Question 1:

Find the coefficient of x^5 in $(x+3)^8$

Solution 1:

It is known that $(r+1)^{th}$ term, (T_{r+1}) , in the binomial expansion of $(a+b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r} b^r$ Assuming that x^5 occurs in the $(r+1)^{th}$ term of the expansion $(x+3)^8$, we obtain $T_{r+1} = {}^8C_r (x)^{8-r} (3)^r$ Comparing the indices of x in x^5 in T_{r+1} , We obtain r = 3Thus, the coefficient of x^5 is ${}^8C_3 (3)^3 = \frac{8!}{3!5!} \times 3^3 = \frac{8 \cdot 7 \cdot 6 \cdot 5!}{3 \cdot 2.5!} \cdot 3^3 = 1512$.

Question 2:

Find the coefficient of a^5b^7 in $(a-2b)^{12}$

Solution 2:

It is known that $(r+1)^{th}$ term, (T_{r+1}) , in the binomial expansion of $(a+b)^n$ is given by $T_{r+1} = {}^n C_r a^{n-r} b^r$ Assuming that $a^5 b^7$ occurs in the $(r+1)^{th}$ term of the expansion $(a-2b)^{12}$, we obtain $T_{r+1} = {}^{12}C_r (a)^{12-r} (-2b)^r = {}^{12}C_r (-2)^r (a)^{12-r} (b)^r$ Comparing the indices of a and b in $a^5 b^7$ in T_{r+1} , We obtain r = 7Thus, the coefficient of $a^5 b^7$ is ${}^{12}C_7 (-2)^7 = \frac{12!}{7!5!} \cdot 2^7 = \frac{12 \cdot 11.10 \cdot 9 \cdot 8 \cdot 7!}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 7!} \cdot (-2)^7 = -(792)(128) = -101376$.

Question 3:

Write the general term in the expansion of $(x^2 - y)^6$

Solution 3:

It is known that the general term T_{r+1} {which is the $(r+1)^{th}$ term} in the binomial expansion of $(a+b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r}b^r$. Thus, the general term in the expansion of $(x^2 - y^6)$ is $T_{r+1} = {}^6C_r (x^2)^{6-r} (-y)^r = (-1)^r {}^6C_r . x^{12-2r} . y^r$

Question 4:

Write the general term in the expansion of $(x^2 - yx)^{12}$, $x \neq 0$

Solution 4:

It is known that the general term T_{r+1} {which is the $(r+1)^{th}$ term} in the binomial expansion of $(a+b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r}b^r$.

Thus, the general term in the expansion of $(x^2 - yx)^{12}$ is

$$T_{r+1} = {}^{12}C_r \left(x^2\right)^{12-r} \left(-yx\right)^r = \left(-1\right)^r {}^{12}C_r \cdot x^{24-2r} \cdot y^r = \left(-1\right)^r {}^{12}C_r \cdot x^{24-r} \cdot y^r$$

Question 5:

Find the 4th term in the expansion of $(x-2y)^{12}$

Solution 5:

It is known $(r+1)^{\text{th}}$ term, T_{r+1} , in the binomial expansion of $(a+b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r}b^r$. Thus, the 4th term in the expansion of $(x^2 - 2y)^{12}$ is

Thus, the 4 sector in the expansion of
$$(x^2 - 2y)^{-1}$$
 is

$$T_4 = T_{3+1} = {}^{12}C_3(x)^{12-3}(-2y)^3 = (-1)^3 \cdot \frac{12!}{3!9!} \cdot x^9 \cdot (2)^3 \cdot y^3 = -\frac{12 \cdot 11 \cdot 10}{3 \cdot 2} \cdot (2)^3 x^9 y^3 = -1760 x^9 y^3$$

Question 6:

Find the 13th term in the expansion of $\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}, x \neq 0$

Solution 6:

It is known $(r+1)^{th}$ term, T_{r+1} , in the binomial expansion of $(a+b)^n$ is given by $T_{r+1} = {}^nC_r a^{n-r}b^r$

Thus, the 13th term in the expansion of
$$\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}$$
 is
 $T_{13} = T_{12+1} = {}^{18}C_{12} \left(9x\right)^{18-12} \left(-\frac{1}{3\sqrt{x}}\right)^{12}$
 $= \left(-1\right)^{12} \frac{18!}{12!6!} \left(9\right)^6 \left(x\right)^6 \left(\frac{1}{3}\right)^{12} \left(\frac{1}{\sqrt{x}}\right)^{12}$
 $= \frac{18 \cdot 17 \cdot 16 \cdot 15 \cdot 14 \cdot 13.12!}{12! \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} \cdot x^6 \left(\frac{1}{x^6}\right) \cdot 3^{12} \left(\frac{1}{3^{12}}\right) \qquad \left[9^6 = \left(3^2\right)^6 = 3^{12}\right]$
 $= 18564$

Question 7:

Find the middle terms in the expansions of $\left(3 - \frac{x^3}{6}\right)^{\prime}$

Solution 7:

It is known that in the expansion of $(a+b)^n$, in n is odd, then there are two middle terms,

Namely
$$\left(\frac{n+1}{2}\right)^{th}$$
 term and $\left(\frac{n+1}{2}+1\right)^{th}$ term.
Therefore, the middle terms in the expansion $\left(3-\frac{x^3}{6}\right)^7$ are $\left(\frac{7+1}{2}\right)^{th} = 4^{th}$ and $\left(\frac{7+1}{2}+1\right)^{th} = 5^{th}$ term

term

$$T_{4} = T_{3+1} = {}^{7}C_{3}(3)^{7-3} \left(-\frac{x^{3}}{6} \right)^{3} = (-1)^{3} \frac{7!}{3!4!} \cdot 3^{4} \cdot \frac{x^{9}}{6^{3}}$$

$$= -\frac{7 \cdot 6 \cdot 5 \cdot 4!}{3 \cdot 2 \cdot 4!} \cdot 3^{4} \cdot \frac{1}{2^{3} \cdot 3^{3}} \cdot x^{9} = -\frac{105}{8} x^{9}$$

$$T_{5} = T_{4+1} = {}^{7}C_{4}(3)^{7-4} \left(-\frac{x^{3}}{6} \right)^{4} = (-1)^{4} \frac{7!}{4!3!} \cdot 3^{3} \cdot \frac{x^{12}}{6^{4}}$$

$$= \frac{7 \cdot 6 \cdot 5 \cdot 4!}{4! \cdot 3 \cdot 2} \cdot \frac{3^{3}}{2^{4} \cdot 3^{4}} \cdot x^{12} = \frac{35}{48} x^{12}$$

Thus, the middle terms in the expansion of $\left(3 - \frac{x^{3}}{6} \right)^{7}$ are $-\frac{105}{8} x^{9}$ and $\frac{35}{48} x^{12}$.

Question 8:

Find the middle terms in the expansion of $\left(\frac{x}{3}+9y\right)^{10}$

Solution 8:

It is known that in the expansion of $(a+b)^n$, in n is even, then the middle term is

$$\left(\frac{n}{2}+1\right)^{th}$$
 term.

Therefore, the middle term in the expansion of $\left(\frac{x}{3}+9y\right)^{10}$ is $\left(\frac{10}{2}+1\right)^{10}=6^{th}$

$$T_{4} = T_{5+1} = {}^{10}C_{5} \left(\frac{x}{3}\right)^{10-5} (9y)^{5} = \frac{10!}{5!5!} \cdot \frac{x^{5}}{3^{5}} \cdot 9^{5} \cdot y^{5}$$
$$= \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6.5!}{5 \cdot 4 \cdot 3 \cdot 2.5!} \cdot \frac{1}{3^{5}} \cdot 3^{10} \cdot x^{5} y^{5}$$
$$\left[9^{5} = \left(3^{2}\right)^{5} = 3^{10}\right]$$
$$= 252 \times 3^{5} \cdot x^{5} \cdot y^{5} = 6123 x^{5} y^{5}$$

Thus, the middle term in the expansion of $\left(\frac{x}{3}+9y\right)^{10}$ is $61236x^5y^5$.

Ouestion 9:

In the expansion of $(1+a)^{m+n}$, prove that coefficients of a^m and a^n are equal.

Solution 9:

It is known that $(r+1)^{th}$ term, (T_{r+1}) , in the binomial expansion of $(a+b)^n$ is given by $T_{r+1} = {}^{n}C c^{n-r} b^{r}$

$$T_{r+1} = {}^n C_r a^{n-r} b$$

Assuming that a^m occurs in the $(r+1)^{th}$ term of the expansion $(1+a)^{m+n}$, we obtain $T_{r+1} = {}^{m+n}C_r (1)^{m+n-r} (a)^r = {}^{m+n}C_r a^r$

Comparing the indices of a in a^m in T_{r+1} ,

We obtain r = m

Therefore, the coefficient of
$$a^m$$
 is

$$^{m+n}C_m = \frac{(m+n)!}{m!(m+n-m)!} = \frac{(m+n)!}{m!n!}.....(1)$$

Assuming that a^n occurs in the $(k+1)^{th}$ term of the expansion $(1+a)^{m+n}$, we obtain $T_{k+1} = {}^{m+n}C_k (1)^{m+n-k} (a)^k = {}^{m+n}C_k (a)^k$ Comparing the indices of a in a^n and in T_{k+1} , We obtain k = n

Therefore, the coefficient of a^n is ${}^{m+n}C_n = \frac{(m+n)!}{n!(m+n-n)!} = \frac{(m+n)!}{n!m!}.....(2)$

Thus, from (1) and (2), it can be observed that the coefficients of a^m and a^n in the expansion of $(1+a)^{m+n}$ are equal.

Question 10:

The coefficients of the $(r-1)^{th}$, r^{th} and $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ are in the ratio 1:3:5. Find *n* and *r*.

Solution 10:

It is known that $(k+1)^{th}$ term, (T_{k+1}) , in the binomial expansion of $(a+b)^n$ is given by $T_{k+1} = {}^n C_k a^{n-k} b^k.$ Therefore, $(r-1)^{th}$ term in the expansion of $(x+1)^n$ is $T_{r-1} = {}^{n}C_{r-2}(x)^{n-(r-2)}(1)^{(r-2)} = {}^{n}C_{r-2}x^{n-r+2}$ (r+1) term in the expansion of $(x+1)^n$ is $T_{r+1} = {}^{n}C_{r}(x)^{n-r}(1)^{r} = {}^{n}C_{r}x^{n-r}$ r^{th} term in the expansion of $(x+1)^n$ is $T_{r} = {}^{n}C_{r-1}(x)^{n-(r-1)}(1)^{\binom{r-1}{2}} = {}^{n}C_{r-1}x^{n-r+1}$ Therefore, the coefficients of the $(r-1)^{th}$, r^{th} and $(r+1)^{th}$ terms in the expansion of $(x+1)^{n}$ ${}^{n}C_{r-2}$, ${}^{n}C_{r-1}$, and ${}^{n}C_{r}$ are respectively. Since these coefficients are in the ratio 1:3:5, we obtain $\frac{{}^{n}C_{r-2}}{{}^{n}C_{r-1}} = \frac{1}{3}$ and $\frac{{}^{n}C_{r-1}}{{}^{n}C_{r-1}} = \frac{3}{5}$ $\frac{{}^{n}C_{r-2}}{{}^{n}C_{r-1}} = \frac{n!}{(r-2)!(n-r+2)!} \times \frac{(r-1)!(n-r+1)!}{n!} = \frac{(r-1)(r-2)!(n-r+1)!}{(r-2)!(n-r+2)!(n-r+1)!}$ $=\frac{r-1}{n-r+2}$ $\therefore \frac{r-1}{n-r+2} = \frac{1}{3}$ $\Rightarrow 3r - 3 = n - r + 2$ $\Rightarrow n-4r+5=0$ (1) $\frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \frac{n!}{(r-1)!(n-r+1)} \times \frac{r!(n-r)!}{n!} = \frac{r(r-1)!(n-r)!}{(r-1)!(n-r+1)(n-r)!}$ $=\frac{r}{n-r+1}$

 $\therefore \frac{r}{n-r+1} = \frac{3}{5}$ $\Rightarrow 5r = 3n-3r+3$ $\Rightarrow 3n-8r+3=0 \qquad \dots \dots (2)$ Multiplying (1) by 3 and subtracting it from (2), we obtain 4r-12=0 $\Rightarrow r=3$ Putting the value of r in (1), we obtain n -12+5=0 $\Rightarrow n=7$ Thus, n=7 and r=3

Question 11:

Prove that the coefficient of x^n in the expansion of $(1+x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1+x)^{2n-1}$.

Solution 11:

It is known that $(r+1)^{th}$ term, (T_{r+1}) , in the binomial expansion of $(a+b)^n$ is given by $T_{r+1} = {}^n C_r a^{n-r} b^r$.

Assuming that x^n occurs in the $(r+1)^{th}$ term of the expansion of $(1+x)^{2n}$, we obtain $T_{r+1} = {}^{2n}C_r(1)^{2n-r}(x)^r = {}^{2n}C_r(x)^r$

 $\mathbf{I}_{r+1} = \mathbf{C}_r(\mathbf{I}) \quad (\mathbf{X}) = \mathbf{C}_r(\mathbf{X})$

Comparing the indices of x in x^n and in T_{r+1} , we obtain r=n

Therefore, the coefficient of x^n in the expansion of $(1+x)^{2n}$ is

Assuming that x^n occurs in the $(k+1)^{th}$ term of the expansion of $(1+x)^{2n-1}$, we obtain $T_{k+1} = {}^{2n}C_k (1)^{2n-1-k} (x)^k = {}^{2n}C_k (x)^k$

Comparing the indices of x in x^n and in T_{k+1} , we obtain k = n

Therefore, the coefficient of x^n in the expansion of $(1+x)^{2n-1}$ is

$${}^{2n-1}C_{n} = \frac{(2n-1)!}{n!(2n-1-n)!} = \frac{(2n-1)!}{n!(n-1)!}$$
$$= \frac{2n.(2n-1)!}{2n.n!(n-1)!} = \frac{(2n)!}{2.n!n!} = \frac{1}{2} \left[\frac{(2n)!}{(n!)^{2}} \right] \dots \dots (2)$$
From (1) and (2), it is observed that
$$\frac{1}{2} {2n C_{n}} = {}^{2n-1}C_{n}$$

$\Longrightarrow^{2n} C_n = 2 \left({}^{2n-1} C_n \right)$

Therefore, the coefficient of x^n expansion of $(1+x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1+x)^{2n-1}$. Hence proved.

Question 12:

Find a positive value of m for which the coefficient of x^2 in the expansion $(1+x)^m$ is 6.

Solution 12:

4.

It is known that $(r+1)^{th}$ term, (T_{r+1}) , in the binomial expansion of $(a+b)^n$ is given by $T_{r+1} = {}^n C_r a^{n-r} b^r$.

Assuming that x^2 occurs in the $(r+1)^{th}$ term of the expansion of $(1+x)^m$, we obtain

$$T_{r+1} = {}^{m}C_{r} (1)^{m-r} (x)^{r} = {}^{m}C_{r} (x)^{r}$$

Comparing the indices of x in x^2 and in T_{r+1} , we obtain r=2

Therefore, the coefficient of x^2 is mC_2

It is given that the coefficient of x^2 in the expansion $(1+x)^m$ is 6.

$$\therefore {}^{m}C_{2} = 6$$

$$\Rightarrow \frac{m!}{2!(m-2)!} = 6$$

$$\Rightarrow \frac{m(m-1)(m-2)!}{2 \times (m-2)!} = 6$$

$$\Rightarrow m(m-1) = 12$$

$$\Rightarrow m^{2} - m - 12 = 0$$

$$\Rightarrow m^{2} - 4m + 3m - 12 = 0$$

$$\Rightarrow m(m-4) + 3(m-4) = 0$$

$$\Rightarrow (m-4)(m+3) = 0$$

$$\Rightarrow (m-4)(m+3) = 0$$

$$\Rightarrow (m-4) = 0 \text{ or } (m+3) = 0$$

$$\Rightarrow m = 4 \text{ or } m = -3$$
Thus, the positive value of m, for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6, is