Miscellaneous Exercise

Question 1:

Solve the inequality $2 \leq 3 x-4 \leq 5$

Solution 1:

$$
\begin{aligned}
& 2 \leq 3 x-4 \leq 5 \\
& \Rightarrow 2+4 \leq 3 x-4+4 \leq 5+4 \\
& \Rightarrow 6 \leq 3 x \leq 9 \\
& \Rightarrow 2 \leq x \leq 3
\end{aligned}
$$

Thus, all the real numbers, x, which are greater than or equal to 2 but less than or equal to 3 , are the solutions of the given inequality. The solution set for the given inequality is [2, 3].

Question 2:

Solve the inequality $6 \leq-3(2 x-4)<12$

Solution 2:

$$
\begin{aligned}
& 6 \leq-3(2 x-4)<12 \\
& \Rightarrow 2 \leq-(2 x-4)<4 \\
& \Rightarrow-2 \geq 2 x-4>-4 \\
& \Rightarrow 4-2 \geq 2 x>4-4 \\
& \Rightarrow 2 \geq 2 x>0 \\
& \Rightarrow 1 \geq x>0
\end{aligned}
$$

Thus, the solution set for the given inequality is $(0,1]$.

Question 3:

Solve the inequality $-3 \leq 4-\frac{7 x}{2} \leq 18$

Solution 3:

$-3 \leq 4-\frac{7 x}{2} \leq 18$
$\Rightarrow-3-4 \leq-\frac{7 x}{2} \leq 18-4$
$\Rightarrow-7 \leq-\frac{7 x}{2} \leq 14$
$\Rightarrow 7 \geq \frac{7 x}{2} \geq-14$
$\Rightarrow 1 \geq \frac{x}{2} \geq-2$
$\Rightarrow 2 \geq x \geq-4$
Thus, the solution set for the given inequality is $[-4,2]$.

Question 4:

Solve the inequality $-15<\frac{3(x-2)}{5} \leq 0$

Solution 4:

$$
\begin{aligned}
& -15<\frac{3(x-2)}{5} \leq 0 \\
& \Rightarrow-75<3(x-2) \leq 0 \\
& \Rightarrow-25<x-2 \leq 0 \\
& \Rightarrow-25+2<x \leq 2 \\
& \Rightarrow-23<x \leq 2
\end{aligned}
$$

Thus, the solution set for the given inequality is $(-23,2]$.

Question 5:

Solve the inequality $-12<4-\frac{3 x}{-5} \leq 2$

Solution 5:

$-12<4-\frac{3 x}{-5} \leq 2$
$\Rightarrow-12-4<\frac{-3 x}{-5} \leq 2-4$
$\Rightarrow-16<\frac{3 x}{5} \leq-2$
$\Rightarrow-80<3 x \leq-10$
$\Rightarrow \frac{-80}{3}<x \leq \frac{-10}{3}$
Thus, the solution set for the given inequality is $\left(\frac{-80}{3}, \frac{-10}{3}\right]$.

Question 6:

Solve the inequality $7 \leq \frac{(3 x+11)}{2} \leq 11$

Solution 6:
$7 \leq \frac{(3 x+11)}{2} \leq 11$
$\Rightarrow 14 \leq 3 x+11 \leq 22$
$\Rightarrow 14-11 \leq 3 x \leq 22-11$
$\Rightarrow 3 \leq 3 x \leq 11$
$\Rightarrow 1 \leq x \leq \frac{11}{3}$
Thus, the solution set for the given inequality is $\left[1, \frac{11}{3}\right]$.

Question 7:

Solve the inequalities and represent the solution graphically on number line:
$5 x+1>-24,5 x-1<24$

Solution 7:
$5 x+1>-24 \Rightarrow 5 x>-25$
$\Rightarrow x>-5$
$5 x-1<24 \Rightarrow 5 x<25$
$\Rightarrow x<5$
From (1) and (2), it can be concluded that the solution set for the given system of inequalities is $(-5,5)$. The solution of the given system of inequalities can be represented on number line as

Question 8:

Solve the inequalities and represent the solution graphically on number line:
$2(x-1)<x+5,3(x+2)>2-x$

Solution 8:
$2(x-1)<x+5 \Rightarrow 2 x-2<x+5 \Rightarrow 2 x-x<5+2$
$\Rightarrow x<7$.......(1)
$3(x+2)>2-x \Rightarrow 3 x+6>2-x \Rightarrow 3 x+x>2-6$
$\Rightarrow 4 x>-4$
$\Rightarrow x>-1$
From (1) and (2), it can be concluded that the solution set for the given system of inequalities is $(-1,7)$. The solution of the given system of inequalities can be represented on number line as

Question 9:

Solve the following inequalities and represent the solution graphically on number line:
$3 x-7>2(x-6), 6-x>11-2 x$

Solution 9:

$$
\begin{align*}
& 3 x-7>2(x-6) \Rightarrow 3 x-7>2 x-12 \Rightarrow 3 x-2 x>-12+7 \\
& \Rightarrow x>-5 \ldots \ldots . .(1) \\
& -6-x>11-2 x \Rightarrow-x+2 x>11-6 \\
& \Rightarrow x>5 \ldots \ldots .(2) \tag{2}
\end{align*}
$$

From (1) and (2), it can be concluded that the solution set for the given system of inequalities is $(5, \infty)$. The solution of the given system of inequalities can be represented on number line as

Question 10:

Solve the inequalities and represent the solution graphically on number line:
$5(2 x-7)-3(2 x+3) \leq 0,2 x+19 \leq 6 x+47$

Solution 10:

$5(2 x-7)-3(2 x+3) \leq 0 \Rightarrow 10 x-35-6 x-9 \leq 0 \Rightarrow 4 x-44 \leq 0 \Rightarrow 4 x \leq 44$
$\Rightarrow x \leq 11$

$$
\begin{align*}
& 2 x+19 \leq 6 x+47 \Rightarrow 19-47 \leq 6 x-2 x \Rightarrow-28 \leq 4 x \\
& \Rightarrow-7 \leq x \ldots \ldots \text { (2) } \tag{2}
\end{align*}
$$

From (1) and (2), it can be concluded that the solution set for the given system of inequalities is $[-7,11]$. The solution of the given system of inequalities can be represented on number line as

Question 11:

A solution is to be kept between $68^{\circ} F$ and $77^{\circ} F$. What is the range in temperature in degree Celsius (C) if the Celsius/Fahrenheit (F) conversion formula is given by $F=\frac{9}{5} C+32$?

Solution 11:

Since the solution is to be kept between $68^{\circ} F$ and $77^{\circ} F, 68<F<77$
Putting $F=\frac{9}{5} C+32$, we obtain
$68<\frac{9}{5} C+32<77$
$\Rightarrow 68-32<\frac{9}{5} C<77-32$
$\Rightarrow 36<\frac{9}{5} C<45$
$\Rightarrow 36 \times \frac{5}{9}<C<45 \times \frac{5}{9}$
$\Rightarrow 20<C<25$
Thus, the required range of temperature in degree Celsius is between $20^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$.

Question 12:

A solution of 8% boric acid is to be diluted by adding a 2% boric acid solution to it. The resulting mixture is to be more than 4% but less than 6% boric acid. If we have 640 litres of the 8% solution, how many litres of the 2% solution will have to be added?

Solution 12:

Let x litres of 2% boric acid solution is required to be added.
Then, total mixture $=(x+640)$ litres
This resulting mixture is to be more than 4% but less than 6% boric acid.
$\therefore 2 \% x+8 \%$ of $640>4 \%$ of $(x+640)$ and $x+8 \%$ of $640<6 \%$ of $(x+640)$
$2 \% x+8 \%$ of $640>4 \%$ of $(x+640)$
$\Rightarrow \frac{2}{100} x+\frac{8}{100}(640)>\frac{4}{100}(x+640)$
$\Rightarrow 2 x+5120>4 x+2560$
$\Rightarrow 5120-2560>4 x-2 x$
$\Rightarrow 5120-2560>2 x$
$\Rightarrow 2560>2 x$
$\Rightarrow 1280>x$
$2 \% x+8 \%$ of $640<6 \%$ of $(x+640)$
$\frac{2}{100} x+\frac{8}{100}(640)<\frac{6}{100}(x+640)$
$\Rightarrow 2 x+5120<6 x+3840$
$\Rightarrow 5120-3840<6 x-2 x$
$\Rightarrow 5120-3840<6 x-2 x$
$\Rightarrow 1280<4 x$
$\Rightarrow 320<x$
$\therefore 320<x<1280$
Thus, the number of litres of 2% of boric acid solution that is to be added will have to be more than 320 litres but less than 1280 litres.

Question 13:

How many litres of water will have to be added to 1125 litres of the 45% solution of acid so that the resulting mixture will contain more than 25% but less than 30% acid content?

Solution 13:

Let x litres of water is required to be added.
Then, total mixture $=(x+1125)$ litres
It is evident that the amount of acid contained in the resulting mixture is 45% of 1125 litres.
This resulting mixture will contain more than 25% but less than 30% acid content.
$\therefore 30 \%$ of $(1125+x)>45 \%$ of 1125
And, 25% of $(1125+x)<45 \%$ of 1125
30% of $(1125+x)>45 \%$ of 1125
$\Rightarrow \frac{30}{100}(1125+x)>\frac{45}{100} \times 1125$
$\Rightarrow 30(1125+x)>45 \times 1125$
$\Rightarrow 30 \times 1125+30 x>45 \times 1125$
$\Rightarrow 30>45 \times 1125-30 \times 1125$
$\Rightarrow 30 x>(45-30) \times 1125$
$\Rightarrow x>\frac{15 \times 1125}{30}=562.5$
25% of $(1125+x)<45 \%$ of 1125
$\Rightarrow \frac{25}{100}(1125+x)<\frac{45}{100} \times 1125$
$\Rightarrow 25(1125+x)>45 \times 1125$
$\Rightarrow 25 \times 1125+25 x>45 \times 1125$

$$
\begin{aligned}
& \Rightarrow 25 x>45 \times 1125-25 \times 1125 \\
& \Rightarrow 25 x>(45-25) \times 1125 \\
& \Rightarrow x>\frac{20 \times 1125}{25}=900 \\
& \therefore 562.5<x<900
\end{aligned}
$$

Thus, the required number of litres of water that is to be added will have to be more than 562.5 but less than 900 .

Question 14:

IQ of a person is given by the formula $I Q=\frac{M A}{C A} \times 100$,
Where MA is mental age and CA is chronological age. If $80 \leq I Q \leq 140$ for a group of 12 years old children, find the range of their mental age.

Solution 14:

It is given that for a group of 12 years old children,
$80 \leq I Q \leq 140$ \qquad (i)

For a group of 12 years old children, $\mathrm{CA}=12$ years
$\mathrm{IQ}=\frac{\mathrm{MA}}{12} \times 100$
Putting this value of IQ in (i), we obtain
$80 \leq \frac{\text { MA }}{12} \times 100 \leq 140$
$\Rightarrow 80 \times \frac{12}{100} \leq \mathrm{MA} \leq 140 \times \frac{12}{100}$
$\Rightarrow 9.6 \leq \mathrm{MA} \leq 16.8$
Thus, the range of mental age of the group of 12 years old children is $\Rightarrow 9.6 \leq \mathrm{MA} \leq 16.8$.

