Miscellaneous Exercise

Question 1:

The relation f is defined by $f(x) = \begin{cases} x^2, \ 0 \le x \le 3\\ 3x, \ 3 \le x \le 10 \end{cases}$ The relation g is defined by $g(x) = \begin{cases} x^2, \ 0 \le x \le 2\\ 3x, \ 2 \le x \le 10 \end{cases}$ Show that f is a function and g is not a function

Show that f is a function and g is not a function.

Solution 1:

The relation f is defined as

$$f(x) = \begin{cases} x^2, \ 0 \le x \le 3\\ 3x, \ 3 \le x \le 10 \end{cases}$$

It is observed that for

 $0 \le x < 3, \qquad f(x) = x^2$

$$3 < x \le 10, \qquad f(x) = 3x$$

Also, at x=3, $f(x)=3^2=9$ or $f(x)=3\times 3=9$ i.e., at x=3, f(x)=9

Therefore, for $0 \le x \le 10$, the images of f(x) are unique. Thus, the given relation is a function.

The relation g is defined as

$$g(x) = \begin{cases} x^2, \ 0 \le x \le 2\\ 3x, \ 2 \le x \le 10 \end{cases}$$

It can be observed that for x = 2, $g(x) = 2^2 = 4$ and $g(x) = 3 \times 2 = 6$

Hence, element 2 of the domain of the relation g corresponds to two different images i.e., 4 and 6.

Hence, this relation is not a function.

Question 2:

If
$$f(x) = x^2$$
, find $\frac{f(1.1) - f(1)}{(1.1-1)}$

Solution 2:

$$f(x) = x^{2}$$

$$\therefore \frac{f(1.1) - f(1)}{(1.1 - 1)} = \frac{(1.1)^{2} - (1)^{2}}{(1.1 - 1)} = \frac{1.21 - 1}{0.1} = \frac{0.21}{01} = 2.1$$

Question 3:

Find the domain of the function $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$

Solution 3:

The given function is
$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

 $f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12} = \frac{x^2 + 2x + 1}{(x - 6)(x - 2)}$

It can be seen that function f is defined for all real numbers except at x = 6 and x = 2. Hence, the domain of f is $\mathbf{R} - \{2, 6\}$.

Question 4:

Find the domain and the range of the real function f defined by $f(x) = \sqrt{(x-1)}$

Solution 4:

The given real function is $f(x) = \sqrt{(x-1)}$

It can be seen that $\sqrt{(x-1)}$ is defined for $f(x) = x \ge 1$.

Therefore, the domain of f is the set of all real numbers greater than or equal to 1 i.e., the domain of $f = [1, \infty)$.

As $x \ge 1 \Longrightarrow (x-1) \ge 0 \Longrightarrow \sqrt{(x-1)} \ge 0$

Therefore, the range of f is the set of all real numbers greater than or equal to 0 i.e., the range of $f = [0, \infty)$.

Question 5:

Find the domain and the range of the real function f defined by f(x) = |x-1|.

Solution 5:

The given real function is f(x) = |x-1|.

It is clear that |x-1| is defined for all real numbers.

 \therefore Domain of $f = \mathbf{R}$

Also, for $x \in \mathbf{R} = |x-1|$ assumes all real numbers.

Hence, the range of f is the set of all non-negative real numbers.

Question 6:

Let $f = \left\{ \left(x, \frac{x^2}{1+x^2} \right) : x \in \mathbb{R} \right\}$

be a function from **R** into **R**. Determine the range of f.

Solution 6:

$$f = \left\{ \left(x, \frac{x^2}{1+x^2}\right) : x \in \mathbf{R} \right\}$$
$$= \left\{ \left(0, 0\right), \left(\pm 0.5, \frac{1}{5}\right), \left(\pm 1, \frac{1}{2}\right), \left(\pm 1.5, \frac{9}{13}\right), \left(\pm 2, \frac{4}{5}\right), \left(3, \frac{9}{10}\right), \left(4, \frac{16}{17}\right), \dots \right\}$$

The range of *f* is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1. [Denominator is greater numerator]. Thus, range of f = [0, 1)

Question 7:

Let $f, g: \mathbb{R} \to \mathbb{R}$ be defined, respectively by f(x) = x + 1, g(x) = 2x - 3. Find f + g, f - gand $\frac{f}{g}$.

$$f,g: \mathbb{R} \to \mathbb{R} \text{ is defined as } f(x) = x+1, g(x) = 2x-3$$

$$(f+g)(x) = f(x)+g(x) = (x+1)+(2x-3) = 3x-2$$

$$(f+g)(x) = 3x-2$$

$$(f-g)(x) = f(x)-g(x) = (x+1)-(2x-3) = x+1-2x+3 = -x+4$$

$$\therefore (f-g)(x) = -x+4$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0, x \in \mathbb{R}$$

$$\therefore \left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, 2x-3 \neq 0 \text{ or } 2x \neq 3$$

$$\therefore \left(\frac{f}{g}\right)(x) = \frac{x+1}{2x-3}, x \neq \frac{3}{2}$$

Question 8:

Let $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$ be a function from **Z** to **Z** defined by f(x) = ax+b, for some integers a, b. Determine a, b.

Solution 8: $f = \{(1,1), (2,3), (0,-1), (-1,-3)\}$ and f(x) = ax+b $(1,1) \in f \Rightarrow f(1) = 1 \Rightarrow a \times 1 + b = 1$ $\Rightarrow a+b=1$ $(0,-1) \in f \Rightarrow f(0) = -1 \Rightarrow a \times 0 + b = -1$ On substituting b = -1 in a+b=1 We obtain $a + (-1) = 1 \Rightarrow a = 1 + 1 = 2$. Thus, the respective values of a and b are 2 and -1.

Question 9:

Let R be a relation from N to N defined by $R = \{(a,b): a, b \in \mathbb{N} \text{ and } a = b^2\}$. Are the following true?

(i) $(a,a) \in R$, for all $a \in \mathbb{N}$

(ii) $(a,b) \in R$, implies $(b,a) \in R$

(iii) $(a,b) \in R, (b,c) \in R$ implies $(a,c) \in R$.

Justify your answer in each case.

Solution 9:

 $R = \left\{ (a,b) : a, b \in \mathbb{N} \text{ and } a = b^2 \right\}$

(i) It can be seen that $2 \in \mathbf{N}$; however, $2 \neq 2^2 = 4$.

Therefore, the statement " $(a, a) \in R$, for all $a \in \mathbb{N}$ " is not true.

(ii) It can be seen that $(9,3) \in \mathbb{N}$ because $9,3 \in \mathbb{N}$ and $9=3^2$. Now, $3 \neq 9^2 = 81$; therefore,

Therefore, the statement " $(a,b) \in R$, implies " $(b,a) \in R$ " is not true.

(iii) It can be seen that $(9,3) \in R, (16,4) \in R$ because $9,3,16,4 \in \mathbb{N}$ and $9=3^2$ and $16=4^2$.

Now, $9 \neq 4^2 = 16$; therefore, $(9,4) \notin \mathbf{N}$

Therefore, the statement " $(a,b) \in R, (b,c) \in R$ implies $(a,c) \in R$ " is not true.

Question 10:

Let $A = \{1, 2, 3, 4\}, B = \{1, 5, 9, 11, 15, 16\}$ and $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$. Are the following true? (i) *f* is a relation from A to B (ii) *f* is a function from A to B Justify your answer in each case.

Solution 10:

 $A = \{1, 2, 3, 4\}$ and $B = \{1, 5, 9, 11, 15, 16\}$

$$\therefore A \times B = \{(1,1), (1,5), (1,9), (1,11), (1,15), (1,16), (2,1), (2,5), (2,9), (2,11), (2,15), (2,16) \\ (3,1), (3,5), (3,9), (3,11), (3,15), (3,16), (4,1), (4,5), (4,9), (4,11), (4,15), (4,16)\}$$

It is given that $f = \{(1,5), (2,9), (3,1), (4,5), (2,11)\}$

(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$.

Thus, f is a relation from A to B.

(ii) Since the same first element i.e, 2 corresponds to two different images i.e., 9 and 11, relation f is not a function.

Question 11:

Let f be the subset of $\mathbb{Z} \times \mathbb{Z}$ defined by $f = \{(ab, a+b): a, b \in \mathbb{Z}\}$. If f a function from \mathbb{Z} to \mathbb{Z} : Justify your answer.

Solution 11:

The relation f is defined as $f = \{(ab, a+b): a, b \in \mathbb{Z}\}$

We know that a relation f from a set A to a set B is said to be a function if every element of set A has unique images in set B.

Since $(2, 6, -2, -6 \in \mathbb{Z}, (2 \times 6, 2 + 6), (-2 \times -6, -2 + -6)) \in f$ i.e., $(12, 8), (12, -8) \in f$

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8. Thus, relation f is not a function.

Question 12:

Let $A = \{9, 10, 11, 12, 13\}$ and let $f: A \rightarrow \mathbf{N}$ be defined by f(n) = the highest prime factor of *n*. Find the range of *f*.

Solution 12:

ae highe. $A = \{9, 10, 11, 12, 13\}$ and let $f: A \rightarrow \mathbf{N}$ is defined as f(n) = The highest prime factor of nPrime factor of 9 = 3Prime factors of 10 = 2, 5Prime factor of 11 = 11Prime factor of 12 = 2, 3Prime factor of 13 = 13 \therefore f (9) = The highest prime factor of 9 = 3 f(10) = The highest prime factor of 10 = 5f(11) = The highest prime factor of 11 = 11f(12) = The highest prime factor 12 = 3f(13) = The highest prime factor of 13 = 13 The range of f is the set of all f(n), where $n \in A$. : Range of $f = \{3, 5, 11, 13\}$