Exercise 2.2

Question 1:

Let $A = \{1, 2, 3...14\}$. Define a relation R from A to A by $R = \{(x, y): 3x - y = 0\}$, where $x, y \in A$. Write down its domain, codomain and range.

Solution 1:

The relation R from A to A is given as $R = \{(x, y): 3x - y = 0, \text{ where } x, y \in A\}$

i.e., $R = \{(x, y) : 3x = y, \text{ where } x, y \in A\}$

 $\therefore R = \{(1,3), (2,6), (3,9), (4,12)\}$

The domain of R is the set of all first elements of the ordered pairs in the relation.

:. Domain of $R = \{1, 2, 3, 4\}$

The whole set A is he codomain of the relation R.

:. Codomain of $R = A = \{1, 2, 3, ..., 14\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

: Range of $R = \{3, 6, 9, 12\}$

Question 2:

Define a relation R on the set N of natural numbers by $R = \{(x, y) : y = x+5, x \text{ is a natural number less than } 4; x, y \in \mathbb{N}\}$. Depict this relationship using roster form. Write down the domain and the range.

Solution 2:

 $R = \{(x, y) : y = x + 5, x \text{ is a natural number less than } 4, x, y \in \mathbb{N}\}$

The natural numbers less than 4 are 1, 2, and 3.

$$\therefore R = \{(1,6), (2,7), (3,8)\}$$

The domain of R is the set of all first elements of the ordered pairs in the relation.

 \therefore Domain of $R = \{1, 2, 3\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

:. Range of $R = \{6, 7, 8\}$

Question 3:

 $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$. Define a relation R from A to B by $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$. Write R in roster form.

Solution 3:

 $A = \{1, 2, 3, 5\} \text{ and } B = \{4, 6, 9\}$ $R = \{(x, y): \text{the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$ $\therefore R = \{(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)\}$

Question 4:

The given figure shows a relationship between the sets P and Q. Write this relation (i) in set-builder form

(ii) in roster form.

What is its domain and range?

Solution 4:

According to the given figure, $P = \{5, 6, 7\}, Q = \{3, 4, 5\}$ (i) $R = \{(x, y) : y = x - 2; x \in P\}$ or $R = \{(x, y) : y = x - 2$ for $x = 5, 6, 7\}$ (ii) $R = \{(5,3), (6,4), (7,5)\}$ Domain of $R = \{5, 6, 7\}$ Range of $R = \{3, 4, 5\}$

Question 5:

Let $A = \{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by $\{(a,b): a, b \in A, b \text{ is exactly divisible by a}\}$. (i) Write R in roster form (ii) Find the domain of R (iii) Find the range of R.

Solution 5:

 $A = \{1, 2, 3, 4, 6\}, R = \{(a, b): a, b \in A, b \text{ is exactly divisible by } a\}$ (i) $R = \{(1, 1), (1, 2), (1, 3), (1, 4), (1, 6), (2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4), (6, 6)\}$ (ii) Domain of $R = \{1, 2, 3, 4, 6\}$ (iii) Range of $R = \{1, 2, 3, 4, 6\}$

Question 6:

Determine the domain and range of the relation R defined by $R = \{(x, x+5) : x \in \{0, 1, 2, 3, 4, 5\}\}$.

Solution 6:

 $R = \left\{ \left(x, x+5 \right) : x \in \{0, 1, 2, 3, 4, 5\} \right\}$

 $\therefore R = \{(0,5), (1,6), (2,7), (3,8), (4,9), (5,10)\}$

:. Domain of $R = \{0, 1, 2, 3, 4, 5\}$

Range of $R = \{5, 6, 7, 8, 9, 10\}$

Question 7:

Write the relation $R = \{(x, x^3) : x \text{ is a prime number less than } 10\}$ in roster form.

Solution 7: $R = \{(x, x^3): x \text{ is a prime number less than } 10\}$. The prime numbers less than 10 are 2, 3, 5 and 7. $\therefore R = \{(2,8), (3,27), (5,125), (7,343)\}$

Question 8:

Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B.

Solution 8:

It is given that $A = \{x, y, z\}$ and $B = \{1, 2\}$. $\therefore A \times B = \{(x, 1), (x, 2), (y, 1), (y, 2), (z, 1), (z, 2)\}$ Since $n(A \times B) = 6$, the number of subsets of $A \times B$ is 2^6 . Therefore, the number of relations from A to B is 2^6 .

Question 9:

Let R be the relation on Z defined by $R = \{(a,b): a, b \in \mathbb{Z}, a-b \text{ is an integer}\}$. Find the domain and range of R.

Solution 9:

 $R = \{(a,b): a, b \in \mathbb{Z}, a-b \text{ is an integer}\}$

It is known that the difference between any two integers is always an integer.

 $\therefore \text{ Domain of } \mathbf{R} = \mathbf{Z}$ Range of $\mathbf{R} = \mathbf{Z}$