Exercise 8.2

Question 1:

Find the coefficient of x^{5} in $(x+3)^{8}$

Solution 1:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Assuming that x^{5} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(x+3)^{8}$, we obtain

$$
T_{r+1}={ }^{8} C_{r}(x)^{8-r}(3)^{r}
$$

Comparing the indices of x in x^{5} in T_{r+1},
We obtain $\mathrm{r}=3$
Thus, the coefficient of x^{5} is ${ }^{8} C_{3}(3)^{3}=\frac{8!}{3!5!} \times 3^{3}=\frac{8 \cdot 7 \cdot 6 \cdot 5!}{3 \cdot 2 \cdot 5!} \cdot 3^{3}=1512$.

Question 2:

Find the coefficient of $a^{5} b^{7}$ in $(a-2 b)^{12}$

Solution 2:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
Assuming that $a^{5} b^{7}$ occurs in the $(r+1)^{\text {th }}$ term of the expansion $(a-2 b)^{12}$, we obtain

$$
T_{r+1}={ }^{12} C_{r}(a)^{12-r}(-2 b)^{r}={ }^{12} C_{r}(-2)^{r}(a)^{12-r}(b)^{r}
$$

Comparing the indices of a and b in $a^{5} b^{7}$ in T_{r+1},
We obtain $r=7$
Thus, the coefficient of $a^{5} b^{7}$ is

$$
{ }^{12} C_{7}(-2)^{7}=\frac{12!}{7!5!} \cdot 2^{7}=\frac{12 \cdot 11.10 \cdot 9 \cdot 8 \cdot 7!}{5 \cdot 4.3 \cdot 2 \cdot 7!} \cdot(-2)^{7}=-(792)(128)=-101376
$$

Question 3:

Write the general term in the expansion of $\left(x^{2}-y\right)^{6}$

Solution 3:

It is known that the general term T_{r+1} \{which is the $(r+1)^{\text {th }}$ term\} in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Thus, the general term in the expansion of $\left(x^{2}-y^{6}\right)$ is

$$
T_{r+1}={ }^{6} C_{r}\left(x^{2}\right)^{6-r}(-y)^{r}=(-1)^{r}{ }^{6} C_{r} \cdot x^{12-2 r} \cdot y^{r}
$$

Question 4:

Write the general term in the expansion of $\left(x^{2}-y x\right)^{12}, x \neq 0$

Solution 4:

It is known that the general term T_{r+1} \{which is the $(r+1)^{\text {th }}$ term in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Thus, the general term in the expansion of $\left(x^{2}-y x\right)^{12}$ is

$$
T_{r+1}={ }^{12} C_{r}\left(x^{2}\right)^{12-r}(-y x)^{r}=(-1)^{r}{ }^{12} C_{r} \cdot x^{24-2 r} \cdot y^{r}=(-1)^{r}{ }^{12} C_{r} \cdot x^{24-r} \cdot y^{r}
$$

Question 5:

Find the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$

Solution 5:

It is known $(r+1)^{\text {th }}$ term, T_{r+1}, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Thus, the $4^{\text {th }}$ term in the expansion of $\left(x^{2}-2 y\right)^{12}$ is

$$
T_{4}=T_{3+1}={ }^{12} C_{3}(x)^{12-3}(-2 y)^{3}=(-1)^{3} \cdot \frac{12!}{3!9!} \cdot x^{9} \cdot(2)^{3} \cdot y^{3}=-\frac{12 \cdot 11 \cdot 10}{3 \cdot 2} \cdot(2)^{3} x^{9} y^{3}=-1760 x^{9} y^{3}
$$

Question 6:

Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$

Solution 6:

It is known $(r+1)^{\text {th }}$ term, T_{r+1}, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$ Thus, the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ is
$T_{13}=T_{12+1}={ }^{18} C_{12}(9 x)^{18-12}\left(-\frac{1}{3 \sqrt{x}}\right)^{12}$
$=(-1)^{12} \frac{18!}{12!6!}(9)^{6}(x)^{6}\left(\frac{1}{3}\right)^{12}\left(\frac{1}{\sqrt{x}}\right)^{12}$
$=\frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13.12!}{12!.6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot x^{6}\left(\frac{1}{x^{6}}\right) \cdot 3^{12}\left(\frac{1}{3^{12}}\right) \quad\left[9^{6}=\left(3^{2}\right)^{6}=3^{12}\right]$
$=18564$

Question 7:

Find the middle terms in the expansions of $\left(3-\frac{x^{3}}{6}\right)^{7}$

Solution 7:

It is known that in the expansion of $(a+b)^{n}$, in n is odd, then there are two middle terms,
Namely $\left(\frac{n+1}{2}\right)^{\text {th }}$ term and $\left(\frac{n+1}{2}+1\right)^{\text {th }}$ term.
Therefore, the middle terms in the expansion $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $\left(\frac{7+1}{2}\right)^{\text {th }}=4^{\text {th }}$ and $\left(\frac{7+1}{2}+1\right)^{\text {th }}=5^{\text {th }}$ term

$$
\begin{aligned}
& T_{4}=T_{3+1}={ }^{7} C_{3}(3)^{7-3}\left(-\frac{x^{3}}{6}\right)^{3}=(-1)^{3} \frac{7!}{3!4!} \cdot 3^{4} \cdot \frac{x^{9}}{6^{3}} \\
& =-\frac{7 \cdot 6 \cdot 5.4!}{3 \cdot 2.4!} \cdot 3^{4} \cdot \frac{1}{2^{3} \cdot 3^{3}} \cdot x^{9}=-\frac{105}{8} x^{9} \\
& T_{5}=T_{4+1}={ }^{7} C_{4}(3)^{7-4}\left(-\frac{x^{3}}{6}\right)^{4}=(-1)^{4} \frac{7!}{4!3!} \cdot 3^{3} \cdot \frac{x^{12}}{6^{4}} \\
& =\frac{7 \cdot 6 \cdot 5.4!}{4!.3 \cdot 2} \cdot \frac{3^{3}}{2^{4} \cdot 3^{4}} \cdot x^{12}=\frac{35}{48} x^{12}
\end{aligned}
$$

Thus, the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ are $-\frac{105}{8} x^{9}$ and $\frac{35}{48} x^{12}$.

Question 8:

Find the middle terms in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$

Solution 8:

It is known that in the expansion of $(a+b)^{n}$, in n is even, then the middle term is $\left(\frac{n}{2}+1\right)^{\text {th }}$ term.
Therefore, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $\left(\frac{10}{2}+1\right)^{\text {th }}=6^{\text {th }}$
$T_{4}=T_{5+1}={ }^{10} C_{5}\left(\frac{x}{3}\right)^{10-5}(9 y)^{5}=\frac{10!}{5!5!} \cdot \frac{x^{5}}{3^{5}} \cdot 9^{5} \cdot y^{5}$
$=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6.5!}{5 \cdot 4 \cdot 3 \cdot 2.5!} \cdot \frac{1}{3^{5}} \cdot 3^{10} \cdot x^{5} y^{5} \quad\left[9^{5}=\left(3^{2}\right)^{5}=3^{10}\right]$
$=252 \times 3^{5} \cdot x^{5} \cdot y^{5}=6123 x^{5} y^{5}$
Thus, the middle term in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is $61236 x^{5} y^{5}$.

Question 9:

In the expansion of $(1+a)^{m+n}$, prove that coefficients of a^{m} and a^{n} are equal.

Solution 9:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
$$

Assuming that a^{m} occurs in the $(r+1)^{\text {th }}$ term of the expansion $(1+a)^{m+n}$, we obtain $T_{r+1}={ }^{m+n} C_{r}(1)^{m+n-r}(a)^{r}={ }^{m+n} C_{r} a^{r}$
Comparing the indices of a in a^{m} in T_{r+1},
We obtain $r=m$
Therefore, the coefficient of a^{m} is

$$
\begin{equation*}
{ }^{m+n} C_{m}=\frac{(m+n)!}{m!(m+n-m)!}=\frac{(m+n)!}{m!n!} \ldots \tag{1}
\end{equation*}
$$

Assuming that a^{n} occurs in the $(k+1)^{t h}$ term of the expansion $(1+a)^{m+n}$, we obtain

$$
T_{k+1}={ }^{m+n} C_{k}(1)^{m+n-k}(a)^{k}={ }^{m+n} C_{k}(a)^{k}
$$

Comparing the indices of a in a^{n} and in T_{k+1},
We obtain
$k=n$

Therefore, the coefficient of a^{n} is
${ }^{m+n} C_{n}=\frac{(m+n)!}{n!(m+n-n)!}=\frac{(m+n)!}{n!m!}$
Thus, from (1) and (2), it can be observed that the coefficients of a^{m} and a^{n} in the expansion of $(1+a)^{m+n}$ are equal.

Question 10:

The coefficients of the $(r-1)^{t h}, r^{t h}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1)^{n}$ are in the ratio 1:3:5. Find n and r.

Solution 10:

It is known that $(k+1)^{\text {th }}$ term, $\left(T_{k+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by
$T_{k+1}={ }^{n} C_{k} a^{n-k} b^{k}$.
Therefore, $(r-1)^{\text {th }}$ term in the expansion of $(x+1)^{n}$ is
$T_{r-1}={ }^{n} C_{r-2}(x)^{n-(r-2)}(1)^{(r-2)}={ }^{n} C_{r-2} x^{n-r+2}$
$(r+1)$ term in the expansion of $(x+1)^{n}$ is
$T_{r+1}={ }^{n} C_{r}(x)^{n-r}(1)^{r}={ }^{n} C_{r} x^{n-r}$
$r^{\text {th }}$ term in the expansion of $(x+1)^{n}$ is
$T_{r}={ }^{n} C_{r-1}(x)^{n-(r-1)}(1)^{(r-1)}={ }^{n} C_{r-1} x^{n-r+1}$
Therefore, the coefficients of the $(r-1)^{\text {th }}, r^{\text {th }}$ and $(r+1)^{\text {th }}$ terms in the expansion of $(x+1)^{n}$ ${ }^{n} C_{r-2},{ }^{n} C_{r-1}$, and ${ }^{n} C_{r}$ are respectively. Since these coefficients are in the ratio $1: 3: 5$, we obtain $\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{1}{3}$ and $\frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{3}{5}$
$\frac{{ }^{n} C_{r-2}}{{ }^{n} C_{r-1}}=\frac{n!}{(r-2)!(n-r+2)!} \times \frac{(r-1)!(n-r+1)!}{n!}=\frac{(r-1)(r-2)!(n-r+1)!}{(r-2)!(n-r+2)!(n-r+1)!}$
$=\frac{r-1}{n-r+2}$
$\therefore \frac{r-1}{n-r+2}=\frac{1}{3}$
$\Rightarrow 3 r-3=n-r+2$
$\Rightarrow n-4 r+5=0$

$$
\begin{align*}
& \frac{{ }^{n} C_{r-1}}{{ }^{n} C_{r}}=\frac{n!}{(r-1)!(n-r+1)} \times \frac{r!(n-r)!}{n!}=\frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!} \tag{1}\\
& =\frac{r}{n-r+1}
\end{align*}
$$

$\therefore \frac{r}{n-r+1}=\frac{3}{5}$
$\Rightarrow 5 r=3 n-3 r+3$
$\Rightarrow 3 n-8 r+3=0$
Multiplying (1) by 3 and subtracting it from (2), we obtain
$4 r-12=0$
$\Rightarrow r=3$
Putting the value of r in (1), we obtain n
$-12+5=0$
$\Rightarrow n=7$
Thus, $n=7$ and $r=3$

Question 11:

Prove that the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.

Solution 11:

It is known that $(r+1)^{t h}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$.
Assuming that x^{n} occurs in the $(r+1)^{\text {th }}$ term of the expansion of $(1+x)^{2 n}$, we obtain $T_{r+1}={ }^{2 n} C_{r}(1)^{2 n-r}(x)^{r}={ }^{2 n} C_{r}(x)^{r}$
Comparing the indices of x in x^{n} and in T_{r+1}, we obtain $r=n$
Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is
${ }^{2 n} C_{n}=\frac{(2 n)!}{n!(2 n-n)!}=\frac{(2 n)!}{n!n!}=\frac{(2 n)!}{(n!)^{2}}$.
Assuming that x^{n} occurs in the $(k+1)^{\text {th }}$ term of the expansion of $(1+x)^{2 n-1}$, we obtain

$$
T_{k+1}={ }^{2 n} C_{k}(1)^{2 n-1-k}(x)^{k}={ }^{2 n} C_{k}(x)^{k}
$$

Comparing the indices of x in x^{n} and in T_{k+1}, we obtain $k=n$
Therefore, the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$ is

$$
\begin{align*}
& { }^{2 n-1} C_{n}=\frac{(2 n-1)!}{n!(2 n-1-n)!}=\frac{(2 n-1)!}{n!(n-1)!} \\
& =\frac{2 n \cdot(2 n-1)!}{2 n \cdot n!(n-1)!}=\frac{(2 n)!}{2 \cdot n!n!}=\frac{1}{2}\left[\frac{(2 n)!}{(n!)^{2}}\right] \tag{2}
\end{align*}
$$

From (1) and (2), it is observed that $\frac{1}{2}\left({ }^{2 n} C_{n}\right)={ }^{2 n-1} C_{n}$
$\Rightarrow{ }^{2 n} C_{n}=2\left({ }^{2 n-1} C_{n}\right)$
Therefore, the coefficient of x^{n} expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.
Hence proved.

Question 12:

Find a positive value of m for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .

Solution 12:

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
$$

Assuming that x^{2} occurs in the $(r+1)^{t h}$ term of the expansion of $(1+x)^{m}$, we obtain
$T_{r+1}={ }^{m} C_{r}(1)^{m-r}(x)^{r}={ }^{m} C_{r}(x)^{r}$
Comparing the indices of x in x^{2} and in T_{r+1}, we obtain $r=2$
Therefore, the coefficient of x^{2} is ${ }^{m} C_{2}$
It is given that the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .

$$
\begin{aligned}
& \therefore{ }^{m} C_{2}=6 \\
& \Rightarrow \frac{m!}{2!(m-2)!}=6 \\
& \Rightarrow \frac{m(m-1)(m-2)!}{2 \times(m-2)!}=6 \\
& \Rightarrow m(m-1)=12 \\
& \Rightarrow m^{2}-m-12=0 \\
& \Rightarrow m^{2}-4 m+3 m-12=0 \\
& \Rightarrow m(m-4)+3(m-4)=0 \\
& \Rightarrow(m-4)(m+3)=0 \\
& \Rightarrow(m-4)=0 \text { or }(m+3)=0 \\
& \Rightarrow m=4 \text { or } m=-3
\end{aligned}
$$

Thus, the positive value of m, for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 , is 4.

