Exercise - 4A

1. D and E are points on the sides $A B$ and $A C$ respectively of a $\triangle A B C$ such that $D E \| B C$.
(i) If $\mathrm{AD}=3.6 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}$ and $\mathrm{AE}=4.5 \mathrm{~cm}$, find EC and AC .
(ii) If $\mathrm{AB}=13.3 \mathrm{~cm}, \mathrm{AC}=11.9 \mathrm{~cm}$ and $\mathrm{EC}=5.1 \mathrm{~cm}$, find AD .
(iii) If $\frac{A D}{D B}=\frac{4}{7}$ and $\mathrm{AC}=6.6 \mathrm{~cm}$, find AE .
(iv) If $\frac{A D}{A B}=\frac{8}{15}$ and $\mathrm{EC}=3.5 \mathrm{~cm}$, find AE .

Sol:

(i) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we get:
$\frac{A D}{D B}=\frac{A E}{E C}$
$\because \mathrm{AD}=3.6 \mathrm{~cm}, \mathrm{AB}=10 \mathrm{~cm}, \mathrm{AE}=4.5 \mathrm{~cm}$
$\therefore \mathrm{DB}=10-3.6=6.4 \mathrm{~cm}$
Or, $\frac{3.6}{6.4}=\frac{4.5}{E C}$
Or, $\mathrm{EC}=\frac{6.4 \times 4.5}{3.6}$
Or, $\mathrm{EC}=8 \mathrm{~cm}$
Thus, $\mathrm{AC}=\mathrm{AE}+\mathrm{EC}$

$$
=4.5+8=12.5 \mathrm{~cm}
$$

(ii) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' Theorem, we get:
$\frac{A D}{D B}=\frac{A E}{E C}$
Adding 1 to both sides, we get:
$\frac{A D}{D B}+1=\frac{A E}{E C}+1$
$\Rightarrow \frac{A B}{D B}=\frac{A C}{E C}$
$\Rightarrow \frac{13.3}{D B}=\frac{11.9}{5.1}$
$\Rightarrow \mathrm{DB}=\frac{13.3 \times 5.1}{11.9}=5.7 \mathrm{~cm}$
Therefore, $\mathrm{AD}=\mathrm{AB}-\mathrm{DB}=13.5-5.7=7.6 \mathrm{~cm}$
(iii) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we get :
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{4}{7}=\frac{A E}{E C}$
Adding 1 to both the sides, we get :
$\frac{11}{7}=\frac{A C}{E C}$
$\Rightarrow \mathrm{EC}=\frac{6.6 \times 7}{11}=4.2 \mathrm{~cm}$
Therefore,
$\mathrm{AE}=\mathrm{AC}-\mathrm{EC}=6.6-4.2=2.4 \mathrm{~cm}$
(iv) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we get:

$$
\begin{aligned}
& \frac{A D}{A B}=\frac{A E}{A C} \\
& \Rightarrow \frac{8}{15}=\frac{A E}{A E+E C} \\
& \Rightarrow \frac{8}{15}=\frac{A E}{A E+3.5} \\
& \Rightarrow 8 \mathrm{AE}+28=15 \mathrm{AE} \\
& \Rightarrow 7 \mathrm{AE}=28 \\
& \Rightarrow \mathrm{AE}=4 \mathrm{~cm}
\end{aligned}
$$

2. D and E are points on the sides $A B$ and $A C$ respectively of a $\triangle A B C$ such that $D E \| B C$. Find the value of x, when
(i) $\mathrm{AD}=\mathrm{x} \mathrm{cm}, \mathrm{DB}=(\mathrm{x}-2) \mathrm{cm}, \mathrm{AE}=(\mathrm{x}+2) \mathrm{cm}$ and $\mathrm{EC}=(\mathrm{x}-1) \mathrm{cm}$.
(ii) $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{DB}=(\mathrm{x}-4) \mathrm{cm}, \mathrm{AE}=8 \mathrm{~cm}$ and $\mathrm{EC}=(3 \mathrm{x}-19) \mathrm{cm}$.
(iii) $\mathrm{AD}=(7 \mathrm{x}-4) \mathrm{cm}, \mathrm{AE}=(5 \mathrm{x}-2) \mathrm{cm}, \mathrm{DB}=(3 \mathrm{x}+4) \mathrm{cm}$ and $\mathrm{EC}=3 \mathrm{xcm}$.

Sol:

(i) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we have :
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{x}{x-2}=\frac{x+2}{x-1}$
$\Rightarrow \mathrm{X}(\mathrm{x}-1)=(\mathrm{x}-2)(\mathrm{x}+2)$
$\Rightarrow x^{2}-\mathrm{x}=x^{2}-4$
$\Rightarrow x=4 \mathrm{~cm}$
(ii) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we have :
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{4}{x-4}=\frac{8}{3 x-19}$
$\Rightarrow 4(3 \mathrm{x}-19)=8(\mathrm{x}-4)$
$\Rightarrow 12 \mathrm{x}-76=8 \mathrm{x}-32$
$\Rightarrow 4 \mathrm{x}=44$
$\Rightarrow \mathrm{x}=11 \mathrm{~cm}$
(iii) In $\triangle \mathrm{ABC}$, it is given that $\mathrm{DE} \| \mathrm{BC}$.

Applying Thales' theorem, we have :
$\frac{A D}{D B}=\frac{A E}{E C}$
$\Rightarrow \frac{7 x-4}{3 x+4}=\frac{5 x-2}{3 x}$
$\Rightarrow 3 \mathrm{x}(7 \mathrm{x}-4)=(5 \mathrm{x}-2)(3 \mathrm{x}+4)$

$$
\begin{aligned}
& \Rightarrow 21 x^{2}-12 \mathrm{x}=15 x^{2}+14 \mathrm{x}-8 \\
& \Rightarrow 6 x^{2}-26 \mathrm{x}+8=0 \\
& \Rightarrow(\mathrm{x}-4)(6 \mathrm{x}-2)=0 \\
& \Rightarrow \mathrm{x}=4, \frac{1}{3} \\
& \because \mathrm{x} \neq \frac{1}{3} \text { (as if } \mathrm{x}=\frac{1}{3} \text { then } A E \text { will become negative) } \\
& \therefore \mathrm{x}=4 \mathrm{~cm}
\end{aligned}
$$

3. D and E are points on the sides $A B$ and $A C$ respectively of a $\triangle A B C$. In each of the following cases, determine whether $\mathrm{DE} \| \mathrm{BC}$ or not.
(i) $\mathrm{AD}=5.7 \mathrm{~cm}, \mathrm{DB}=9.5 \mathrm{~cm}, \mathrm{AE}=4.8 \mathrm{~cm}$ and $\mathrm{EC}=8 \mathrm{~cm}$.
(ii) $\mathrm{AB}=11.7 \mathrm{~cm}, \mathrm{AC}=11.2 \mathrm{~cm}, \mathrm{BD}=6.5 \mathrm{~cm}$ and $\mathrm{AE}=4.2 \mathrm{~cm}$.
(iii) $\mathrm{AB}=10.8 \mathrm{~cm}, \mathrm{AD}=6.3 \mathrm{~cm}, \mathrm{AC}=9.6 \mathrm{~cm}$ and $\mathrm{EC}=4 \mathrm{~cm}$.
(iv) $\mathrm{AD}=7.2 \mathrm{~cm}, \mathrm{AE}=6.4 \mathrm{~cm}, \mathrm{AB}=12 \mathrm{~cm}$ and $\mathrm{AC}=10 \mathrm{~cm}$.

Sol:

(i) We have:
$\frac{A D}{D E}=\frac{5.7}{9.5}=0.6 \mathrm{~cm}$
$\frac{A E}{E C}=\frac{4.8}{8}=0.6 \mathrm{~cm}$
Hence, $\frac{A D}{D B}=\frac{A E}{E C}$
Applying the converse of Thales' theorem,
We conclude that $\mathrm{DE} \| \mathrm{BC}$.
(ii) We have:
$\mathrm{AB}=11.7 \mathrm{~cm}, \mathrm{DB}=6.5 \mathrm{~cm}$
Therefore,
$\mathrm{AD}=11.7-6.5=5.2 \mathrm{~cm}$
Similarly,
$\mathrm{AC}=11.2 \mathrm{~cm}, \mathrm{AE}=4.2 \mathrm{~cm}$
Therefore,
$\mathrm{EC}=11.2-4.2=7 \mathrm{~cm}$
Now,
$\frac{A D}{D B}=\frac{5.2}{6.5}=\frac{4}{5}$
$\frac{A E}{E C}=\frac{4.2}{7}$
Thus, $\frac{A D}{D B} \neq \frac{A E}{E C}$
Applying the converse of Thales' theorem,
We conclude that DE is not parallel to BC .
(iii) We have:
$\mathrm{AB}=10.8 \mathrm{~cm}, \mathrm{AD}=6.3 \mathrm{~cm}$
Therefore,
$\mathrm{DB}=10.8-6.3=4.5 \mathrm{~cm}$
Similarly,
$\mathrm{AC}=9.6 \mathrm{~cm}, \mathrm{EC}=4 \mathrm{~cm}$
Therefore,
$\mathrm{AE}=9.6-4=5.6 \mathrm{~cm}$
Now,
$\frac{A D}{D B}=\frac{6.3}{4.5}=\frac{7}{5}$
$\frac{A E}{E C}=\frac{5.6}{4}=\frac{7}{5}$
$\Rightarrow \frac{A D}{D B}=\frac{A E}{E C}$
Applying the converse of Thales' theorem,
We conclude that DE || BC.
(iv) We have :
$\mathrm{AD}=7.2 \mathrm{~cm}, \mathrm{AB}=12 \mathrm{~cm}$
Therefore,
$\mathrm{DB}=12-7.2=4.8 \mathrm{~cm}$
Similarly,
$\mathrm{AE}=6.4 \mathrm{~cm}, \mathrm{AC}=10 \mathrm{~cm}$
Therefore,
$\mathrm{EC}=10-6.4=3.6 \mathrm{~cm}$
Now,
$\frac{A D}{D B}=\frac{7.2}{4.8}=\frac{3}{2}$
$\frac{A E}{E C}=\frac{6.4}{3.6}=\frac{16}{9}$
This, $\frac{A D}{D B} \neq \frac{A E}{E C}$
Applying the converse of Thales' theorem,
We conclude that DE is not parallel to BC.
4. In a $\triangle A B C, A D$ is the bisector of $\angle A$.
(i) If $\mathrm{AB}=6.4 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm}$ and $\mathrm{BD}=5.6 \mathrm{~cm}$, find DC .
(ii) If $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=14 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$, find BD and DC .
(iii) If $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{BD}=3.2 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$, find AC .
(iv) If $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{AC}=4 \mathrm{~cm}$ and $\mathrm{DC}=3 \mathrm{~cm}$, find BC .

Sol:

(i) It is give that AD bisects $\angle \mathrm{A}$.

Applying angle - bisector theorem in $\triangle \mathrm{ABC}$, we get:
$\frac{B D}{D C}=\frac{A B}{A C}$
$\Rightarrow \frac{5.6}{D C}=\frac{6.4}{8}$
$\Rightarrow \mathrm{DC}=\frac{8 \times 5.6}{6.4}=7 \mathrm{~cm}$
(ii) It is given that AD bisects $\angle A$.

Applying angle - bisector theorem in $\triangle \mathrm{ABC}$, we get:
$\frac{B D}{D C}=\frac{A B}{A C}$
Let BD be xcm .
Therefore, $\mathrm{DC}=(6-\mathrm{x}) \mathrm{cm}$
$\Rightarrow \frac{x}{6-x}=\frac{10}{14}$
$\Rightarrow 14 \mathrm{x}=60-10 \mathrm{x}$
$\Rightarrow 24 \mathrm{x}=60$
$\Rightarrow \mathrm{x}=2.5 \mathrm{~cm}$
Thus, $\mathrm{BD}=2.5 \mathrm{~cm}$
$\mathrm{DC}=6-2.5=3.5 \mathrm{~cm}$
(iii) It is given that AD bisector $\angle A$.

Applying angle - bisector theorem in $\triangle \mathrm{ABC}$, we get:
$\frac{B D}{D C}=\frac{A B}{A C}$
$\mathrm{BD}=3.2 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}$
Therefore, $\mathrm{DC}=6-3.2=2.8 \mathrm{~cm}$
$\Rightarrow \frac{3.2}{2.8}=\frac{5.6}{A C}$
$\Rightarrow \mathrm{AC}=\frac{5.6 \times 2.8}{3.2}=4.9 \mathrm{~cm}$
(iv) It is given that AD bisects $\angle A$.

Applying angle - bisector theorem in $\triangle \mathrm{ABC}$, we get:

$$
\begin{aligned}
& \frac{B D}{D C}=\frac{A B}{A C} \\
& \Rightarrow \frac{B D}{3}=\frac{5.6}{4} \\
& \Rightarrow \mathrm{BD}=\frac{5.6 \times 3}{4} \\
& \Rightarrow \mathrm{BD}=4.2 \mathrm{~cm} \\
& \text { Hence, } \mathrm{BC}=3+4.2=7.2 \mathrm{~cm}
\end{aligned}
$$

5. $\quad M$ is a point on the side $B C$ of a parallelogram $A B C D$. $D M$ when produced meets $A B$ produced at N. Prove that
(i) $\frac{D M}{M N}=\frac{D C}{B N}$
(ii) $\frac{D N}{D M}=\frac{A N}{D C}$

Sol:

(i) Given: ABCD is a parallelogram

To prove:
(i) $\frac{D M}{M N}=\frac{D C}{B N}$
(ii) $\frac{D N}{D M}=\frac{A N}{D C}$

Proof: In Δ DMC and Δ NMB
$\angle \mathrm{DMC}=\angle \mathrm{NMB}$ (Vertically opposite angle)
$\angle \mathrm{DCM}=\angle \mathrm{NBM} \quad$ (Alternate angles)
By AAA- Similarity
$\triangle \mathrm{DMC} \sim \Delta \mathrm{NMB}$
$\therefore \frac{D M}{M N}=\frac{D C}{B N}$
NOW, $\frac{M N}{D M}=\frac{B N}{D C}$
Adding 1 to both sides, we get
$\frac{M N}{D M}+1=\frac{B N}{D C}+1$
$\Rightarrow \frac{M N+D M}{D M}=\frac{B N+D C}{D C}$
$\Rightarrow \frac{M N+D M}{D M}=\frac{B N+A B}{D C}[\because \mathrm{ABCD}$ is a parallelogram $]$
$\Rightarrow \frac{D N}{D M}=\frac{A N}{D C}$
6. Show that the line segment which joins the midpoints of the oblique sides of a trapezium is parallel sides
Sol:
(i)

Let the trapezium be ABCD with E and F as the mid Points of AD and BC , Respectively Produce $A D$ and $B C$ to Meet at P.

In $\triangle \mathrm{PAB}, \mathrm{DC} \| \mathrm{AB}$.
Applying Thales' theorem, we get
$\frac{P D}{D A}=\frac{P C}{C B}$
Now, E and F are the midpoints of AD and BC , respectively.
$\Rightarrow \frac{P D}{2 D E}=\frac{P C}{2 C F}$
$\Rightarrow \frac{P D}{D E}=\frac{P C}{C F}$

Applying the converse of Thales' theorem in $\triangle \mathrm{PEF}$, we get that DC
Hence, EF \| AB.
Thus. EF is parallel to both AB and DC.
This completes the proof.
7. In the given figure, ABCD is a trapezium in which $\mathrm{AB} \| \mathrm{DC}$ and its diagonals intersect at O . If $\mathrm{AO}=(5 \mathrm{x}-7), \mathrm{OC}=(2 \mathrm{x}+1), \mathrm{BO}=(7 \mathrm{x}-5)$ and $\mathrm{OD}=(7 \mathrm{x}+1)$, find the value of x .

Sol:

In trapezium $\mathrm{ABCD}, \mathrm{AB} \| \mathrm{CD}$ and the diagonals AC and BD intersect at O .
Therefore,
$\frac{A O}{O C}=\frac{B O}{O D}$
$\Rightarrow \frac{5 x-7}{2 x+1}=\frac{7 x-5}{7 x+1}$
$\Rightarrow(5 \mathrm{x}-7)(7 \mathrm{x}+1)=(7 \mathrm{x}-5)(2 \mathrm{x}+1)$
$\Rightarrow 35 x^{2}+5 \mathrm{x}-49 \mathrm{x}-7=14 x^{2}-10 \mathrm{x}+7 \mathrm{x}-5$
$\Rightarrow 21 x^{2}-41 \mathrm{x}-2=0$
$\Rightarrow 21 x^{2}-42 \mathrm{x}+\mathrm{x}-2=0$
$\Rightarrow 21 \mathrm{x}(\mathrm{x}-2)+1(\mathrm{x}-2)=0$
$\Rightarrow(\mathrm{x}-2)(21 \mathrm{x}+1)=0$
$\Rightarrow \mathrm{x}=2$, $-\frac{1}{21}$
$\because x \neq-\frac{1}{21}$
$\therefore \mathrm{x}=2$
8. In $\triangle A B C, \mathrm{M}$ and N are points on the sides AB and AC respectively such that $\mathrm{BM}=\mathrm{CN}$. If $\angle B=\angle C$ then show that $\mathrm{MN} \| \mathrm{BC}$

Sol:

In $\triangle \mathrm{ABC}, \angle \mathrm{B}=\angle C$
$\therefore \mathrm{AB}=\mathrm{AC}$ (Sides opposite to equal angle are equal)
Subtracting BM from both sides, we get
$\mathrm{AB}-\mathrm{BM}=\mathrm{AC}-\mathrm{BM}$
$\Rightarrow \mathrm{AB}-\mathrm{BM}=\mathrm{AC}-\mathrm{CN} \quad(\because \mathrm{BM}=\mathrm{CN})$
$\Rightarrow A M=A N$
$\therefore \angle A M N=\angle$ ANM (Angles opposite to equal sides are equal)
Now, in $\triangle \mathrm{ABC}$,

$$
\begin{equation*}
\angle A+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \tag{1}
\end{equation*}
$$

(Angle Sum Property of triangle)
Again In In $\triangle \mathrm{AMN}$,

$$
\begin{equation*}
\angle \mathrm{A}+\angle \mathrm{AMN}+\angle \mathrm{ANM}=180^{\circ} \tag{2}
\end{equation*}
$$

(Angle Sum Property of triangle)
From (1) and (2), we get
$\angle \mathrm{B}+\angle \mathrm{C}=\angle \mathrm{AMN}+\angle \mathrm{ANM}$
$\Rightarrow 2 \angle \mathrm{~B}=2 \angle \mathrm{AMN}$
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{AMN}$
Since, $\angle B$ and $\angle A M N$ are corresponding angles.
$\therefore \mathrm{MN} \| \mathrm{BC}$.
9. $\triangle A B C$ and $\triangle D B C$ lie on the same side of BC , as shown in the figure. From a point P on BC , $\mathrm{PQ} \| \mathrm{AB}$ and $\mathrm{PR} \| \mathrm{BD}$ are drawn, meeting AC at Q and CD at R respectively. Prove that $\mathrm{QR} \| \mathrm{AD}$.

Sol:

In $\Delta \mathrm{CAB}, \mathrm{PQ} \| \mathrm{AB}$.
Applying Thales' theorem, we get:
$\frac{C P}{P B}=\frac{C Q}{Q A}$
Similarly, applying Thales theorem in $\triangle B D C$, Where PR ||DM we get:
$\frac{C P}{P B}=\frac{C R}{R D}$
Hence, from (1) and (2), we have :
$\frac{C Q}{Q A}=\frac{C R}{R D}$
Applying the converse of Thales' theorem, we conclude that $\mathrm{QR} \| \mathrm{AD}$ in $\triangle \mathrm{ADC}$.
This completes the proof.
10. In the given figure, side $B C$ of a $\triangle A B C$ is bisected at D and O is any point on AD . BO and CO produced meet $A C$ and $A B$ at E and F respectively, and $A D$ is produced to X so that D is the midpoint of OX .
Prove that $\mathrm{AO}: A X=A F: A B$ and show that $E F \| B C$.

Sol:

It is give that BC is bisected at D .
$\therefore \mathrm{BD}=\mathrm{DC}$
It is also given that $\mathrm{OD}=\mathrm{OX}$
The diagonals OX and BC of quadrilateral BOCX bisect each other.
Therefore, BOCX is a parallelogram.
$\therefore \mathrm{BO} \| \mathrm{CX}$ and $\mathrm{BX} \| \mathrm{CO}$
$\mathrm{BX} \| \mathrm{CF}$ and $\mathrm{CX} \| \mathrm{BE}$
$\mathrm{BX} \| \mathrm{OF}$ and $\mathrm{CX} \| \mathrm{OE}$
Applying Thales' theorem in $\triangle \mathrm{ABX}$, we get:
$\frac{A O}{A X}=\frac{A F}{A B}$
Also, in $\triangle \mathrm{ACX}, \mathrm{CX} \| \mathrm{OE}$.
Therefore by Thales' theorem, we get:
$\frac{A O}{A X}=\frac{A E}{A C}$
From (1) and (2), we have:
$\frac{A O}{A X}=\frac{A E}{A C}$
Applying the converse of Theorem in $\triangle \mathrm{ABC}, \mathrm{EF} \| \mathrm{CB}$.
This completes the proof.
11. $A B C D$ is a parallelogram in which P is the midpoint of $D C$ and Q is a point on $A C$ such that $C Q=\frac{1}{4} A C$. If $P Q$ produced meets $B C$ at R, prove that R is the midpoint of BC .

Sol:

We know that the diagonals of a parallelogram bisect each other.
Therefore,
$\mathrm{CS}=\frac{1}{2} \mathrm{AC}$
Also, it is given that $\mathrm{CQ}=\frac{1}{4} \mathrm{AC}$
Dividing equation (ii) by (i), we get:
$\frac{C Q}{C S}=\frac{\frac{1}{4} A C}{\frac{1}{2} A C}$
Or, $\mathrm{CQ}=\frac{1}{2} C S$
Hence, Q is the midpoint of CS.

Therefore, according to midpoint theorem in $\triangle \mathrm{CSD}$
PQ \| DS
If PQ || DS, we can say that $\mathrm{QR} \| \mathrm{SB}$
In $\Delta \mathrm{CSB}, \mathrm{Q}$ is midpoint of CS and $\mathrm{QR} \| \mathrm{SB}$.
Applying converse of midpoint theorem, we conclude that R is the midpoint of CB . This completes the proof.
12. In the adjoining figure, $A B C$ is a triangle in which $A B=A C$. IF D and E are points on $A B$ and $A C$ respectively such that $A D=A E$, show that the points B, C, E and D are concyclic.

Sol:

Given:

$\mathrm{AD}=\mathrm{AE}$
$\mathrm{AB}=\mathrm{AC}$
Subtracting $A D$ from both sides, we get:
$\Rightarrow \mathrm{AB}-\mathrm{AD}=\mathrm{AC}-\mathrm{AD}$
$\Rightarrow \mathrm{AB}-\mathrm{AD}=\mathrm{AC}-\mathrm{AE}$ (Since, $\mathrm{AD}=\mathrm{AE}$)
$\Rightarrow \mathrm{BD}=\mathrm{EC}$
Dividing equation (i) by equation (iii), we get:
$\frac{A D}{D B}=\frac{A E}{E C}$
Applying the converse of Thales' theorem, DE\|BC
$\Rightarrow \angle \mathrm{DEC}+\angle \mathrm{ECB}=180^{\circ}$ (Sum of interior angles on the same side of a Transversal Line is 0^{0}.)
$\Rightarrow \angle \mathrm{DEC}+\angle \mathrm{CBD}=180^{\circ}$ (Since, $\mathrm{AB}=\mathrm{AC} \Rightarrow \angle \mathrm{B}=\angle \mathrm{C}$)
Hence, quadrilateral BCED is cyclic.
Therefore, B,C,E and D are concylic points.
13. In $\triangle A B C$, the bisector of $\angle B$ meets $A C$ at D. A line $O Q \| A C$ meets $A B, B C$ and $B D$ at O, Q and R respectively. Show that $B P \times Q R=B Q \times P R$

Sol:

In triangle $B Q O, B R$ bisects angle B.
Applying angle bisector theorem, we get:

$\frac{Q R}{P R}=\frac{B Q}{B P}$
$\Rightarrow \mathrm{BP} \times \mathrm{QR}=\mathrm{BQ} \times \mathrm{PR}$
This completes the proof.

