Exercise 3.1

Question 1:

Find the radian measures corresponding to the following degree measures:
(i) 25°
(ii) $-47^{\circ} 30^{\prime}$
(iii) 240°
(iv) 520°

Solution 1:
(i) 25°

We know that $180^{\circ}=\pi$ radian
$\therefore 25^{\circ}=\frac{\pi}{180} \times 25$ radian $=\frac{5 \pi}{36}$ radian
(ii) $-47^{\circ} 30^{\prime}$
$-47^{\circ} 30^{\prime}-47 \frac{1}{2}$
$=\frac{-95}{2}$ degree
Since $180^{\circ}=\pi$ radian
$\frac{-95}{2}$ degree $=\frac{\pi}{180} \times\left(\frac{-95}{2}\right)$ radian $=\left(\frac{-19}{36 \times 2}\right) \pi$ radian $=\frac{-19}{72} \pi$ radian
$\therefore-47^{\circ} 30^{\prime}=\frac{-19}{72} \pi$ radian
(iii) 240°

We know that $180^{\circ}=\pi$ radian
$\therefore 240^{\circ}=\frac{\pi}{180} \times 240$ radian $=\frac{4}{3} \pi$ radian
(iv) 520°

We know that $180^{\circ}=\pi$ radian
$\therefore 520^{\circ}=\frac{\pi}{180} \times 520$ radian $=\frac{26 \pi}{9}$ radian

Question 2:

Find the degree measures corresponding to the following radian measures
(Use $\pi=\frac{22}{7}$)
(i) $\frac{11}{16}$
(ii) -4
(iii) $\frac{5 \pi}{3}$
(iv) $\frac{7 \pi}{6}$

Solution 2:

(i) $\frac{11}{16}$

We know that π radian $=180^{\circ}$
$\therefore \frac{11}{16}$ radian $=\frac{180}{\pi} \times \frac{11}{16}$ degree $=\frac{45 \times 11}{\pi \times 4}$ degree
$=\frac{45 \times 11 \times 7}{22 \times 4}$ degree $=\frac{315}{8}$ degree
$=36 \frac{3}{8}$ degree
$=39^{\circ}+\frac{3 \times 60}{8}$ minutes $\quad\left[1^{\circ}=60^{\prime}\right]$
$=39^{\circ}+22^{\prime}+\frac{1}{2}$ minutes
$=39^{\circ} 22^{\prime} 30^{\prime \prime} \quad\left[1^{\prime}=60^{\prime \prime}\right]$
(ii) -4

We know that π radian $=180^{\circ}$
-4 radian $=\frac{180}{\pi} \times(-4)$ degree $=\frac{180 \times 7(-4)}{22}$ degree
$=\frac{-2520}{11}$ degree $=-229 \frac{1}{11}$ degree
$=-229^{\circ}+\frac{1 \times 60}{11}$ minutes $\quad\left[1^{\circ}=60^{\prime}\right]$
$=-229^{\circ}+5^{\prime}+\frac{5}{11}$ minutes
$=-229^{\circ} 5^{\prime} 27^{\prime \prime} \quad\left[1^{\prime}=60^{\prime \prime}\right]$
(iii) $\frac{5 \pi}{3}$

We know that π radian $=180^{\circ}$
$\therefore \frac{5 \pi}{3}$ radian $=\frac{180}{\pi} \times \frac{5 \pi}{3}$ degree $=300^{\circ}$
(iv) $\frac{7 \pi}{6}$

We know that π radian $=180^{\circ}$
$\therefore \frac{7 \pi}{6}$ radian $=\frac{180}{\pi} \times \frac{7 \pi}{6}=210^{\circ}$

Question 3:

A wheel makes 360 revolutions in one minute. Through how many radians does it turn in one second?

Solution 3:

Number of revolutions made by the wheel in 1 minute $=360$
\therefore Number of revolutions made by the wheel in 1 second $=\frac{360}{60}=6$
In one complete revolution, the wheel turns an angle of 2π radian.
Hence, in 6 complete revolutions, it will turn an angle of $6 \times 2 \pi$ radian,
i.e., 12π radian

Thus, in one second, the wheel turns an angle of 12π radian.

Question 4:

Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of length 22 cm .

$$
\left(\mathrm{Use} \pi=\frac{22}{7}\right)
$$

Solution 4:

We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre, then
$\theta=\frac{1}{r}$

Therefore, for $r=100 \mathrm{~cm}, l=22 \mathrm{~cm}$, we have
$\theta=\frac{22}{100}$ radian $=\frac{180}{\pi} \times \frac{22}{100}$ degree $=\frac{180 \times 7 \times 22}{22 \times 100}$ degree
$=\frac{126}{10}$ degree $=12 \frac{3}{5}$ degree $=12^{\circ} 36^{\prime} \quad\left[1^{\circ}=60^{\prime}\right]$
Thus, the required angle is $12^{\circ} 36^{\prime}$.

Question 5:

In a circle of diameter 40 cm , the length of a chord is 20 cm . Find the length of minor arc of the chord.

Solution 5:

Diameter of the circle $=40 \mathrm{~cm}$
\therefore Radius (r) of the circle $=\frac{40}{2} \mathrm{~cm}=20 \mathrm{~cm}$
Let AB be a chord (length $=20 \mathrm{~cm}$) of the circle.

In $\triangle O A B, O A=O B=$ Radius of circle $=20 \mathrm{~cm}$
Also, $\mathrm{AB}=20 \mathrm{~cm}$
Thus, $\triangle O A B$ is an equilateral triangle.
$\therefore \theta=60^{\circ}=\frac{\pi}{3}$ radian
We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ radian at the centre then
$\theta=\frac{l}{r}$
$\frac{\pi}{3}=\frac{\widehat{A B}}{20} \Rightarrow \widehat{A B}=\frac{20 \pi}{3} \mathrm{~cm}$
Thus, the length of the minor arc of the chord is $\frac{20 \pi}{3} \mathrm{~cm}$.

Question 6:

If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii.

Solution 6:

Let the radii of the two circles be r_{1} and r_{2}. Let an arc of length l subtend an angle of 60° at the centre of the circle of radius r_{1}, while let an arc of length/subtend an angle of 75° at the centre of the circle of radius r_{2}.
Now, $60^{\circ}=\frac{\pi}{3}$ radian and $75^{\circ}=\frac{5 \pi}{12}$ radian
We know that in a circle of radius r unit, if an arc of length l unit subtends an angle θ. radian at the centre then
$\theta=\frac{l}{r}$ or $l=r \theta$
$\therefore l=\frac{r_{1} \pi}{3}$ and $l=\frac{r_{2} 5 \pi}{12}$
$\Rightarrow \frac{r_{1} \pi}{3}=\frac{r_{2} 5 \pi}{12}$
$\Rightarrow r_{1}=\frac{r_{2} 5}{4}$
$\Rightarrow \frac{r_{1}}{r_{2}}=\frac{5}{4}$
Thus, the ratio of the radii is 5:4.

Question 7:

Find the angle in radian through which a pendulum swings if its length is 75 cm and the tip describes an arc of length.
(i) 10 cm
(ii) 15 cm
(iii) 21 cm

Solution 7:

We know that in a circle of radius r unit, if an arc of length l unit subtends
An angle θ radian at the centre, then $\theta=\frac{l}{r}$
It is given that $r=75 \mathrm{~cm}$
(i) Here, $l=10 \mathrm{~cm}$
$\theta=\frac{10}{75}$ radian $=\frac{2}{15}$ radian
(ii) Here, $l=15 \mathrm{~cm}$
$\theta=\frac{15}{75}$ radian $=\frac{1}{5}$ radian
(iii) Here, $l=21 \mathrm{~cm}$
$\theta=\frac{21}{75}$ radian $=\frac{7}{25}$ radian

