Miscellaneous Exercise

Ouestion 1: Find the derivative of the following functions from first principle:

- (i) -x
- (ii) $(-x)^{-1}$
- (iii) $\sin(x+1)$
- (iv) $\cos\left(x-\frac{\pi}{8}\right)$

Solution 1: (i) Let f(x) = -x. Accordingly, f(x + h) = -(x + h)By first principle, $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$=\lim_{h\to 0}\frac{-(x+h)-(-x)}{h}$$

$$=\lim_{h\to 0}\frac{-x-h+x}{h}$$

$$=\lim_{h\to 0}\frac{-h}{h}$$

$$=\lim_{h\to 0}(-1)=-1$$

(ii) Let
$$f(x) = (-x)^{-1} = \frac{1}{-x} = \frac{-1}{x}$$
. Accordingly, $f(x + h) = \frac{-1}{(x+h)}$

By first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$=\lim_{h\to 0}\frac{1}{h}\left[\frac{-1}{(x+h)}-\left(\frac{-1}{x}\right)\right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{-x + (x+h)}{x(x+h)} \right]$$

$$=\lim_{h\to 0}\frac{1}{h}\left[\frac{h}{x(x+h)}\right]$$

$$=\lim_{h\to 0}\frac{1}{x(x+h)}$$

$$=\frac{1}{x_{1}x}=\frac{1}{x^{2}}$$

(iii) Let
$$f(x) = \sin(x + 1)$$
. Accordingly, $f(x + h) = \sin(x + h + 1)$

By first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} [\sin(x+h+1) - \sin(x+1)]$$

$$=\lim_{h\to 0}\frac{1}{h}\left[2\cos\left(\frac{x+h+1+x+1}{2}\right)\sin\left(\frac{x+h+1-x-1}{2}\right)\right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[2\cos\left(\frac{2x+h+2}{2}\right) \sin\left(\frac{h}{2}\right) \right]$$

$$= \lim_{h \to 0} \left[\cos \left(\frac{2x + h + 2}{2} \right) \cdot \frac{\sin \left(\frac{h}{2} \right)}{\left(\frac{h}{2} \right)} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \cos\left(\frac{2x+h+2}{2}\right) \cdot \lim_{\frac{h}{2} \to 0} \frac{1}{h} \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}$$

$$= \cos\left(\frac{2x+0+2}{2}\right) \cdot 1 \qquad \left[\lim_{h \to 0} \frac{\sin x}{x} = 1\right]$$

$$= \cos(x+1)$$
[As $h \to 0 \Rightarrow \frac{h}{2} \to 0$]

(iv) Let
$$f(x) = \cos\left(x - \frac{\pi}{8}\right)$$
. Accordingly, $f(x + h) = \cos\left(x + h - \frac{\pi}{8}\right)$

By first principle,

By his principle,
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\cos\left(x + h - \frac{\pi}{8}\right) - \cos\left(x - \frac{\pi}{8}\right) \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[-2\sin\left(\frac{x + h - \frac{\pi}{8} + x - \frac{\pi}{8}}{2}\right) \sin\left(\frac{x + h - \frac{\pi}{8} - x + \frac{\pi}{8}}{2}\right) \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[-2\sin\left(\frac{2x + h - \frac{\pi}{4}}{2}\right) \sin\left(\frac{h}{2}\right) \right]$$

$$= \lim_{h \to 0} \left[-\sin\left(\frac{2x + h - \frac{\pi}{4}}{2}\right) \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right]$$

$$= \lim_{h \to 0} \left[-\sin\left(\frac{2x + h - \frac{\pi}{4}}{2}\right) \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right]$$

$$= \lim_{h \to 0} \left[-\sin\left(\frac{2x + h - \frac{\pi}{4}}{2}\right) \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right]$$

$$= 2x + 0 - \frac{\pi}{2}$$

$$\left[-\cos\left(\frac{2x + h - \frac{\pi}{4}}{2}\right) \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right]$$

$$= 2x + 0 - \frac{\pi}{2}$$

$$=-\sin\left(\frac{2x+0-\frac{\pi}{4}}{2}\right)\cdot 1$$

$$=-\sin\left(x-\frac{\pi}{8}\right)$$

Question 2: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (x + a)

Solution 2: Let f(x) = x + a. Accordingly, f(x + h) = x + h + a

By first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{x + h + a - x - a}{h}$$

$$= \lim_{h \to 0} \left(\frac{h}{h} \right)$$

$$= \lim_{h \to 0} (1)$$

= 1

Question 3: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(px + q)\left(\frac{r}{x} + s\right)$

Solution 3: Let
$$f(x) = (px + q) \left(\frac{r}{x} + s \right)$$

By Leibnitz product rule,

$$f'(x) = (px+q)\left(\frac{r}{x}+s\right)'+\left(\frac{r}{x}+s\right)(px+q)'$$

$$= (px+q)(rx^{-1}+s) + (\frac{r}{x}+s)(p)$$

$$= (px+q)(-rx^{-2})+(\frac{r}{x}+s)p$$

$$= (px+q)\left(\frac{-r}{x^2}\right) + \left(\frac{r}{x} + s\right)p$$

$$= \frac{-px}{x} - \frac{qr}{x^2} + \frac{pr}{x} + ps$$

$$= ps - \frac{qr}{x^2}$$

Question 4: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(ax + b) (cx + d)^2$

Solution 4: Let
$$f'(x) = (ax+b)(cx+d)^2$$

By Leibnitz product rule,

$$f'(x) = (ax+b)\frac{d}{dx}(cx+d)^{2}\frac{d}{dx}(ax+b)$$

$$= (ax+b)\frac{d}{dx}(c^{2}x^{2} + 2cdx^{2}) + (cx+d)^{2}\frac{d}{dx}(ax+b)$$

$$= (ax+b)\left[\frac{d}{dx}(c^{2}x^{2}) + \frac{d}{dx}(2cdx) + \frac{d}{dx}d^{2}\right] + (cx+d)^{2}\left[\frac{d}{dx}ax + \frac{d}{dx}b\right]$$

$$= (ax+b)(2c^{2}x+2cd) + (cx+d)^{2}a$$

$$= 2c(ax+b)(cx+d) + a(cx+d)^{2}$$

Question 5: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non zero constants and m and n are integers): $\frac{ax+b}{cx+d}$

Solution 5: Let
$$f(x) = \frac{ax+b}{cx+d}$$

$$f'(x) = \frac{(cx+d)\frac{d}{dx}(ax+b) - (ax+b)\frac{d}{dx}(cx+d)}{(cx+d)^2}$$
$$= \frac{(cx+d)(a) - (ax+d)(c)}{(cx+d)^2}$$

$$=\frac{acx+ad-acx-bc}{(cx+d)^2}$$

$$= \frac{ad - bc}{(cx + d)^2}$$

Question 6: Find the derivative of the following functions (it is to be understood that a, b, c,

d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{1 + \frac{1}{x}}{1 - \frac{1}{x}}$

Solution 6: Let
$$f(x) = \frac{1 + \frac{1}{x}}{1 - \frac{1}{x}} = \frac{x+1}{\frac{x-1}{x}} = \frac{x+1}{x-1}$$
, where $x \neq 0$

By quotient rule,

$$f'(x) = \frac{(x-1)\frac{d}{dx}(x-1) - (x+1)\frac{d}{dx}(x-1)}{(x-1)^2}, x \neq 0, 1$$

$$=\frac{(x-1)(1)-(x+1)(1)}{(x-1)^2}, x \neq 0,1$$

$$=\frac{x-1-x-1}{(x-1)^2}, x \neq 0,1$$

$$=\frac{-2}{(x-1)^2}, x \neq 0,1$$

Question 7: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{1}{ax^2 + bx + c}$

Solution 7: Let
$$f(x) = \frac{1}{ax^2 + bx + c}$$

$$f'(x) = \frac{(ax^2 + bx + c)\frac{d}{dx}(1) - \frac{d}{dx}(ax^2 + bx + c)}{(ax^2 + bx + c)^2}$$
$$= \frac{(ax^2 + bx + c)(0) - (2ax + b)}{(ax^2 + bx + c)^2}$$
$$= \frac{-(2ax + b)}{(ax^2 + bx + c)^2}$$

Question 8: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{ax+b}{px^2+qx+r}$

Solution 8: Let
$$f(x) = \frac{ax+b}{px^2+qx+r}$$

By quotient rule,
$$f'(x) = \frac{(px^2 + qx + r)\frac{d}{dx}(ax + b) - (ax + b)\frac{d}{dx}(px^2 + qx + r)}{(px^2 + qx + r)^2}$$

$$= \frac{(px^2 + qx + r)(a) - (ax + b)(2px + q)}{(px^2 + qx + r)^2}$$

$$= \frac{apx^2 + aqx + ar - aqx + 2npx + bq}{(px^2 + qx + r)^2}$$

$$= \frac{-apx^2 + 2bpx + ar - bq}{(px^2 + qx + r)^2}$$

$$=\frac{-apx^2+2bpx+ar-bq}{(px^2+qx+r)^2}$$

Question 9: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{px^2 + qx + r}{ax + b}$

Solution 9: Let
$$f(x) = \frac{px^2 + qx + r}{ax + b}$$

$$f'(x) = \frac{(ax+b)\frac{d}{dx}(px^2 + qx + r) - (px^2 + qx + r)\frac{d}{dx}(ax+b)}{(ax+b)^2}$$

$$= \frac{(ax+b)(2px+q) - (px^2 + qx + r)(a)}{(ax+b)^2}$$

$$= \frac{2apx^2 + aqx + 2bpx + bq - aqx^2 - aqx - ar}{(ax+b)^2}$$

$$= \frac{apx^2 + 2bpx + bq - ar}{(ax+b)^2}$$

Question 10: Find the derivative of the following functions (it is to be understood that a, b, c,

d, p, q, r and s are fixed non-zero constants and m and n are integers):
$$\frac{a}{x^4} - \frac{b}{x^2} + \cos x$$
Solution 10: Let $f(x) = \frac{a}{x^4} - \frac{b}{x^2} + \cos x$

$$f'(x) = \frac{d}{dx} \left(\frac{a}{x^4}\right) - \frac{d}{dx} \left(\frac{a}{x^2}\right) + \frac{d}{dx} (\cos x)$$

$$= a \frac{d}{dx} (x^{-4}) - b \frac{d}{dx} (x^{-2}) + \frac{d}{dx} (\cos x)$$

$$= a(-4x^{-5}) - b(-2x^{-3}) + (-\sin x) \qquad \left[\frac{d}{dx} (x^n) = nx^{n-1} \text{ and } \frac{d}{dx} (\cos x) = -\sin x\right]$$

$$= \frac{-4a}{x^5} + \frac{2b}{x^3} - \sin x$$

Question 11: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non zero constants and m and n are integers): $4\sqrt{x}-2$

Solution 11: Let
$$f(x) = 4\sqrt{x} - 2$$

 $f'(x) = \frac{d}{dx}(4\sqrt{x} - 2) = \frac{d}{dx}(4\sqrt{x}) - \frac{d}{dx}(2)$

$$= 4\frac{d}{dx}(x^{\frac{1}{2}}) - 0 = 4\left(\frac{1}{2}x^{\frac{1}{2}-1}\right)$$
$$= \left(2x^{-\frac{1}{2}}\right) = \frac{2}{\sqrt{x}}$$

 $= na(ax+b)^{n-1}$

Question 12: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(ax + b)^n$

Solution 12: Let $f(x) = (ax + b)^n$. Accordingly, $f(x + h) = \{a(x + h) + b\}^n = (ax + ah + b)^n$ By first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(ax+ah+b) - (ax+b)^n}{h}$$

$$= \lim_{h \to 0} \frac{(ax+b)^n \left(1 + \frac{ah}{ax+b}\right)^n - (ax+b)^n}{h}$$

$$= (ax+b)^n \lim_{h \to 0} \frac{1}{h} \left[\left\{ 1 + n \left(\frac{ah}{ax+b} \right) + \frac{n(n-1)}{2} \left(\frac{ah}{ax+b} \right)^2 + \cdots \right\} - 1 \right] \quad \text{(using binomial theorem)}$$

$$= (ax+b)^n \lim_{h \to 0} \frac{1}{h} \left[n \left(\frac{ah}{ax+b} \right) + \frac{n(n-1)a^2h^2}{2(ax+b)^2} + \cdots \right]$$

$$= (ax+b)^n \lim_{h \to 0} \left[\frac{na}{(ax+b)} + \frac{n(n-1)a^2h^2}{2(ax+b)^2} + \cdots \right]$$

$$= (ax+b)^n \left[\frac{na}{(ax+b)} + 0 \right]$$

$$= na \frac{(ax+b)^n}{ax+b}$$

Question 13: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(ax + b)^n (cx + d)^m$

Solution 13: Let
$$f(x) = (ax + b)^{n} (cx + d)^{m}$$

By Leibnitz product rule,

$$f'(x) = (ax+b)^n \frac{d}{dx} (cx+d)^m + (cx+d)^m \frac{d}{dx} (ax+b)^n \dots (1)$$

Now let $f_1(x) = (cx + d)^m$

$$f_1(x+h) = (cx + ch + d)^m$$

$$f_1'(x) = \lim_{h \to 0} \frac{f_1(x+h) - f_1(x)}{h}$$

$$= \lim_{h \to 0} \frac{(cx + ch + d)^m - (cx + d)^m}{h}$$

$$= (cx+d)^m \lim_{h \to 0} \frac{1}{h} \left[\left(1 + \frac{ch}{cx+d} \right)^m - 1 \right]$$

$$= (cx+d)^{m} \lim_{h \to 0} \frac{1}{h} \left[\left(1 + \frac{mch}{(cx+d)} + \frac{m(m-1)}{2} \frac{c^{2}h^{2}}{(cx+d)^{2}} + \cdots \right)^{m} - 1 \right]$$

$$= (cx+d)^m \lim_{h \to 0} \frac{1}{h} \left[\frac{mch}{(cx+d)} + \frac{m(m-1)c^2h^2}{2(cx+d)^2} + \cdots \right]$$
 (Terms containing higher degree oh h)

$$= (cx+d)^{m} \lim_{h\to 0} \left[\frac{mc}{(cx+d)} + \frac{m(m-1)c^{2}h^{2}}{2(cx+d)^{2}} + \cdots \right]$$

$$=(cx+d)^m \left[\frac{mch}{(cx+d)}+0\right]$$

$$=\frac{mc(cx+d)^m}{(cx+d)}$$

$$= mc(cx+d)^{m-1}$$

$$\frac{d}{dx}(cx+d)^m = mc(cx+d)^{m-1} \qquad \dots (2)$$

Similarly,
$$\frac{d}{dx}(ax+b)^n = na(ax+b)^{n-1} \qquad \dots (3)$$

Therefore, from (1), (2), and (3), we obtain

$$f'(x) = (ax+b)^n \{ mc(cx+d)^{m-1} \} + (cx+d)^m \{ na(ax+b)^{n-1} \}$$

$$=(ax+b)^{n-1}(cx+d)^{m-1}[mc(ax+b)+na(cx+d)]$$

Ouestion 14: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\sin(x + a)$

 $\left[As h \to 0 \Rightarrow \frac{h}{2} \to 0 \right]$

Solution 14: Let, $f(x) = \sin(x + a)$

$$f(x + h) = \sin(x + h + a)$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$=\lim_{h\to 0}\frac{\sin(x+h+a)-\sin(x+a)}{h}$$

By first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x+h+a) - \sin(x+a)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[2\cos\left(\frac{x+h+a+x+a}{2}\right) \sin\left(\frac{x+h+a-x-a}{2}\right) \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[2\cos\left(\frac{2x+2a+h}{2}\right) \sin\left(\frac{h}{2}\right) \right]$$

$$=\lim_{h\to 0}\frac{1}{h}\left[2\cos\left(\frac{2x+2a+h}{2}\right)\sin\left(\frac{h}{2}\right)\right]$$

$$= \lim_{h \to 0} \left[\cos \left(\frac{2x + 2a + h}{2} \right) \left[\frac{\sin \left(\frac{h}{2} \right)}{\left(\frac{h}{2} \right)} \right] \right]$$

$$= \lim_{h \to 0} \cos\left(\frac{2x + 2a + h}{2}\right) \cdot \lim_{\frac{h}{2} \to 0} \left\lceil \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right\rceil$$

$$= \cos\left(\frac{2x+2a}{2}\right) \times 1 \qquad \left[\lim_{h \to 0} \frac{\sin x}{x} = 1\right]$$

$$=\cos(x+a)$$

Question 15: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): cosec x cot x

Solution 15: Let $f(x) = \csc x \cot x$

By Leibnitz product rule,

$$f'(x) = \csc x(\cot x)' + \cot x(\csc x)' \dots (1)$$

Let $f_1(x) = \cot x$. Accordingly, $f_1(x + h) = \cot (x + h)$

By first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cot(x+h) - \cot(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{\cos(x+h)}{\sin(x+h)} - \frac{\cos(x)}{\sin x} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{\sin x \cos(x+h) - \cos x \sin(x+h)}{\sin x \sin(x+h)} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{\sin(x - x + h)}{\sin x \sin(x + h)} \right)$$

$$= \frac{1}{\sin x} \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(-h)}{\sin(x+h)} \right]$$

$$= \frac{-1}{\sin x} \left(\lim_{h \to 0} \frac{\sin h}{h} \right) \left(\lim_{h \to 0} \frac{1}{\sin(x+h)} \right)$$

$$= \frac{-1}{\sin x} \cdot 1 \cdot \left(\lim_{h \to 0} \frac{1}{\sin(x+0)} \right)$$

$$=\frac{-1}{\sin^2 x}$$

$$=-\csc^2 x$$

$$\therefore (\cot x)' = -\csc^2 x \qquad \dots (2)$$

Now, let $f_2(x) = \csc x$. Accordingly, $f_2(x + h) = \csc(x + h)$

By first principle,

$$f_2'(x) = \lim_{h \to 0} \frac{f_2(x+h) - f_2(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} [\operatorname{cosec}(x+h) - \operatorname{cosec}(x)]$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{\sin(x+h)} - \frac{1}{\sin x} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{\sin x - \sin(x+h)}{\sin x \sin(x+h)} \right)$$

$$= \frac{1}{\sin x} \cdot \lim_{h \to 0} \frac{1}{h} \left[\frac{2\cos\left(\frac{x+x+h}{2}\right)\sin\left(\frac{x-x-h}{2}\right)}{\sin(x+h)} \right]$$

$$= \frac{1}{\sin x} \cdot \lim_{h \to 0} \frac{1}{h} \left[\frac{2\cos\left(\frac{2x+h}{2}\right)\sin\left(\frac{-h}{2}\right)}{\sin(x+h)} \right]$$

$$= \frac{1}{\sin x} \cdot \lim_{h \to 0} \frac{1}{h} \left[\frac{2\cos\left(\frac{2x+h}{2}\right)\sin\left(\frac{-h}{2}\right)}{\sin(x+h)} \right]$$

$$= \frac{1}{\sin x} \cdot \lim_{h \to 0} \left[\frac{-\sin\left(\frac{h}{2}\right)\cos\left(\frac{2x+h}{2}\right)}{\left(\frac{h}{2}\right)\cdot\sin(x+h)} \right]$$

$$= \frac{-1}{\sin x} \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \cdot \lim_{h \to 0} \frac{\cos\left(\frac{2x+h}{2}\right)}{\sin(x+h)}$$

$$= \frac{-1}{\sin x} \cdot 1 \cdot \frac{\cos\left(\frac{2x+h}{2}\right)}{\sin(x+0)}$$

$$= \frac{-1}{\sin x} \cdot 1 \cdot \frac{\cos\left(\frac{2x+h}{2}\right)}{\sin(x+0)}$$

$$= \frac{-1}{\sin x} \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \cdot \lim_{h \to 0} \frac{\cos\left(\frac{2x+h}{2}\right)}{\sin(x+h)}$$

$$= \frac{-1}{\sin x} \cdot 1 \cdot \frac{\cos\left(\frac{2x+h}{2}\right)}{\sin(x+0)}$$

$$= \frac{-1}{\sin x} \cdot \frac{\cos x}{\sin x}$$

$$=$$
-cosec $x \cdot \cot x$

$$\therefore$$
 (cosec x)' = -cosec x · cot x

From (1), (2), and (3), we obtain

$$f'(x) = \csc x(-\csc^2 x) + \cot x(-\csc x \cot x)$$

Question 16: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\cos x}{1+\sin x}$

Solution 16: Let
$$f(x) = \frac{\cos x}{1 + \sin x}$$

By quotient rule,

$$f'(x) = \frac{(1+\sin x)\frac{d}{dx}(\cos x) - (\cos x)\frac{d}{dx}(1+\sin x)}{(1+\sin x)^2}$$

$$= \frac{(1+\sin x)(-\sin x) - (\cos x)(\cos x)}{(1+\sin x)^2}$$

$$= \frac{-\sin x - \sin^2 x - \cos^2 x}{(1+\sin x)^2}$$

$$= \frac{-\sin x - (\sin^2 x + \cos^2 x)}{(1+\sin x)^2}$$

$$= \frac{-\sin x - 1}{(1+\sin x)^2}$$

$$= \frac{-(1-\sin x)}{(1+\sin x)^2}$$

$$= \frac{-1}{(1+\sin x)^2}$$

Question 17: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non zero constants and m and n are integers): $\frac{\sin x + \cos x}{\sin x - \cos x}$

Solution 17: Let
$$f(x) = \frac{\sin x + \cos x}{\sin x - \cos x}$$

By quotient rule,

$$f'(x) = \frac{(\sin x - \cos x) \frac{d}{dx} (\sin x + \cos x) - (\sin x + \cos x) \frac{d}{dx} (\sin x - \cos x)}{(\sin x + \cos x)^2}$$

$$= \frac{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}{(\sin x + \cos x)^2}$$

$$= \frac{-(\sin x - \cos x)^2 - (\sin x + \cos x)^2}{(\sin x + \cos x)^2}$$

$$= \frac{-[\sin^2 x + \cos^2 x - 2\sin x \cos x + \sin^2 x + \cos^2 x + 2\sin x \cos x]}{(\sin x + \cos x)^2}$$

$$= \frac{-[1+1]}{(\sin x - \cos x)^2}$$

$$= \frac{-2}{(\sin x - \cos x)^2}$$

Question 18: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

Solution 18: Let
$$f(x) = \frac{\sec x - 1}{\sec x + 1}$$

Solution 18: Let
$$f(x) = \frac{\sec x - 1}{\sec x + 1}$$

$$f(x) = \frac{\frac{1}{\cos x} - 1}{\frac{1}{\cos x} + 1} = \frac{1 - \cos x}{1 + \cos x}$$

$$f'(x) = \frac{(1+\cos x)\frac{d}{dx}(1-\cos x) - (1-\cos x)\frac{d}{dx}(1+\cos x)}{(1+\cos x)^2}$$

$$= \frac{(1+\cos x)(\sin x) - (1-\cos x)(-\sin x)}{(1+\cos x)^2}$$

$$= \frac{\sin x + \cos x \sin x + \sin x - \sin x \cos x}{(1+\cos x)^2}$$

$$= \frac{2\sin x}{(1+\cos x)^2}$$

$$= \frac{2\sin x}{\left(1+\frac{1}{\sec x}\right)^2} = \frac{2\sin x}{\frac{(\sec x+1)^2}{\sec^2 x}}$$

$$= \frac{2\sin x \sec^2 x}{(\sec x+1)^2}$$

$$= \frac{2\sin x}{(\sec x+1)^2}$$

$$= \frac{2\sin x}{(\sec x+1)^2}$$

$$= \frac{2\sec x \tan x}{(\sec x+1)^2}$$

Question 19: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sinⁿ x

Solution 19: Let $y = \sin^n x$.

Accordingly, for n = 1, $y = \sin x$.

$$\therefore \frac{dy}{dx} = \cos x, \text{ i.e., } \frac{d}{dx} \sin x = \cos x$$

For n = 2, $y = \sin^2 x$.

$$\therefore \frac{dy}{dx} = \frac{d}{dx} (\sin x \sin x)$$

 $= (\sin x)'(\sin x + \sin x(\sin x)')$

[By Leibnitz product rule]

 $= \cos x \sin x + \sin x \cos x$

$$= 2\sin x \cos x \qquad \dots (1)$$

For n = 3, $y = \sin^3 x$.

$$\therefore \frac{dy}{dx} = \frac{d}{dx} (\sin x \sin^2 x)$$

=
$$(\sin x) \sin^2 x + \sin x (\sin x)$$
 [By Leibnitz product rule]

$$= \cos x \sin^2 x + \sin x (2\sin x \cos x) \qquad [Using (1)]$$

$$=\cos x \sin^2 x + \sin^2 x \cos x$$

$$= 3\sin^2 x \cos x$$

We assert that
$$\frac{d}{dx}(\sin^n x) = n\sin^{(n-1)} x\cos x$$

Let our assertion be true for n = k.

i.e.,
$$\frac{d}{dx}(\sin^k x) = k \sin^{(k-1)} x \cos x$$
 (2)

Consider

$$\frac{d}{dx}(\sin^{k+1} x) = \frac{d}{dx}(\sin x \sin^{(k)} x)$$

$$= (\sin x)' \sin^k x + \sin x (\sin^k x)'$$

[By Leibnitz product rule]

$$= \cos x \sin^k x + \sin x (k \sin^{k-1} \cos x)$$

[Using (2)]

$$= \cos x \sin^k x + 2 \sin^k x \cos x$$

$$= (k + 1) \sin^k x \cos x$$

Thus, our assertion is true for n = k + 1.

Hence, by mathematical induction,
$$\frac{d}{dx}(\sin^n x) = n\sin^{(n-1)}x\cos x$$

Question 20: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{a+b\sin x}{c+d\cos x}$

Solution 20: Let
$$f(x) = \frac{a+b\sin x}{c+d\cos x}$$

$$f'(x) = \frac{(c+d\cos x)\frac{d}{dx}(a+b\sin x) - (a+b\sin x)\frac{d}{dx}(c+d\cos x)}{(c+d\cos x)^2}$$

$$=\frac{(c+d\cos x)(b\cos x)-(a+b\sin x)(-d\sin x)}{(c+d\cos x)^2}$$

$$=\frac{cb\cos x + bd\cos^2 x + ad\sin x + bd\sin^2 x}{(c+d\cos x)^2}$$

$$= \frac{bc\cos x + ad\sin x + bd(\cos^2 x + \sin^2 x)}{(c + d\cos x)^2}$$
$$= \frac{bc\cos x + ad\sin x + bd}{(c + d\cos x)^2}$$

Question 21: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{\sin(x+a)}{\cos x}$

Solution 21: Let
$$f(x) = \frac{\sin(x+a)}{\cos x}$$

By quotient rule,

$$f'(x) = \frac{\cos x \frac{d}{dx} [\sin(x+a)] - \sin(x+a) \frac{d}{dx} \cos x}{\cos^2 x}$$

$$f'(x) = \frac{\cos x \frac{d}{dx} [\sin(x+a)] - \sin(x+a) \frac{d}{dx} (-\sin x)}{\cos^2 x} \dots (i)$$

Let $g(x) = \sin(x + a)$. Accordingly, $g(x + h) = \sin(x + h + a)$

By first principle,

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} [\sin(x+h+a) - \sin(x+a)]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[2\cos\left(\frac{x+h+a+x+a}{2}\right) \sin\left(\frac{x+h+a-x-a}{2}\right) \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[2\cos\left(\frac{2x + 2a + h}{2}\right) \sin\left(\frac{h}{2}\right) \right]$$

$$= \lim_{h \to 0} \left[\cos \left(\frac{2x + 2a + h}{h} \right) \left\{ \frac{\sin \left(\frac{h}{2} \right)}{\left(\frac{h}{2} \right)} \right\} \right]$$

$$= \lim_{h \to 0} \cos\left(\frac{2x + 2a + h}{h}\right) \cdot \lim_{h \to 0} \left\{\frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\} \qquad \left[\text{As } h \to 0 \Rightarrow \frac{h}{2} \to 0\right]$$

$$= \left(\cos\frac{2x + 2a}{2}\right) \times 1 \qquad \left[\lim_{h \to 0} \frac{\sin h}{h} = 1\right]$$

$$= \cos(x + a) \qquad \dots \text{(ii)}$$

From (i) and (ii), we obtain

$$f'(x) = \frac{\cos x \cos(x+a) + \sin x \sin(x+a)}{\cos^2 x}$$
$$= \frac{\cos(x+a-x)}{\cos^2 x}$$
$$= \frac{\cos a}{\cos^2 x}$$

Question 22: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): x^4 (5 sin x – 3 cos x)

Solution 22: Let $f(x) = x^4 (5 \sin x - 3 \cos x)$

By product rule,

By product rule,

$$f'(x) = x^4 \frac{d}{dx} (5\sin x - 3\cos x) + (5\sin x - 3\cos x) \frac{d}{dx} (x^4)$$

$$= x^4 \left[5\frac{d}{dx} (\sin x) - 3\frac{d}{dx} (\cos x) \right] + (5\sin x - 3\cos x) \frac{d}{dx} (x^4)$$

$$= x^4 \left[5\cos x - 3(-\sin x) \right] + (5\sin x - 3\cos x)(4x^3)$$

$$= x^3 \left[5x\cos x + 3x\sin x + 20\sin x - 12\cos x \right]$$

Question 23: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(x^2 + 1) \cos x$

Solution 23: Let $f(x) = (x^2 + 1) \cos x$

By product rule,

$$f'(x) = (x^2 + 1)\frac{d}{dx}(\cos x) + \cos x\frac{d}{dx}(x^2 + 1)$$

$$=(x^2+1)(-\sin x)+\cos x(2x)$$

$$= -x^2 \sin x - \sin x + 2x \cos x$$

Question 24: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(ax^2 + \sin x) (p + q \cos x)$

Solution 24: Let $f(x) = (ax^2 + \sin x) (p + q \cos x)$

By product rule,

$$f'(x) = (ax^2 + \sin x)\frac{d}{dx}(p + q\cos x) + (p + q\cos x)\frac{d}{dx}(ax^2 + \sin x)$$

$$=(ax^2 + \sin x)(-q\sin x) + (p + q\cos x)(2ax + \cos x)$$

$$= -q\sin x(ax^2 + \sin x) + (p + q\cos x)(2ax + \cos x)$$

Question 25: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(x + \cos x)(x - \tan x)$

Solution 25: Let
$$f(x) = (x + \cos x) (x - \tan x)$$

By product rule,

$$f'(x) = (x + \cos x)\frac{d}{dx}(x - \tan x) + (x - \tan x)\frac{d}{dx}(x + \cos x)$$

$$= (x + \cos x) \left[\frac{d}{dx} (x) - \frac{d}{dx} (\tan x) \right] + (x - \tan x)(1 - \sin x)$$

$$= (x + \cos x) \left[1 - \frac{d}{dx} (\tan x) \right] + (x - \tan x)(1 - \sin x) \qquad \dots (i)$$

Let $g(x) = \tan x$. Accordingly, $g(x + h) = \tan(x + h)$

By first principle,

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{\tan(x+h) - \tan(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x+h)}{\cos(x+h)} - \frac{\sin x}{\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x+h)\cos x - \sin x \cos(x+h)}{\cos x \cos(x+h)} \right]$$

$$= \frac{1}{\cos x} \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x+h-x)}{\cos(x+h)} \right]$$

$$= \frac{1}{\cos x} \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin h}{\cos(x+h)} \right]$$

$$= \frac{1}{\cos x} \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin (x + h - x)}{\cos (x + h)} \right]$$

$$= \frac{1}{\cos x} \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin h}{\cos (x + h)} \right]$$

$$= \frac{1}{\cos x} \left(\lim_{h \to 0} \frac{\sin h}{h} \right) \left(\lim_{h \to 0} \frac{1}{\cos (x + h)} \right)$$

$$= \frac{1}{\cos x} \cdot 1 \cdot \left(\frac{1}{\cos (x + 0)} \right)$$

$$= \frac{1}{\cos^2 x}$$

$$= \sec^2 x \qquad \dots \text{ (ii)}$$
Therefore, from (i) and (ii), We obtain

$$= \frac{1}{\cos x} \cdot 1 \cdot \left(\frac{1}{\cos(x+0)} \right)$$

$$=\frac{1}{\cos^2 x}$$

$$=\sec^2 x$$
 ... (ii)

Therefore, from (i) and (ii), We obtain

$$f'(x) = (x + \cos x)(1 - \sec^2 x) + (x - \tan x)(1 - \sin x)$$

$$=(x+\cos x)(-\tan^2 x)+(x-\tan x)(1-\sin x)$$

$$= -\tan^2 x(x + \cos x) + (x - \tan x)(1 - \sin x)$$

Question 26: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

Solution 26: Let
$$f(x) = \frac{4x + 5\sin x}{3x + 7\cos x}$$

By quotient rule,

$$f'(x) = \frac{(3x+7\cos x)\frac{d}{dx}(4x+5\sin x) - (4x+5\sin x)\frac{d}{dx}(3x+7\cos x)}{(3x+7\cos x)^2}$$

$$= \frac{(3x+7\cos x)\left[4\frac{d}{dx}(x) + 5\frac{d}{dx}(\sin x)\right] - (4x+5\sin x)\left[3\frac{d}{dx}(x) + 7\frac{d}{dx}(\cos x)\right]}{(3x+7\cos x)^2}$$

$$= \frac{(3x+7\cos x)\left[4x+5\cos x\right] - (4x+5\sin x)\left[3-7\sin x\right]}{(3x+7\cos x)^2}$$

$$= \frac{12x+15x\cos x + 28x\cos x + 35\cos^2 x - 12x + 28x\sin x - 15\sin x + 35(\cos^2 x + \sin^2 x)}{(3x+7\cos x)^2}$$

$$= \frac{15x\cos x + 28\cos x + 28x\sin x - 15\sin x + 35(\cos^2 x + \sin^2 x)}{(3x+7\cos x)^2}$$

$$= \frac{35+15x\cos x + 28\cos x + 28x\sin x - 15\sin x}{(3x+7\cos x)^2}$$

d, p, q, r and s are fixed non-zero constants and m and n are integers):
$$\frac{x^2 \cos\left(\frac{\pi}{4}\right)}{\sin x}$$

Solution 27: Let
$$f(x) = \frac{x^2 \cos\left(\frac{\pi}{4}\right)}{\sin x}$$

$$f'(x) = \cos\left(\frac{\pi}{4}\right) \left[\frac{\sin x \frac{d}{dx}(x^2) - x^2 \frac{d}{dx}(\sin x)}{\sin^2 x} \right]$$

$$=\cos\left(\frac{\pi}{4}\right)\left[\frac{\sin x(2x) - x^2(\cos x)}{\sin^2 x}\right]$$

$$=\frac{x\cos\frac{\pi}{4}[2\sin x - x\cos x]}{\sin^2 x}$$

Question 28: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{x}{1+\tan x}$

Solution 28: Let
$$f(x) = \frac{x}{1 + \tan x}$$

$$f'(x) = \frac{(1+\tan x)\frac{d}{dx}(x) - (x)\frac{d}{dx}(1+\tan x)}{(1+\tan x)^2}$$

$$= f'(x) = \frac{(1+\tan x) - x\frac{d}{dx}(1+\tan x)}{(1+\tan x)^2} \qquad \dots (i)$$

Let $g(x) = 1 + \tan x$. Accordingly, $g(x + h) = 1 + \tan(x+h)$. By first principle, $g'(x) = \lim \frac{g(x+h) - g(x)}{h}$

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \left\lceil \frac{1 + \tan(x+h) - 1 - \tan(x)}{h} \right\rceil$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x+h)}{\cos(x+h)} - \frac{\sin x}{\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x+h)\cos x - \sin x \cos x (x+h)}{\cos(x+h)\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x+h-x)}{\cos(x+h)\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sinh}{\cos(x+h)\cos x} \right]$$

$$= \left(\lim_{h \to 0} \frac{\sinh}{h} \right) \cdot \left(\lim_{h \to 0} \frac{1}{\cos(x+h)\cos x} \right)$$

$$= 1 \times \frac{1}{\cos^2} = \sec^2 x$$

$$\Rightarrow \frac{d}{dx} (1 + \tan^2 x) = \sec^2 x \qquad \dots (ii)$$

From (i) and (ii), we obtain

$$f'(x) = \frac{1 + \tan x - x \sec^2 x}{(1 + \tan x)^2}$$

Question 29: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $(x + \sec x)(x - \tan x)$

Solution 29: Let $f(x) = (x + \sec x) (x - \tan x)$

By product rule,

$$f(x) = (x + \sec x) \frac{d}{dx} (x - \tan x) + (x - \tan x) \frac{d}{dx} (x + \sec x)$$

$$= (x + \sec x) \left[\frac{d}{dx} (x) - \frac{d}{dx} \tan x \right] + (x - \tan x) \left[\frac{d}{dx} (x) - \frac{d}{dx} \sec x \right]$$

$$= f(x + \sec x) \left[1 - \frac{d}{dx} \tan x \right] + (x - \tan x) \left[1 + \frac{d}{dx} \sec x \right] \qquad \dots(i)$$

Let $f_1(x) = \tan x$, $f_2(x) = \sec x$

Accordingly, $f_1(x + h)$ -tan(x + h) and $f_2(x + h) = sec(x + h)$

$$f_{1}(x) = \lim_{h \to 0} \left(\frac{f_{1}(x+h) - f_{1}(x)}{h} \right)$$
$$= \lim_{h \to 0} \left[\frac{\tan(x+h) - \tan(x)}{h} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x+h)}{\cos(x+h)} - \frac{\sin x}{\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x+h)\cos x - \sin x \cos x(x+h)}{\cos(x+h)\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x+h-x)}{\cos(x+h)\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sinh}{\cos(x+h)\cos x} \right]$$

$$= \left(\lim_{h \to 0} \frac{\sinh}{h} \right) \cdot \left(\lim_{h \to 0} \frac{1}{\cos(x+h)\cos x} \right)$$

$$= 1 \times \frac{1}{\cos^2} = \sec^2 x$$

$$\Rightarrow \frac{d}{dx} (1 + \tan^2 x) = \sec^2 x \qquad \dots (ii)$$

$$f'_2(x) = \lim_{h \to 0} \left(\frac{f_2 + (x+h) - f_2(x)}{h} \right)$$

$$= \lim_{h \to 0} \left(\frac{\sec(x+h) - \sec(x)}{h} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{\cos x - \cos(x+h)}{\cos(x+h)\cos x} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left(\frac{\cos x - \cos(x+h)}{\cos(x+h)\cos x} \right)$$

$$= \frac{1}{\cos x} \lim_{h \to 0} \frac{1}{h} \left(\frac{-2\sin\left(\frac{x+x+h}{2}\right) \cdot \sin\left(\frac{x-x-h}{2}\right)}{\cos(x+h)} \right)$$

$$= \frac{1}{\cos x} \lim_{h \to 0} \frac{1}{h} \left(\frac{-2\sin\left(\frac{x+x+h}{2}\right) \cdot \sin\left(\frac{-h}{2}\right)}{\cos(x+h)} \right)$$

$$= \frac{1}{\cos x} \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin\left(\frac{2x+h}{2}\right) \left\{\frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}\right\}}{\cos(x+h)} \right]$$

$$\left\{ \lim_{h \to 0} \sin\left(\frac{2x+h}{2}\right) \right\} \left\{ \lim_{\substack{h \to 0 \\ h \to 0}} \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right\}$$

$$= \sec x \frac{\lim_{h \to 0} \cos(x+h)}{\lim_{h \to 0} \cos(x+h)}$$

$$= \sec x \cdot \frac{\sin x \cdot 1}{\cos x}$$

$$\Rightarrow \frac{d}{dx} \sec x = \sec x \tan x$$

From (i), (ii), and (iii), we obtain

$$f'(x) = (x + \sec x)(1 - \sec^2 x) + (x - \tan x)(1 + \sec x \tan x)$$

Question 30: Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\frac{x}{\sin^n x}$

Solution 30: Let
$$f(x) = \frac{x}{\sin^n x}$$

By quotient rule,

$$f'(x) = \frac{\sin^n x \frac{d}{dx} x - x \frac{d}{dx} \sin^n x}{\sin^{2n} x}$$

It can be easily shown that $\frac{d}{dx} \sin^n x = n \sin^{n-1} x \cos x$

Therefore,

$$f'(x) = \frac{\sin^n x \frac{d}{dx} x - x \frac{d}{dx} \sin^n x}{\sin^{2n} x}$$

$$= \frac{\sin^n x \cdot 1 - x(n \sin^{n-1} x \cos x)}{\sin^{2n} x}$$

$$= \frac{\sin^{n-1} x(\sin x - nx \cos x)}{\sin^{2n} x}$$

$$= \frac{\sin x - nx \cos x}{\sin^{n+1} x}$$

