Exercise 14.5

Question 1: Show that the statement
p : 'If x is a real number such that $\mathrm{x}^{3}+4 \mathrm{x}=0$, then x is 0 ' is true by
(i) direct method
(ii) method of contradiction
(iii) method of contrapositive

Solution 1: p : 'If x is a real number such that $\mathrm{x}^{3}+4 \mathrm{x}=0$, then x is 0 '.
Let q : x is a real number such that $\mathrm{x}^{3}+4 \mathrm{x}=0$

r : x is 0 .

(i) To show that statement p is true, we assume that q , is true and then show that r is true.

Therefore, let statement q be true.
$x^{3}+4 x=0$
$x\left(x^{2}+4\right)=0$
$x=0$ or $x^{2}+4=0$
However, since x is real, it is 0 .
Thus, statement r is true.
Therefore, the given statement is true.
(ii) To show statement p to be true by contradiction, we assume that p is not true.

Let x be a real number such that $\mathrm{x}^{3}+4 \mathrm{x}=0$ and let x is not 0 .
Therefore, $x^{3}+4 x=0$
$x\left(x^{2}+4\right)=0$
$x=0$ or $x^{2}+4=0$
$\mathrm{x}=0$ or $\mathrm{x}^{2}=-4$
However, x is real. Therefore, $\mathrm{x}=0$, which is a contradiction since we have assumed that x is not 0 .

Thus, the given statement p is true.
(iii)To prove statement p to be true by contrapositive method, we assume that r is false and prove that q must be false.
Here, r is false implies that it is required to consider the negation of statement r. This obtains the following statement.
$\sim \mathrm{r}$: x is not 0
I can be seen that $\left(x^{2}+4\right)$ will always be positive
$\mathrm{x}=0$ implies that the product of any positive real number with x is not zero.
Let us consider the product of x with $\left(x^{2}+4\right)$
$\therefore \mathrm{x}\left(\mathrm{x}^{2}+4\right)=0$
$x^{3}+4 \mathrm{x}=0$
This shows that statement q is not true.
Thus, it has been proved that
$\sim \mathrm{r} \Rightarrow \sim \mathrm{q}$
Therefore, the given statement p is true.

Question 2: Show that the statement 'For any real numbers a and $b, a^{2}=b^{2}$ implies that $a=$ b^{\prime} is not true by giving a counter-example.

Solution 2: The given statement can be written in the form of 'if-then' as follows.
If a and b are real numbers such that $a^{2}=b^{2}$, then $a=b$.
Let p : a and b are real numbers such that $\mathrm{a}^{2}=\mathrm{b}^{2}$.
$\mathrm{q}: \mathrm{a}=\mathrm{b}$
The given statement has to be proved false. For this purpose, it has to be proved that if p, then
$\sim q$ To sow this, two real numbers, a and b, with $a^{2}=b^{2}$ are required such that $a \neq b$.
Let $\mathrm{a}=1$ and $\mathrm{b}=-1$
$\mathrm{a}^{2}=(1)^{2}$ and $\mathrm{b}^{2}=(-1)^{2}=1$
$\mathrm{a}^{2}=\mathrm{b}^{2}$
However, $\mathrm{a}=\mathrm{b}$
Thus, it can be concluded that the given statement is false.

Question 3: Show that the following statement is true by the method of contrapositive.
p: If x is an integer and x^{2} is even, then x is also even.
Solution 3: p : If x is an integer and x^{2} is even, then x is also even.
Let $\mathrm{q}: \mathrm{x}$ is an integer and x^{2} is even.
r : x is even.
To prove that p is true by contrapositive method, we assume that r is false, and prove that q is also false.
Let x is not even.
To prove that q is false, it has to be proved that x is not an integer or x^{2} is not even.
x is not even implies that x^{2} is also not even.
Therefore, statement q is false.
Thus, the given statement p is true.

Question 4: By giving a counter example, show that the following statements are not true.
(i) p: If all the angles of a triangle are equal, then the triangle is an obtuse angled triangle.
(ii) q : The equation $\mathrm{x}^{2}-1=0$ does not have a root lying between 0 and 2 .

Solution 4: (i) The given statement is of the form 'if q then r '.
q : All the angles of a triangle are equal.
r : The triangle is an obtuse-angled triangle.
The given statement p has to be proved false. For this purpose, it has to be proved that if q , then
$\sim \mathrm{r}$.
To show this, angles of a triangle are required such that none of them is an obtuse angle.
It is known that the sum of all angles of a triangle is 180°. Therefore, if all the three angles are equal, then each of them is of measure 60°, which is not an obtuse angle.
In an equilateral triangle, the measure of all angles is equal. However, the triangle is not an obtuse-angled triangle.
Thus, it can be concluded that the given statement p is false.
(ii) The given statement is as follows.
q : The equation $\mathrm{x}^{2}-1=0$ does not have a root lying between 0 and 2 .
This statement has to be proved false. To show this, a counter example is required.
Consider $\mathrm{x}^{2}-1=0$
$\mathrm{x}^{2}=1$
$\mathrm{x}= \pm 1$
One root of the equation $x^{2}-1=0$, i.e. the root $x=1$, lies between 0 and 2 .
Thus, the given statement is false.

Question 5: Which of the following statements are true and which are false? In each case give a valid reason for saying so.
(i) p: Each radius of a circle is a chord of the circle.
(ii) q : The centre of a circle bisects each chord of the circle.
iii) r: Circle is a particular case of an ellipse.
(iv) s: If x and y are integers such that $x>y$, then $-x<-y$.
(v) $\mathrm{t}: \sqrt{11}$ is a rational number.

Solution 5: (i) The given statement p is false.
According to the definition of chord, it should intersect the circle at two distinct points.
(ii) The given statement q is false.

If the chord is not the diameter of the circle, then the centre will not bisect that chord.
In other words, the centre of a circle only bisects the diameter, which is the chord of the circle.
(iii) The equation of an ellipse is,
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
If we put $\mathrm{a}=\mathrm{b}=1$, then we obtain $x^{2}+y^{2}=1$, which is an equation of a circle Therefore, circle is a particular case of an eclipse.
Thus, statement r is true.
(iv) $\mathrm{x}>\mathrm{y}$
$\Rightarrow-x<-y$ (By a rule of inequality)
Thus, the given statement s is true.
(v) 11 is a prime number and we know that the square root of any prime number is an irrational number.
Therefore, $\sqrt{11}$ is an irrational number.
Thus, the given statement t is false.

