In each of the following Exercise 1 to 5, find the equation of the circle with

1. Centre (0,2) and radius 2

Solution:
Given:
Centre (0,2) and radius 2
Let us consider the equation of a circle with centre (h, k) and
Radius r is given as $(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$
So, centre (h, k) $=(0,2)$ and radius $(\mathrm{r})=2$
The equation of the circle is
$(x-0)^{2}+(y-2)^{2}=2^{2}$
$x^{2}+y^{2}+4-4 y=4$
$x^{2}+y^{2}-4 y=0$
\therefore The equation of the circle is $\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{y}=0$

2. Centre $(-2,3)$ and radius 4

Solution:

Given:
Centre (-2, 3) and radius 4
Let us consider the equation of a circle with centre (h, k) and
Radius r is given as $(x-h)^{2}+(y-k)^{2}=r^{2}$
So, centre (h, k) $=(-2,3)$ and radius $(r)=4$
The equation of the circle is
$(x+2)^{2}+(y-3)^{2}=(4)^{2}$
$x^{2}+4 x+4+y^{2}-6 y+9=16$
$x^{2}+y^{2}+4 x-6 y-3=0$
\therefore The equation of the circle is $\mathrm{x}^{2}+\mathrm{y}^{2}+4 \mathrm{x}-6 \mathrm{y}-3=0$
3. Centre ($1 / 2,1 / 4$) and radius ($1 / 12$)

Solution:

Given:
Centre ($1 / 2,1 / 4$) and radius $1 / 12$
Let us consider the equation of a circle with centre (h, k) and
Radius r is given as $(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$
So, centre $(\mathrm{h}, \mathrm{k})=(1 / 2,1 / 4)$ and radius $(\mathrm{r})=1 / 12$
The equation of the circle is
$(x-1 / 2)^{2}+(y-1 / 4)^{2}=(1 / 12)^{2}$
$x^{2}-x+1 / 4+y^{2}-y / 2+1 / 16=1 / 144$
$x^{2}-x+1 / 4+y^{2}-y / 2+1 / 16=1 / 144$
$144 x^{2}-144 x+36+144 y^{2}-72 y+9-1=0$
$144 x^{2}-144 x+144 y^{2}-72 y+44=0$
$36 x^{2}+36 x+36 y^{2}-18 y+11=0$
$36 x^{2}+36 y^{2}-36 x-18 y+11=0$
\therefore The equation of the circle is $36 x^{2}+36 y^{2}-36 x-18 y+11=0$

4. Centre $(1,1)$ and radius $\sqrt{ } 2$

Solution:

Given:
Centre $(1,1)$ and radius $\sqrt{ } 2$
Let us consider the equation of a circle with centre (h, k) and
Radius r is given as $(x-h)^{2}+(y-k)^{2}=r^{2}$
So, centre $(\mathrm{h}, \mathrm{k})=(1,1)$ and radius $(\mathrm{r})=\sqrt{ } 2$
The equation of the circle is
$(\mathrm{x}-1)^{2}+(\mathrm{y}-1)^{2}=(\sqrt{ } 2)^{2}$
$x^{2}-2 x+1+y^{2}-2 y+1=2$
$x^{2}+y^{2}-2 x-2 y=0$
\therefore The equation of the circle is $x^{2}+y^{2}-2 x-2 y=0$
5. Centre ($-\mathbf{a},-\mathbf{b}$) and radius $\sqrt{ }\left(\mathbf{a}^{2}-\mathbf{b}^{2}\right)$

Solution:

Given:
Centre ($-\mathrm{a},-\mathrm{b}$) and radius $\sqrt{ }\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
Let us consider the equation of a circle with centre (h, k) and Radius r is given as $(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$
So, centre $(\mathrm{h}, \mathrm{k})=(-\mathrm{a},-\mathrm{b})$ and radius $(\mathrm{r})=\sqrt{ }\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
The equation of the circle is
$(x+a)^{2}+(y+b)^{2}=\left(\sqrt{ }\left(a^{2}-b^{2}\right)^{2}\right)$
$x^{2}+2 a x+a^{2}+y^{2}+2 b y+b^{2}=a^{2}-b^{2}$
$x^{2}+y^{2}+2 a x+2 b y+2 b^{2}=0$
\therefore The equation of the circle is $\mathrm{x}^{2}+\mathrm{y}^{2}+2 \mathrm{ax}+2 \mathrm{by}+2 \mathrm{~b}^{2}=0$
In each of the following Exercise 6 to 9 , find the centre and radius of the circles.
6. $(x+5)^{2}+(y-3)^{2}=36$

Solution:

Given:
The equation of the given circle is $(x+5)^{2}+(y-3)^{2}=36$
$(x-(-5))^{2}+(y-3)^{2}=6^{2}\left[\right.$ which is of the form $\left.(x-h)^{2}+(y-k)^{2}=r^{2}\right]$
Where, $h=-5, k=3$ and $r=6$
\therefore The centre of the given circle is $(-5,3)$ and its radius is 6 .
7. $x^{2}+y^{2}-4 x-8 y-45=0$

Solution:

Given:
The equation of the given circle is $x^{2}+y^{2}-4 x-8 y-45=0$.
$x^{2}+y^{2}-4 x-8 y-45=0$
$\left(\mathrm{x}^{2}-4 \mathrm{x}\right)+\left(\mathrm{y}^{2}-8 \mathrm{y}\right)=45$
$\left(\mathrm{x}^{2}-2(\mathrm{x})(2)+2^{2}\right)+\left(\mathrm{y}^{2}-2(\mathrm{y})(4)+4^{2}\right)-4-16=45$
$(x-2)^{2}+(y-4)^{2}=65$
$(x-2)^{2}+(y-4)^{2}=(\sqrt{65})^{2}\left[\right.$ which is form $\left.(x-h)^{2}+(y-k)^{2}=r^{2}\right]$
Where $h=2, K=4$ and $r=\sqrt{ } 65$
\therefore The centre of the given circle is $(2,4)$ and its radius is $\sqrt{65}$.
8. $x^{2}+y^{2}-8 x+10 y-12=0$

Solution:

Given:
The equation of the given circle is $x^{2}+y^{2}-8 x+10 y-12=0$.
$x^{2}+y^{2}-8 x+10 y-12=0$
$\left(x^{2}-8 x\right)+\left(y^{2}+10 y\right)=12$
$\left(\mathrm{x}^{2}-2(\mathrm{x})(4)+4^{2}\right)+\left(\mathrm{y}^{2}-2(\mathrm{y})(5)+5^{2}\right)-16-25=12$
$(x-4)^{2}+(y+5)^{2}=53$
$(x-4)^{2}+(y-(-5))^{2}=(\sqrt{53})^{2}\left[\right.$ which is form $\left.(x-h)^{2}+(y-k)^{2}=r^{2}\right]$
Where $h=4, K=-5$ and $r=\sqrt{53}$
\therefore The centre of the given circle is $(4,-5)$ and its radius is $\sqrt{ } 53$.
9. $2 x^{2}+2 y^{2}-x=0$

Solution:

The equation of the given of the circle is $2 x^{2}+2 y^{2}-x=0$.
$2 x^{2}+2 y^{2}-x=0$
$\left(2 x^{2}+x\right)+2 y^{2}=0$
$\left(x^{2}-2(x)(1 / 4)+(1 / 4)^{2}\right)+y^{2}-(1 / 4)^{2}=0$
$(x-1 / 4)^{2}+(y-0)^{2}=(1 / 4)^{2}\left[\right.$ which is form $\left.(x-h)^{2}+(y-k)^{2}=r^{2}\right]$
Where, $h=1 / 4, K=0$, and $r=1 / 4$
\therefore The center of the given circle is $(1 / 4,0)$ and its radius is $1 / 4$.
10. Find the equation of the circle passing through the points $(4,1)$ and $(6,5)$ and whose centre is on the line $4 x+y=16$.

Solution:

Let us consider the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$
We know that the circle passes through points $(4,1)$ and $(6,5)$
So,
$(4-h)^{2}+(1-k)^{2}=r^{2}$ \qquad
$(6-h)^{2}+(5-k)^{2}=r^{2}$
Since, the centre (h, k) of the circle lies on line $4 x+y=16$,
$4 \mathrm{~h}+\mathrm{k}=16$.
From the equation (1) and (2), we obtain
$(4-h)^{2}+(1-k)^{2}=(6-h)^{2}+(5-k)^{2}$
$16-8 \mathrm{~h}+\mathrm{h}^{2}+1-2 \mathrm{k}+\mathrm{k}^{2}=36-12 \mathrm{~h}+\mathrm{h}^{2}+15-10 \mathrm{k}+\mathrm{k}^{2}$
$16-8 h+1-2 k+12 h-25-10 k$
$4 \mathrm{~h}+8 \mathrm{k}=44$
$\mathrm{h}+2 \mathrm{k}=11$.
On solving equations (3) and (4), we obtain $\mathrm{h}=3$ and $\mathrm{k}=4$.
On substituting the values of h and k in equation (1), we obtain
$(4-3)^{2}+(1-4)^{2}=r^{2}$
$(1)^{2}+(-3)^{2}=r^{2}$
$1+9=\mathrm{r}^{2}$
$r=\sqrt{ } 10$
so now, $(x-3)^{2}+(y-4)^{2}=(\sqrt{ } 10)^{2}$
$x^{2}-6 x+9+y^{2}-8 y+16=10$
$x^{2}+y^{2}-6 x-8 y+15=0$
\therefore The equation of the required circle is $x^{2}+y^{2}-6 x-8 y+15=0$
11. Find the equation of the circle passing through the points $(2,3)$ and $(-1,1)$ and whose centre is on the line $x-3 y-11=0$.

Solution:

Let us consider the equation of the required circle be $(\mathrm{x}-\mathrm{h})^{2}+(\mathrm{y}-\mathrm{k})^{2}=\mathrm{r}^{2}$
We know that the circle passes through points $(2,3)$ and $(-1,1)$.
$(2-h)^{2}+(3-k)^{2}=r^{2}$
$(-1-h)^{2}+(1-k)^{2}=r^{2}$
Since, the centre (h, k) of the circle lies on line $\mathrm{x}-3 \mathrm{y}-11=0$,
$\mathrm{h}-3 \mathrm{k}=11$ (3)

From the equation (1) and (2), we obtain
$(2-h)^{2}+(3-k)^{2}=(-1-h)^{2}+(1-k)^{2}$
$4-4 \mathrm{~h}+\mathrm{h}^{2}+9-6 \mathrm{k}+\mathrm{k}^{2}=1+2 \mathrm{~h}+\mathrm{h}^{2}+1-2 \mathrm{k}+\mathrm{k}^{2}$
$4-4 h+9-6 k=1+2 h+1-2 k$
$6 \mathrm{~h}+4 \mathrm{k}=11$
Now let us multiply equation (3) by 6 and subtract it from equation (4) to get,
$6 h+4 k-6(h-3 k)=11-66$
$6 \mathrm{~h}+4 \mathrm{k}-6 \mathrm{~h}+18 \mathrm{k}=11-66$
$22 \mathrm{k}=-55$
$\mathrm{K}=-5 / 2$
Substitute this value of K in equation (4) to get,
$6 h+4(-5 / 2)=11$
$6 \mathrm{~h}-10=11$
$6 \mathrm{~h}=21$
$\mathrm{h}=21 / 6$
$\mathrm{h}=7 / 2$
We obtain $\mathrm{h}=7 / 2$ and $\mathrm{k}=-5 / 2$
On substituting the values of h and k in equation (1), we get
$(2-7 / 2)^{2}+(3+5 / 2)^{2}=r^{2}$
$[(4-7) / 2]^{2}+[(6+5) / 2]^{2}=r^{2}$
$(-3 / 2)^{2}+(11 / 2)^{2}=r^{2}$
$9 / 4+121 / 4=r^{2}$
$130 / 4=r^{2}$
The equation of the required circle is
$(x-7 / 2)^{2}+(y+5 / 2)^{2}=130 / 4$
$[(2 x-7) / 2]^{2}+[(2 y+5) / 2]^{2}=130 / 4$
$4 x^{2}-28 x+49+4 y^{2}+20 y+25=130$
$4 x^{2}+4 y^{2}-28 x+20 y-56=0$
$4\left(x^{2}+y^{2}-7 x+5 y-14\right)=0$
$x^{2}+y^{2}-7 x+5 y-14=0$
\therefore The equation of the required circle is $\mathrm{x}^{2}+\mathrm{y}^{2}-7 \mathrm{x}+5 \mathrm{y}-14=0$

12. Find the equation of the circle with radius 5 whose centre lies on x-axis and passes through the point $(2,3)$.

Solution:

Let us consider the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$
We know that the radius of the circle is 5 and its centre lies on the x -axis, $\mathrm{k}=0$ and $\mathrm{r}=5$.
So now, the equation of the circle is $(\mathrm{x}-\mathrm{h})^{2}+\mathrm{y}^{2}=25$.
It is given that the circle passes through the point $(2,3)$ so the point will satisfy the equation of the circle.
$(2-\mathrm{h})^{2}+3^{2}=25$
$(2-\mathrm{h})^{2}=25-9$
$(2-h)^{2}=16$
$2-\mathrm{h}= \pm \sqrt{ } 16= \pm 4$
If $2-\mathrm{h}=4$, then $\mathrm{h}=-2$
If $2-\mathrm{h}=-4$, then $\mathrm{h}=6$
Then, when $\mathrm{h}=-2$, the equation of the circle becomes
$(x+2)^{2}+y^{2}=25$
$x^{2}+12 x+36+y^{2}=25$
$x^{2}+y^{2}+4 x-21=0$
When $h=6$, the equation of the circle becomes
$(x-6)^{2}+y^{2}=25$
$\mathrm{x}^{2}-12 \mathrm{x}+36+\mathrm{y}^{2}=25$
$x^{2}+y^{2}-12 x+11=0$
\therefore The equation of the required circle is $\mathrm{x}^{2}+\mathrm{y}^{2}+4 \mathrm{x}-21=0$ and $\mathrm{x}^{2}+\mathrm{y}^{2}-12 \mathrm{x}+11=0$

13. Find the equation of the circle passing through $(0,0)$ and making intercepts a and b on the coordinate axes.

Solution:

Let us consider the equation of the required circle be $(x-h)^{2}+(y-k)^{2}=r^{2}$
We know that the circle passes through $(0,0)$,
So, $(0-h)^{2}+(0-k)^{2}=r^{2}$
$h^{2}+\mathrm{k}^{2}=\mathrm{r}^{2}$
Now, The equation of the circle is $(x-h)^{2}+(y-k)^{2}=h^{2}+k^{2}$.
It is given that the circle intercepts a and b on the coordinate axes.
i.e., the circle passes through points $(a, 0)$ and $(0, b)$.

So, $(\mathrm{a}-\mathrm{h})^{2}+(0-\mathrm{k})^{2}=\mathrm{h}^{2}+\mathrm{k}^{2}$
$(0-h)^{2}+(b-k)^{2}=h^{2}+k^{2}$
From equation (1), we obtain
$\mathrm{a}^{2}-2 \mathrm{ah}+\mathrm{h}^{2}+\mathrm{k}^{2}=\mathrm{h}^{2}+\mathrm{k}^{2}$
$\mathrm{a}^{2}-2 \mathrm{ah}=0$
$\mathrm{a}(\mathrm{a}-2 \mathrm{~h})=0$
$\mathrm{a}=0$ or $(\mathrm{a}-2 \mathrm{~h})=0$
However, $a \neq 0$; hence, $(a-2 h)=0$
$\mathrm{h}=\mathrm{a} / 2$
From equation (2), we obtain
$\mathrm{h}^{2}-2 \mathrm{bk}+\mathrm{k}^{2}+\mathrm{b}^{2}=\mathrm{h}^{2}+\mathrm{k}^{2}$
$\mathrm{b}^{2}-2 \mathrm{bk}=0$
$\mathrm{b}(\mathrm{b}-2 \mathrm{k})=0$
$\mathrm{b}=0$ or $(\mathrm{b}-2 \mathrm{k})=0$
However, $a \neq 0$; hence, $(b-2 k)=0$
$\mathrm{k}=\mathrm{b} / 2$
So, the equation is
$(\mathrm{x}-\mathrm{a} / 2)^{2}+(\mathrm{y}-\mathrm{b} / 2)^{2}=(\mathrm{a} / 2)^{2}+(\mathrm{b} / 2)^{2}$
$[(2 \mathrm{x}-\mathrm{a}) / 2]^{2}+[(2 \mathrm{y}-\mathrm{b}) / 2]^{2}=\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) / 4$
$4 x^{2}-4 a x+a^{2}+4 y^{2}-4 b y+b^{2}=a^{2}+b^{2}$
$4 x^{2}+4 y^{2}-4 a x-4 b y=0$
$4\left(x^{2}+y^{2}-7 x+5 y-14\right)=0$
$x^{2}+y^{2}-a x-b y=0$
\therefore The equation of the required circle is $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{ax}-\mathrm{by}=0$

14. Find the equation of a circle with centre $(2,2)$ and passes through the point $(4,5)$. Solution:

Given:
The centre of the circle is given as $(\mathrm{h}, \mathrm{k})=(2,2)$
We know that the circle passes through point $(4,5)$, the radius (r) of the circle is the distance between the points $(2,2)$ and $(4,5)$.

```
\(r=\sqrt{ }\left[(2-4)^{2}+(2-5)^{2}\right]\)
    \(=\sqrt{ }\left[(-2)^{2}+(-3)^{2}\right]\)
    \(=\sqrt{[4+9]}\)
    \(=\sqrt{ } 13\)
```

The equation of the circle is given as
$(x-h)^{2}+(y-k)^{2}=r^{2}$
$(x-h)^{2}+(y-k)^{2}=(\sqrt{ } 13)^{2}$
$(x-2)^{2}+(y-2)^{2}=(\sqrt{ } 13)^{2}$
$x^{2}-4 x+4+y^{2}-4 y+4=13$
$x^{2}+y^{2}-4 x-4 y=5$
\therefore The equation of the required circle is $\mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{x}-4 \mathrm{y}=5$
15. Does the point $(-2.5,3.5)$ lie inside, outside or on the circle $x^{2}+y^{2}=25$?

Solution:

Given:
The equation of the given circle is $x^{2}+y^{2}=25$.
$x^{2}+y^{2}=25$
$(x-0)^{2}+(y-0)^{2}=5^{2}$ [which is of the form $\left.(x-h)^{2}+(y-k)^{2}=r^{2}\right]$
Where, $\mathrm{h}=0, \mathrm{k}=0$ and $\mathrm{r}=5$.
So the distance between point $(-2.5,3.5)$ and the centre $(0,0)$ is
$\sqrt{ }\left[(-2.5-0)^{2}+(-3.5-0)^{2}\right]$
$\sqrt{ }(6.25+12.25)$
$\sqrt{ } 18.5$
4.3 [which is < 5]

Since, the distance between point $(-2.5,-3.5)$ and the centre $(0,0)$ of the circle is less than the radius of the circle, point $(-2.5,-3.5)$ lies inside the circle.

