \times (212) + 898.5 \right] \\ &= \frac{1}{50} \left[1801.3 - 1797.76 \right] \\ &= \frac{1}{50} \times 3.54 \\ &= 0.07 \\ \therefore \text{ Standard deviation } \sigma_{1} (\text{Length}) = \sqrt{0.07} = 0.26 \\ \text{C.V.(Length)} = \frac{\text{Standard deviation}}{\text{Mean}} \times 100 = \frac{0.26}{4.24} \times 100 = 6.13 \\ &\sum_{i=1}^{50} y_{i} = 261, \ &\sum_{i=1}^{50} y_{i}^{2} = 1457.6 \\ \text{Mean, } \overline{y} = \frac{1}{N} \sum_{i=1}^{50} y_{i} = \frac{1}{50} \times 261 = 5.22 \\ \text{Variance}\left(\sigma_{1}^{2}\right) = \frac{1}{N} \sum_{i=1}^{50} (y_{i} \cdot \overline{y})^{2} \end{split}$$

$$= \frac{1}{50} \sum_{i=1}^{50} (y_i - 5.22)^2$$

$$= \frac{1}{50} \sum_{i=1}^{50} [y_i^2 - 10.44y_i + 27.24]$$

$$= \frac{1}{50} \left[\sum_{i=1}^{50} y_i^2 - 10.44 \sum_{i=1}^{50} y_i + 27.24 \times 50 \right]$$

$$= \frac{1}{50} [1457.6 - 10.44 \times (261) + 1362]$$

$$= \frac{1}{50} [2819.6 - 2724.84]$$

$$= \frac{1}{50} \times 94.76$$

$$= 1.89$$

 \therefore Standard deviation σ_2 (Weight) = $\sqrt{1.89} = 1.37$
C.V.(Weight) = $\frac{\text{Standard deviation}}{\text{Mean}} \times 100 = \frac{1.37}{5.22} \times 100 = 26.24$

Thus, C.V. of weights is greater than the C.V. of lengths. Therefore, weights vary more than the lengths

Same textbo