Exercise 2.2

Question 1:

Let $A=\{1,2,3 \ldots 14\}$. Define a relation R from A to A by $R=\{(x, y): 3 x-y=0\}$, where $x, y \in A$. Write down its domain, codomain and range.

Solution 1:

The relation R from A to A is given as $R=\{(x, y): 3 x-y=0$, where $x, y \in A\}$
i.e., $R=\{(x, y): 3 x=y$, where $x, y \in A\}$
$\therefore R=\{(1,3),(2,6),(3,9),(4,12)\}$
The domain of R is the set of all first elements of the ordered pairs in the relation.
\therefore Domain of $R=\{1,2,3,4\}$
The whole set A is he codomain of the relation R .
\therefore Codomain of $R=A=\{1,2,3 \ldots . .14\}$
The range of R is the set of all second elements of the ordered pairs in the relation.
\therefore Range of $R=\{3,6,9,12\}$

Question 2:

Define a relation R on the set \mathbf{N} of natural numbers by $R=\{(x, y): y=x+5$, x is a natural number less than $4 ; x, y \in \mathbf{N}\}$. Depict this relationship using roster form. Write down the domain and the range.

Solution 2:

$R=\{(x, y): y=x+5, x$ is a natural number less than $4, x, y \in \mathbf{N}\}$
The natural numbers less than 4 are 1,2 , and 3 .
$\therefore R=\{(1,6),(2,7),(3,8)\}$
The domain of R is the set of all first elements of the ordered pairs in the relation.
\therefore Domain of $R=\{1,2,3\}$
The range of R is the set of all second elements of the ordered pairs in the relation.
\therefore Range of $R=\{6,7,8\}$

Question 3:

$A=\{1,2,3,5\}$ and $B=\{4,6,9\}$. Define a relation R from A to B by $R=\{(x, y)$: the difference between x and y is odd; $x \in A, y \in B\}$. Write R in roster form.

Solution 3:

$A=\{1,2,3,5\}$ and $B=\{4,6,9\}$
$R=\{(x, y)$:the difference between x and y isodd; $x \in A, y \in B\}$
$\therefore R=\{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)\}$

Question 4:

The given figure shows a relationship between the sets P and Q . Write this relation
(i) in set-builder form
(ii) in roster form.

What is its domain and range?

Solution 4:

According to the given figure, $P=\{5,6,7\}, Q=\{3,4,5\}$
(i) $R=\{(x, y): y=x-2 ; x \in P\}$ or $R=\{(x, y): y=x-2$ for $x=5,6,7\}$
(ii) $R=\{(5,3),(6,4),(7,5)\}$

Domain of $R=\{5,6,7\}$
Range of $R=\{3,4,5\}$

Question 5:

Let $A=\{1,2,3,4,6\}$. Let R be the relation on A defined by $\{(a, b): a, b \in A, b$ is exactly divisible bya\}.
(i) Write R in roster form
(ii) Find the domain of R
(iii) Find the range of R.

Solution 5:

$A=\{1,2,3,4,6\}, R=\{(a, b): a, b \in A, b$ is exactly divisible by $a\}$
(i) $R=\{(1,1),(1,2),(1,3),(1,4),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(6,6)\}$
(ii) Domain of $R=\{1,2,3,4,6\}$
(iii) Range of $R=\{1,2,3,4,6\}$

Question 6:

Determine the domain and range of the relation R defined by $R=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$.

Solution 6:

$R=\{(x, x+5): x \in\{0,1,2,3,4,5\}\}$
$\therefore R=\{(0,5),(1,6),(2,7),(3,8),(4,9),(5,10)\}$
\therefore Domain of $R=\{0,1,2,3,4,5\}$
Range of $R=\{5,6,7,8,9,10\}$

Question 7:

Write the relation $R=\left\{\left(x, x^{3}\right): x\right.$ is a prime number less than 10$\}$ in roster form.

Solution 7:

$R=\left\{\left(x, x^{3}\right): x\right.$ is a prime number less than 10$\}$. The prime numbers less than 10 are 2,3,5 and 7.
$\therefore R=\{(2,8),(3,27),(5,125),(7,343)\}$

Question 8:

Let $A=\{x, y, z\}$ and $B=\{1,2\}$. Find the number of relations from A to B.

Solution 8:

It is given that $A=\{x, y, z\}$ and $B=\{1,2\}$.
$\therefore A \times B=\{(x, 1),(x, 2),(y, 1),(y, 2),(z, 1),(z, 2)\}$
Since $n(A \times B)=6$, the number of subsets of $A \times B$ is 2^{6}.
Therefore, the number of relations from A to B is 2^{6}.

Question 9:

Let R be the relation on \mathbf{Z} defined by $R=\{(a, b): a, b \in \mathbf{Z}, a-b$ is an integer $\}$. Find the domain and range of R.

Solution 9:

$R=\{(a, b): a, b \in \mathbf{Z}, a-b$ is aninteger $\}$
It is known that the difference between any two integers is always an integer.
\therefore Domain of $\mathrm{R}=\mathbf{Z}$
Range of $\mathrm{R}=\mathbf{Z}$

