Exercise 15.1

Question 1:

Find the mean deviation about the mean for the data $4,7,8,9,10,12,13,17$

Solution 1:

The given data is
$4,7,8,9,10,12,13,17$
Mean of the data, $\bar{x}=\frac{4+7+8+9+10+12+13+17}{8}=\frac{80}{8}=10$
The deviations of the respective observations from the mean \bar{x}, i.e. $x_{i}-\bar{x}$, are $-6,-3,-2,-1,0,2,3,7$
The absolute values of the deviations, i.e. $\left|x_{i}-\bar{x}\right|$, are
$6,3,2,1,0,2,3,7$
The required mean deviation about the mean is
M.D. $(\bar{x})=\frac{\sum_{i=1}^{8}\left|x_{i}-\bar{x}\right|}{8}=\frac{6+3+2+1+0+2+3+7}{8}=\frac{24}{8}=3$

Question 2:

Find the mean deviation about the mean for the data

$$
38,70,48,40,42,55,63,46,54,44
$$

Solution 2:

The given data is
$38,70,48,40,42,55,63,46,54,44$
Mean of the given data,
$\bar{x}=\frac{38+70+48+40+42+55+63+46+54+44}{10}=\frac{500}{10}=50$
The deviations of the respective observations from the mean \bar{x}, i.e., $x_{i}-\bar{x}$, are
$-12,20,-2,-10,-8,5,13,-4,4,-6$
The absolute values of the deviations, i.e. $\left|x_{i}-\bar{x}\right|$, are
$12,20,2,10,8,5,13,4,4,6$
The required mean deviation about the mean is

$$
\begin{aligned}
\text { M.D. }(\bar{x})= & \frac{\sum_{i=1}^{8}\left|x_{i}-\bar{x}\right|}{10} \\
& =\frac{12+20+2+10+8+5+13+4+4+6}{10} \\
= & \frac{84}{10} \\
& =8.4
\end{aligned}
$$

Question 3:

Find the mean deviation about the median for the data.
$13,17,16,14,11,13,10,16,11,18,12,17$

Solution 3:

The given data is
$13,17,16,14,11,13,10,16,11,18,12,17$
Here, the numbers of observations are 12 , which is even.
Arranging the data in ascending order, we obtain
$10,11,11,12,13,13,14,16,16,17,17,18$
Median, $\mathrm{M}=\frac{\left(\frac{12}{2}\right)^{\text {th }} \text { observation }+\left(\frac{12}{2}+1\right)^{\text {th }} \text { observation }}{2}$
$=\frac{6^{\text {th }} \text { observation }+7^{\text {th }} \text { observation }}{2}$
$=\frac{13+14}{2}=\frac{27}{2}=13.5$
The deviations of the respective observations from the median, i.e. $x_{i}-M$, are
$-3.5,-2.5,-2.5,-1.5,-0.5,-0.5,0.5,2.5,2.5,3.5,3.5,4.5$
The absolute values of the deviations, $\left|x_{i}-M\right|$ are
$3.5,2.5,2.5,1.5,0.5,0.5,0.5,2.5,2.5,3.5,3.5,4.5$
The required mean deviation about the median is
M.D. $(M)=\frac{\sum_{i=1}^{12}\left|x_{i}-M\right|}{12}$
$=\frac{3.5+2.5+2.5+1.5+0.5+0.5+0.5+2.5+2.5+3.5+3.5+4.5}{12}$
$=\frac{28}{12}=2.33$

Question 4:

Find the mean deviation about the median for the data $36,72,46,42,60,45,53,46,51,49$

Solution 4:

The given data is
$36,72,46,42,60,45,53,46,51,49$
Here, the number of observations is 10 , which is even.
Arranging the data in ascending order, we obtain
$36,42,45,46,46,49,51,53,60,72$

Median $\mathrm{M}=\frac{\left(\frac{10}{2}\right)^{\text {th }} \text { observation }+\left(\frac{10}{2}+1\right)^{\text {th }} \text { observation }}{2}$
$=\frac{5^{\text {th }} \text { observation }+6^{\text {th }} \text { observation }}{2}$
$=\frac{46+49}{2}=\frac{95}{2}=47.5$
The deviations of the respective observations from the median, i.e. $x_{i}-\mathrm{M}$ are
$-11.5,-5.5,-2.5,-1.5,-1.5,1.5,3.5,5.5,12.5,24.5$
The absolute values of the deviations, $\left|x_{i}-\mathrm{M}\right|$, are
$11.5,5.5,2.5,1.5,1.5,1.5,3.5,5.5,12.5,24.5$
Thus, the required mean deviation about the median is
M.D. $(\mathrm{M})=\frac{\sum_{i=1}^{10}\left|x_{i}-\mathrm{M}\right|}{10}=\frac{11.5+5.5+2.5+1.5+1.5+1.5+3.5+5.5+12.5+24.5}{10}$
$=\frac{70}{10}=7$

Question 5:

Find the mean deviation about the mean for the data.

	5	10	15	20	25
f_{i}	7	4	6	3	5

Solution 5:

	f_{i}	f_{i}	$\left\|x_{i}-\bar{x}\right\|$	$f_{i}\left\|x_{i}-\bar{x}\right\|$
5	7	35	9	63
10	4	40	4	16
15	6	90	1	6
20	3	60	6	18
25	5	125	11	55
	25	350		158

$\mathrm{N}=\sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}}=25$
$\sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=350$
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{25} \times 350=14$
$\therefore \mathrm{MD}(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{25} \times 158=6.32$

Question 6:

Find the mean deviation about the mean for the data

	10	30	50	70	90
f_{i}	4	24	28	16	8

Solution 6:

	f_{i}	f_{i}	$\left\|x_{i}-\bar{x}\right\|$	$f_{i}\left\|x_{i}-\bar{x}\right\|$
10	4	40	40	160
30	24	720	20	480
50	28	1400	0	0
70	16	1120	20	320
90	8	720	40	320
	80	4000		1280

$\mathrm{N}=\sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}}=80, \sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=4000$
$\therefore \overline{\mathrm{x}}=\frac{1}{\mathrm{~N}} \sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=\frac{1}{80} \times 4000=50$
$\therefore \mathrm{MD}(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{80} \times 1280=16$

Question 7:

Find the mean deviation about the median for the data.

	5	7	9	10	12	15
f_{i}	8	6	2	2	2	6

Solution 7:

The given observations are already in ascending order.
Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

	f_{i}	c.f.
5	8	8
7	6	14
9	2	16
10	2	18
12	2	20
15	6	26

Here, $\mathrm{N}=26$, which is even.
Median is the mean of 13th and 14th observations. Both of these observations lie in the cumulative frequency 14 , for which the corresponding observation is 7 .
\therefore Median $=\frac{13^{\text {th }} \text { observation }+14^{\text {th }} \text { observation }}{2}=\frac{7+7}{2}=7$
The absolute values of the deviations from median, i.e. $\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|$, are

$\left\|x_{i}-\mathrm{M}\right\|$	2	0	2	3	5	8
f_{i}	8	6	2	2	2	6

$f_{i}\left\|x_{i}-\mathrm{M}\right\|$	16	0	4	6	10	48
$\sum_{i=1}^{6} \mathrm{f}_{\mathrm{i}}=26$, and $\sum_{i=1}^{6} \mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right\|=84$						
M.D. $(\mathrm{M})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{6} \mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right\|=\frac{1}{26} \times 84=3.23$						

Question 8:

Find the mean deviation about the median for the data

	15	21	27	30	35
f_{i}	3	5	6	7	8

Solution 8:

The given observations are already in ascending order.
Adding a column corresponding to cumulative frequencies of the given data, we obtain the following table.

	f_{i}	c.f.
15	3	3
21	5	8
27	6	14
30	7	21
35	8	29

Here, $\mathrm{N}=29$, which is odd.
\therefore Median $=\left(\frac{7+7}{2}\right)^{\text {th }}$ observation $=15^{\text {th }}$ observation
This observation lies in the cumulative frequency 21 , for which the corresponding observation is 30 .
\therefore Median $=30$
The absolute values of the deviations from median, i.e. $\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|$, are

$\left\|x_{i}-\mathrm{M}\right\|$	15	9	3	0	5
f_{i}	3	5	6	7	8
$f_{i}\left\|x_{i}-\mathrm{M}\right\|$	45	45	18	0	40

$\sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}}=29, \sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|=148$
\therefore M.D. $(\mathrm{M})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{5} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|=\frac{1}{29} \times 148=5.1$

Question 9:

Find the mean deviation about the mean for the data.

Income per day	Number of persons
$0-100$	4
$100-200$	8

$200-300$	9
$300-400$	10
$400-500$	7
$500-600$	5
$600-700$	4
$700-800$	3

Solution 9:

The following table is formed.

Income per day	Number of persons f_{i}	Mid-point	f_{i}	$\left\|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right\|$	$\mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right\|$
$0 \quad 100$	4	50	200	308	1232
$100 \quad 200$	8	150	1200	208	1664
$200 \quad 300$	9	250	2250	108	972
$300 \quad 400$	10	350	3500	8	80
$400 \quad 500$	7	450	3150	92	644
$500 \quad 600$	5	550	2750	192	960
$600 \quad 700$	4	650	2600	292	1168
$700 \quad 800$	3	750	2250	392	1176
	50		17900		7896

Here, $\mathrm{N}=\sum_{i=1}^{8} \mathrm{f}_{\mathrm{i}}=50, \sum_{i=1}^{8} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=17900$
$\therefore \bar{x}=\frac{1}{N} \sum_{i=1}^{8} f_{i} x_{i}=\frac{1}{50} \times 17900=358$
M.D. $(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{8} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{50} \times 7896=157.92$

Question 10:

Find the mean deviation about the mean for the data

Height in cms	Number of boys
$95-105$	9
$105-115$	13
$115-125$	26
$125-135$	30
$135-145$	12
$145-155$	10

Solution 10:
The following table is formed.

Height in cms	Number of boys f_{i}	Mid-point	f_{i}	$\left\|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right\|$	$\mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right\|$
$95-105$	9	100	900	25.3	227.7
$105-115$	13	110	1430	15.3	198.9
$115-125$	26	120	3120	5.3	137.8
$125-135$	30	130	3900	4.7	141

$135-145$	12	140	1680	14.7	176.4
$145-155$	10	150	1500	24.7	247

Here, $\mathrm{N}=\sum_{i=1}^{6} \mathrm{f}_{\mathrm{i}}=100, \sum_{i=1}^{6} \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=12530$
$\therefore \overline{\mathrm{x}}=\frac{1}{N} \sum_{i=1}^{6} f_{i} x_{i}=\frac{1}{100} \times 12530=125.3$
M.D. $(\overline{\mathrm{x}})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{6} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|=\frac{1}{100} \times 1128.8=11.28$

Question 11:

Calculate the mean deviation about median age for the age distribution of 100 persons given below:

Age	Number
$16-20$	5
$21-25$	6
$26-30$	12
$31-35$	14
$36-40$	26
$41-45$	12
$46-50$	16
$51-55$	9

Solution 11:

The given data is not continuous. Therefore, it has to be converted into continuous frequency distribution by subtracting 0.5 from the lower limit and adding 0.5 to the upper limit of each class interval.
The table is formed as follows.

Age	Number f_{i}	Cumulative frequency (c.f)	Mid-point	$\mid x_{i}$-Med.	$f_{i} \mid x_{i}$-Med.\|
$15.5-20.5$	5	5	18	20	100
$20.5-25.5$	6	11	23	15	90
$25.5-30.5$	12	23	28	10	120
$30.5-35.5$	14	37	33	5	70
$35.5-40.5$	26	63	38	0	0
$40.5-45.5$	12	75	43	5	60
$45.5-50.5$	16	91	48	10	160
$50.5-55.5$	9	100	53	15	135
	10				735

The class interval containing the $\frac{\mathrm{N}^{\mathrm{th}}}{2}$ or 50th item is $35.5 \quad 40.5$.
Therefore, $35.5 \quad 40.5$ is the median class.
It is known that,

Median $=l+\frac{\frac{N}{2}-C}{f} \times h$
Here, $\mathrm{l}=35.5, \mathrm{C}=37, \mathrm{f}=26, \mathrm{~h}=5$, and $\mathrm{N}=100$
\therefore Median $=35.5+\frac{50-37}{26} \times 5=35.5+\frac{13 \times 5}{26}=35.5+2.5=38$
Thus, mean deviation about the median is given by,
M.D. $(\mathrm{M})=\frac{1}{\mathrm{~N}} \sum_{i=1}^{8} \mathrm{f}_{\mathrm{i}}\left|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right|=\frac{1}{100} \times 735=7.35$

