In each of the Exercises 1 to 9 , find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

1. $x^{2} / 36+y^{2} / 16=1$

Solution:

Given:
The equation is $x^{2} / 36+y^{2} / 16=1$
Here, the denominator of $x^{2} / 36$ is greater than the denominator of $y^{2} / 16$.
So, the major axis is along the x -axis, while the minor axis is along the y -axis.
On comparing the given equation with $x^{2} / a^{2}+y^{2} / b^{2}=1$, we get
$\mathrm{a}=6$ and $\mathrm{b}=4$.
$c=\sqrt{ }\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
$=\sqrt{ }(36-16)$
$=\sqrt{ } 20$
$=2 \sqrt{ } 5$
Then,
The coordinates of the foci are $(2 \sqrt{ } 5,0)$ and $(-2 \sqrt{ } 5,0)$.
The coordinates of the vertices are $(6,0)$ and $(-6,0)$
Length of major axis $=2 \mathrm{a}=2(6)=12$
Length of minor axis $=2 \mathrm{~b}=2(4)=8$
Eccentricity, $\mathrm{e}^{\mathrm{c} / \mathrm{a}}=2 \sqrt{5} / 6=\sqrt{5 / 3}$
Length of latus rectum $=2 \mathrm{~b}^{2} / \mathrm{a}=(2 \times 16) / 6=16 / 3$

2. $x^{2} / 4+y^{2} / 25=1$

Solution:

Given:
The equation is $x^{2} / 4+y^{2} / 25=1$
Here, the denominator of $\mathrm{y}^{2} / 25$ is greater than the denominator of $\mathrm{x}^{2} / 4$.
So, the major axis is along the x -axis, while the minor axis is along the y -axis.
On comparing the given equation with $x^{2} / a^{2}+y^{2} / b^{2}=1$, we get
$\mathrm{a}=5$ and $\mathrm{b}=2$.
$c=\sqrt{ }\left(a^{2}-b^{2}\right)$
$=\sqrt{ }(25-4)$
$=\sqrt{ } 21$
Then,
The coordinates of the foci are $(0, \sqrt{ } 21)$ and $(0,-\sqrt{ } 21)$.

The coordinates of the vertices are $(0,5)$ and $(0,-5)$
Length of major axis $=2 \mathrm{a}=2(5)=10$
Length of minor axis $=2 \mathrm{~b}=2(2)=4$
Eccentricity, $\mathrm{e}^{\mathrm{c} / \mathrm{a}}=\sqrt{ } 21 / 5$
Length of latus rectum $=2 \mathrm{~b}^{2} / \mathrm{a}=\left(2 \times 2^{2}\right) / 5=(2 \times 4) / 5=8 / 5$
3. $x^{2} / 16+y^{2} / 9=1$

Solution:

Given:
The equation is $x^{2} / 16+y^{2} / 9=1$ or $x^{2} / 4^{2}+y^{2} / 3^{2}=1$
Here, the denominator of $x^{2} / 16$ is greater than the denominator of $y^{2} / 9$.
So, the major axis is along the x -axis, while the minor axis is along the y -axis.
On comparing the given equation with $x^{2} / a^{2}+y^{2} / b^{2}=1$, we get
$\mathrm{a}=4$ and $\mathrm{b}=3$.

$$
\begin{aligned}
\mathrm{c} & =\sqrt{ }\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \\
& =\sqrt{ }(16-9) \\
& =\sqrt{ } 7
\end{aligned}
$$

Then,
The coordinates of the foci are $(\sqrt{ } 7,0)$ and $(-\sqrt{ } 7,0)$.
The coordinates of the vertices are $(4,0)$ and $(-4,0)$
Length of major axis $=2 \mathrm{a}=2(4)=8$
Length of minor axis $=2 \mathrm{~b}=2(3)=6$
Eccentricity, $e^{c / a}=\sqrt{7 / 4}$
Length of latus rectum $=2 b^{2} / \mathrm{a}=\left(2 \times 3^{2}\right) / 4=(2 \times 9) / 4=18 / 4=9 / 2$

4. $x^{2} / 25+y^{2} / 100=1$

Solution:

Given:
The equation is $x^{2} / 25+y^{2} / 100=1$
Here, the denominator of $y^{2} / 100$ is greater than the denominator of $x^{2} / 25$. So, the major axis is along the y-axis, while the minor axis is along the x -axis. On comparing the given equation with $x^{2} / b^{2}+y^{2} / a^{2}=1$, we get
$\mathrm{b}=5$ and $\mathrm{a}=10$.
$\mathrm{c}=\sqrt{ }\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
$=\sqrt{ }(100-25)$
$=\sqrt{ } 75$
$=5 \sqrt{ } 3$
Then,
The coordinates of the foci are $(0,5 \sqrt{ } 3)$ and $(0,-5 \sqrt{3})$.

The coordinates of the vertices are $(0, \sqrt{ } 10)$ and $(0,-\sqrt{ } 10)$
Length of major axis $=2 \mathrm{a}=2(10)=20$
Length of minor axis $=2 b=2(5)=10$
Eccentricity, $\mathrm{e}^{\mathrm{c} / \mathrm{a}}=5 \sqrt{ } 3 / 10=\sqrt{ } 3 / 2$
Length of latus rectum $=2 \mathrm{~b}^{2} / \mathrm{a}=\left(2 \times 5^{2}\right) / 10=(2 \times 25) / 10=5$
5. $x^{2} / 49+y^{2} / 36=1$

Solution:

Given:
The equation is $x^{2} / 49+y^{2} / 36=1$
Here, the denominator of $x^{2} / 49$ is greater than the denominator of $y^{2} / 36$.
So, the major axis is along the x -axis, while the minor axis is along the y -axis.
On comparing the given equation with $x^{2} / a^{2}+y^{2} / b^{2}=1$, we get
$\mathrm{b}=6$ and $\mathrm{a}=7$
$\mathrm{c}=\sqrt{ }\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
$=\sqrt{ }(49-36)$
$=\sqrt{ } 13$
Then,
The coordinates of the foci are $(\sqrt{ } 13,0)$ and $(-\sqrt{ } 3,0)$.
The coordinates of the vertices are $(7,0)$ and $(-7,0)$
Length of major axis $=2 \mathrm{a}=2(7)=14$
Length of minor axis $=2 b=2(6)=12$
Eccentricity, $\mathrm{e}^{\mathrm{c/a}}=\sqrt{ } 13 / 7$
Length of latus rectum $=2 \mathrm{~b}^{2} / \mathrm{a}=\left(2 \times 6^{2}\right) / 7=(2 \times 36) / 7=72 / 7$

6. $x^{2} / 100+y^{2} / 400=1$

Solution:

Given:
The equation is $x^{2} / 100+y^{2} / 400=1$
Here, the denominator of $y^{2} / 400$ is greater than the denominator of $x^{2} / 100$. So, the major axis is along the y-axis, while the minor axis is along the x-axis. On comparing the given equation with $x^{2} / b^{2}+y^{2} / a^{2}=1$, we get
$\mathrm{b}=10$ and $\mathrm{a}=20$.
$\mathrm{c}=\sqrt{ }\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
$=\sqrt{ }(400-100)$
$=\sqrt{ } 300$
$=10 \sqrt{ } 3$
Then,
The coordinates of the foci are $(0,10 \sqrt{ } 3)$ and $(0,-10 \sqrt{3})$.

The coordinates of the vertices are $(0,20)$ and $(0,-20)$
Length of major axis $=2 \mathrm{a}=2(20)=40$
Length of minor axis $=2 \mathrm{~b}=2(10)=20$
Eccentricity, $\mathrm{e}^{\mathrm{c} / \mathrm{a}}=10 \sqrt{3} / 20=\sqrt{3} / 2$
Length of latus rectum $=2 \mathrm{~b}^{2} / \mathrm{a}=\left(2 \times 10^{2}\right) / 20=(2 \times 100) / 20=10$
7. $36 x^{2}+4 y^{2}=144$

Solution:

Given:
The equation is $36 x^{2}+4 y^{2}=144$ or $x^{2} / 4+y^{2} / 36=1$ or $x^{2} / 2^{2}+y^{2} / 6^{2}=1$
Here, the denominator of $y^{2} / 6^{2}$ is greater than the denominator of $x^{2} / 2^{2}$.
So, the major axis is along the y-axis, while the minor axis is along the x -axis.
On comparing the given equation with $x^{2} / b^{2}+y^{2} / a^{2}=1$, we get
$\mathrm{b}=2$ and $\mathrm{a}=6$.
$\mathrm{c}=\sqrt{ }\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
$=\sqrt{ }(36-4)$
$=\sqrt{ } 32$
$=4 \sqrt{ } 2$
Then,
The coordinates of the foci are $(0,4 \sqrt{ } 2)$ and $(0,-4 \sqrt{ } 2)$.
The coordinates of the vertices are $(0,6)$ and $(0,-6)$
Length of major axis $=2 \mathrm{a}=2(6)=12$
Length of minor axis $=2 \mathrm{~b}=2(2)=4$
Eccentricity, $\mathrm{e}^{\mathrm{c/a}}=4 \sqrt{ } 2 / 6=2 \sqrt{ } 2 / 3$
Length of latus rectum $=2 \mathrm{~b}^{2} / \mathrm{a}=\left(2 \times 2^{2}\right) / 6=(2 \times 4) / 6=4 / 3$

8. $16 x^{2}+y^{2}=16$

Solution:

Given:
The equation is $16 x^{2}+y^{2}=16$ or $x^{2} / 1+y^{2} / 16=1$ or $x^{2} / 1^{2}+y^{2} / 4^{2}=1$
Here, the denominator of $y^{2} / 4^{2}$ is greater than the denominator of $x^{2} / 1^{2}$.
So, the major axis is along the y -axis, while the minor axis is along the x -axis.
On comparing the given equation with $x^{2} / b^{2}+y^{2} / a^{2}=1$, we get
$\mathrm{b}=1$ and $\mathrm{a}=4$.
$c=\sqrt{ }\left(a^{2}-b^{2}\right)$
$=\sqrt{ }(16-1)$
$=\sqrt{ } 15$
Then,
The coordinates of the foci are $(0, \sqrt{ } 15)$ and $(0,-\sqrt{ } 15)$.

The coordinates of the vertices are $(0,4)$ and $(0,-4)$
Length of major axis $=2 \mathrm{a}=2(4)=8$
Length of minor axis $=2 \mathrm{~b}=2(1)=2$
Eccentricity, $\mathrm{e}^{\mathrm{c/a}}=\sqrt{ } 15 / 4$
Length of latus rectum $=2 \mathrm{~b}^{2} / \mathrm{a}=\left(2 \times 1^{2}\right) / 4=2 / 4=1 / 2$
9. $4 x^{2}+9 y^{2}=36$

Solution:

Given:
The equation is $4 x^{2}+9 y^{2}=36$ or $x^{2} / 9+y^{2} / 4=1$ or $x^{2} / 3^{2}+y^{2} / 2^{2}=1$
Here, the denominator of $x^{2} / 3^{2}$ is greater than the denominator of $y^{2} / 2^{2}$.
So, the major axis is along the x -axis, while the minor axis is along the y -axis.
On comparing the given equation with $x^{2} / a^{2}+y^{2} / b^{2}=1$, we get
$\mathrm{a}=3$ and $\mathrm{b}=2$.

$$
\begin{aligned}
c & =\sqrt{ }\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right) \\
& =\sqrt{ }(9-4) \\
& =\sqrt{ } 5
\end{aligned}
$$

Then,
The coordinates of the foci are $(\sqrt{ } 5,0)$ and $(-\sqrt{ } 5,0)$.
The coordinates of the vertices are $(3,0)$ and $(-3,0)$
Length of major axis $=2 \mathrm{a}=2(3)=6$
Length of minor axis $=2 \mathrm{~b}=2$ (2) $=4$
Eccentricity, $\mathrm{e}^{\mathrm{c} / \mathrm{a}}=\sqrt{5 / 3}$
Length of latus rectum $=2 \mathrm{~b}^{2} / \mathrm{a}=\left(2 \times 2^{2}\right) / 3=(2 \times 4) / 3=8 / 3$
In each of the following Exercises 10 to 20, find the equation for the ellipse that satisfies the given conditions:

10. Vertices $(\pm 5,0)$, foci $(\pm 4,0)$

Solution:

Given:
Vertices $(\pm 5,0)$ and foci $(\pm 4,0)$
Here, the vertices are on the x -axis.
So, the equation of the ellipse will be of the form $x^{2} / a^{2}+y^{2} / b^{2}=1$, where ' a ' is the semimajor axis.
Then, $\mathrm{a}=5$ and $\mathrm{c}=4$.
It is known that $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$.
So, $5^{2}=\mathrm{b}^{2}+4^{2}$
$25=b^{2}+16$
$b^{2}=25-16$
$b=\sqrt{ } 9$
$=3$
\therefore The equation of the ellipse is $\mathrm{x}^{2} / 5^{2}+\mathrm{y}^{2} / 3^{2}=1$ or $\mathrm{x}^{2} / 25+\mathrm{y}^{2} / 9=1$

11. Vertices $(0, \pm 13)$, foci $(0, \pm 5)$

Solution:

Given:
Vertices $(0, \pm 13)$ and foci $(0, \pm 5)$
Here, the vertices are on the y-axis.
So, the equation of the ellipse will be of the form $x^{2} / b^{2}+y^{2} / a^{2}=1$, where ' a ' is the semimajor axis.
Then, $\mathrm{a}=13$ and $\mathrm{c}=5$.
It is known that $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$.
$13^{2}=b^{2}+5^{2}$
$169=b^{2}+15$
$b^{2}=169-125$
$b=\sqrt{ } 144$ $=12$
\therefore The equation of the ellipse is $\mathrm{x}^{2} / 12^{2}+\mathrm{y}^{2} / 13^{2}=1$ or $\mathrm{x}^{2} / 144+\mathrm{y}^{2} / 169=1$

12. Vertices $(\pm 6,0)$, foci $(\pm 4,0)$

Solution:

Given:
Vertices $(\pm 6,0)$ and foci $(\pm 4,0)$
Here, the vertices are on the x -axis.
So, the equation of the ellipse will be of the form $x^{2} / a^{2}+y^{2} / b^{2}=1$, where ' a ' is the semimajor axis.
Then, $\mathrm{a}=6$ and $\mathrm{c}=4$.
It is known that $a^{2}=b^{2}+c^{2}$.
$6^{2}=b^{2}+4^{2}$
$36=b^{2}+16$
$b^{2}=36-16$
$b=\sqrt{ } 20$
\therefore The equation of the ellipse is $\mathrm{x}^{2} / 6^{2}+\mathrm{y}^{2} /(\sqrt{ } 20)^{2}=1$ or $\mathrm{x}^{2} / 36+\mathrm{y}^{2} / 20=1$

13. Ends of major axis $(\pm 3,0)$, ends of minor axis $(0, \pm 2)$
 Solution:

Given:

Ends of major axis $(\pm 3,0)$ and ends of minor axis $(0, \pm 2)$
Here, the major axis is along the x -axis.
So, the equation of the ellipse will be of the form $x^{2} / a^{2}+y^{2} / b^{2}=1$, where ' a ' is the semimajor axis.
Then, $\mathrm{a}=3$ and $\mathrm{b}=2$.
\therefore The equation for the ellipse $\mathrm{x}^{2} / 3^{2}+\mathrm{y}^{2} / 2^{2}=1$ or $\mathrm{x}^{2} / 9+\mathrm{y}^{2} / 4=1$

14. Ends of major axis $(0, \pm \sqrt{ } 5)$, ends of minor axis $(\pm 1,0)$

Solution:

Given:
Ends of major axis ($0, \pm \sqrt{ } 5$) and ends of minor axis $(\pm 1,0)$
Here, the major axis is along the y-axis.
So, the equation of the ellipse will be of the form $x^{2} / b^{2}+y^{2} / a^{2}=1$, where ' a ' is the semimajor axis.
Then, $a=\sqrt{5}$ and $b=1$.
\therefore The equation for the ellipse $\mathrm{x}^{2} / 1^{2}+\mathrm{y}^{2} /(\sqrt{ } 5)^{2}=1$ or $\mathrm{x}^{2} / 1+\mathrm{y}^{2} / 5=1$

15. Length of major axis 26 , foci $(\pm 5,0)$

Solution:

Given:
Length of major axis is 26 and foci $(\pm 5,0)$
Since the foci are on the y -axis, the major axis is along the x -axis.
So, the equation of the ellipse will be of the form $x^{2} / a^{2}+y^{2} / b^{2}=1$, where ' a ' is the semimajor axis.
Then, $2 \mathrm{a}=26$

$$
\mathrm{a}=13 \text { and } \mathrm{c}=5 \text {. }
$$

It is known that $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$.
$13^{2}=b^{2}+5^{2}$
$169=b^{2}+25$
$b^{2}=169-25$
$\mathrm{b}=\sqrt{ } 144$
$=12$
\therefore The equation of the ellipse is $\mathrm{x}^{2} / 13^{2}+\mathrm{y}^{2} / 12^{2}=1$ or $\mathrm{x}^{2} / 169+\mathrm{y}^{2} / 144=1$
16. Length of minor axis 16 , foci $(0, \pm 6)$.

Solution:

Given:
Length of minor axis is 16 and foci $(0, \pm 6)$.
Since the foci are on the y-axis, the major axis is along the y-axis.

So, the equation of the ellipse will be of the form $x^{2} / b^{2}+y^{2} / a^{2}=1$, where ' a ' is the semimajor axis.
Then, $2 \mathrm{~b}=16$

$$
\mathrm{b}=8 \text { and } \mathrm{c}=6 \text {. }
$$

It is known that $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$.
$\mathrm{a}^{2}=8^{2}+6^{2}$
$=64+36$
$=100$
$a=\sqrt{ } 100$
$=10$
\therefore The equation of the ellipse is $\mathrm{x}^{2} / 8^{2}+\mathrm{y}^{2} / 10^{2}=1$ or $\mathrm{x}^{2} / 64+\mathrm{y}^{2} / 100=1$

17. Foci $(\pm 3,0), a=4$

Solution:

Given:
Foci $(\pm 3,0)$ and $\mathrm{a}=4$
Since the foci are on the x -axis, the major axis is along the x -axis.
So, the equation of the ellipse will be of the form $x^{2} / a^{2}+y^{2} / b^{2}=1$, where ' a ' is the semimajor axis.
Then, $\mathrm{c}=3$ and $\mathrm{a}=4$.
It is known that $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$.

$$
\begin{aligned}
\mathrm{a}^{2} & =8^{2}+6^{2} \\
& =64+36 \\
& =100 \\
16 & =b^{2}+9 \\
\mathrm{~b}^{2} & =16-9 \\
& =7
\end{aligned}
$$

\therefore The equation of the ellipse is $\mathrm{x}^{2} / 16+\mathrm{y}^{2} / 7=1$

18. $b=3, c=4$, centre at the origin; foci on the x axis. Solution:

Given:
$b=3, c=4$, centre at the origin and foci on the x axis.
Since the foci are on the x -axis, the major axis is along the x -axis.
So, the equation of the ellipse will be of the form $x^{2} / a^{2}+y^{2} / b^{2}=1$, where ' a ' is the semimajor axis.
Then, $\mathrm{b}=3$ and $\mathrm{c}=4$.
It is known that $\mathrm{a}^{2}=\mathrm{b}^{2}+\mathrm{c}^{2}$.
$a^{2}=3^{2}+4^{2}$
$=9+16$
$=25$
$a=\sqrt{ } 25$
$=5$
\therefore The equation of the ellipse is $\mathrm{x}^{2} / 5^{2}+\mathrm{y}^{2} / 3^{2}$ or $\mathrm{x}^{2} / 25+\mathrm{y}^{2} / 9=1$
19. Centre at $(0,0)$, major axis on the y-axis and passes through the points $(3,2)$ and $(1,6)$.

Solution:

Given:
Centre at $(0,0)$, major axis on the y-axis and passes through the points $(3,2)$ and $(1,6)$.
Since the centre is at $(0,0)$ and the major axis is on the y - axis, the equation of the ellipse will be of the form $x^{2} / b^{2}+y^{2} / a^{2}=1$, where ' a ' is the semi-major axis.
The ellipse passes through points $(3,2)$ and $(1,6)$.
So, by putting the values $x=3$ and $y=2$, we get,
$3^{2} / b^{2}+2^{2} / a^{2}=1$
$9 / b^{2}+4 / a^{2} \ldots$ (1)
And by putting the values $x=1$ and $y=6$, we get,
$1^{1} / b^{2}+6^{2} / a^{2}=1$
$1 / b^{2}+36 / a^{2}=1$
On solving equation (1) and (2), we get
$\mathrm{b}^{2}=10$ and $\mathrm{a}^{2}=40$.
\therefore The equation of the ellipse is $\mathrm{x}^{2} / 10+\mathrm{y}^{2} / 40=1$ or $4 \mathrm{x}^{2}+\mathrm{y}^{2}=40$

20. Major axis on the x-axis and passes through the points $(4,3)$ and $(6,2)$.

Solution:
Given:
Major axis on the x-axis and passes through the points $(4,3)$ and $(6,2)$.
Since the major axis is on the x-axis, the equation of the ellipse will be the form
$x^{2} / a^{2}+y^{2} / b^{2}=1 \ldots .(1)$ [Where ' a ' is the semi-major axis.]
The ellipse passes through points $(4,3)$ and $(6,2)$.
So by putting the values $x=4$ and $y=3$ in equation (1), we get,
$16 / a^{2}+9 / b^{2}=1 \ldots$. (2)
Putting, $x=6$ and $y=2$ in equation (1), we get,
$36 / a^{2}+4 / b^{2}=1 \ldots(3)$
From equation (2)
$16 / a^{2}=1-9 / b^{2}$
$1 / \mathrm{a}^{2}=\left(1 / 16\left(1-9 / b^{2}\right)\right) \ldots(4)$

Substituting the value of $1 / \mathrm{a}^{2}$ in equation (3) we get,
$36 / a^{2}+4 / b^{2}=1$
$36\left(1 / \mathrm{a}^{2}\right)+4 / \mathrm{b}^{2}=1$
$36\left[1 / 16\left(1-9 / b^{2}\right)\right]+4 / b^{2}=1$
$36 / 16\left(1-9 / b^{2}\right)+4 / b^{2}=1$
$9 / 4\left(1-9 / b^{2}\right)+4 / b^{2}=1$
$9 / 4-81 / 4 b^{2}+4 / b^{2}=1$
$-81 / 4 b^{2}+4 / b^{2}=1-9 / 4$
$(-81+16) / 4 b^{2}=(4-9) / 4$
$-65 / 4 b^{2}=-5 / 4$
$-5 / 4\left(13 / b^{2}\right)=-5 / 4$
$13 / b^{2}=1$
$1 / b^{2}=1 / 13$
$b^{2}=13$
Now substitute the value of b^{2} in equation (4) we get, $1 / \mathrm{a}^{2}=1 / 16\left(1-9 / \mathrm{b}^{2}\right)$
$=1 / 16(1-9 / 13)$
$=1 / 16((13-9) / 13)$
$=1 / 16(4 / 13)$
$=1 / 52$
$\mathrm{a}^{2}=52$
Equation of ellipse is $x^{2} / a^{2}+y^{2} / b^{2}=1$
By substituting the values of a^{2} and b^{2} in above equation we get, $\mathrm{x}^{2} / 52+\mathrm{y}^{2} / 13=1$

