Kopykitab Same textbooks, kltck away

NCERT Class 12 Maths

Solutions

Exercise 9.5

In each of the Exercises 1 to 5 , show that the given differential equation is homogeneous and solve each of them:

1. $\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$

Sol. The given D.E. is

$$
\begin{equation*}
\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x \tag{i}
\end{equation*}
$$

This D.E. looks to be homogeneous as degree of each coefficient of $d x$ and $d y$ is same throughout (here 2).
From (i), $\quad \frac{d y}{d x}=\frac{x^{2}+y^{2}}{x^{2}+x y}=\frac{x^{2}\left(1+\frac{y^{2}}{x^{2}}\right)}{x^{2}\left(1+\frac{y}{x}\right)}$
or $\quad \frac{d y}{d x}=\frac{1+\left(\frac{y}{x}\right)^{2}}{1+\left(\frac{y}{x}\right)}=\mathrm{F}\left(\frac{y}{x}\right)$
$\therefore \quad$ The given D.E. is homogeneous.
Put $\frac{\boldsymbol{y}}{\boldsymbol{x}}=\boldsymbol{v}$. Therefore $y=v x$.
$\therefore \quad \frac{d y}{d x}=v \cdot 1+x \frac{d v}{d x}=v+x \frac{d v}{d x}$
Putting these values of $\frac{y}{x}$ and $\frac{d y}{d x}$ in (ii), we have

$$
v+x \frac{d v}{d x}=\frac{1+v^{2}}{1+v}
$$

Transposing v to R.H.S., $x \frac{d v}{d x}=\frac{1+v^{2}}{1+v}-v$
$\Rightarrow \quad x \frac{d v}{d x}=\frac{1+v^{2}-v-v^{2}}{1+v}=\frac{1-v}{1+v}$
Cross-multiplying $\quad x(1+v) d v=(1-v) d x$
Separating variables $\frac{1+v}{1-v} d v=\frac{d x}{x}$
Integrating both sides $\int \frac{1+v}{1-v} d v=\int \frac{1}{x} d x$
$\Rightarrow \int \frac{1+1-1+v}{1-v} d v=\log x+c \Rightarrow \int \frac{2-(1-v)}{1-v} d v=\log x+c$
$\Rightarrow \int\left(\frac{2}{1-v}-1\right) d v=\log x+c \Rightarrow \frac{2 \log (1-v)}{-1}-v=\log x+c$
$\Rightarrow \quad-2 \log (1-v)-v=\log x+c$
Put $v=\frac{y}{x}, \quad-2 \log \left(1-\frac{y}{x}\right)-\frac{y}{x}=\log x+c$
Dividing by $-1,2 \log \left(\frac{x-y}{x}\right)+\frac{y}{x}=-\log x-c$
$\Rightarrow \log \left(\frac{x-y}{x}\right)^{2}+\log x=-\frac{y}{x}-c \Rightarrow \log \left(\frac{(x-y)^{2} x}{x^{2}}\right)=-\frac{y}{x}-c$
$\Rightarrow \frac{(x-y)^{2}}{x}=e^{-\frac{y}{x}-c}=e^{-\frac{y}{x}} e^{-c} \Rightarrow(x-y)^{2}=\mathrm{C} x e^{-\frac{y}{x}}$ where $\mathrm{C}=e^{-c}$
which is the required solution.
2. $y^{\prime}=\frac{x+y}{x}$

Sol. The given differential equation is $y^{\prime}=\frac{x+y}{x}$
$\Rightarrow \frac{d y}{d x}=\frac{x}{x}+\frac{y}{x} \quad \Rightarrow \quad \frac{d y}{d x}=1+\frac{y}{x}=f\left(\frac{y}{x}\right)$
\therefore Differential equation (i) is homogeneous.

Put $\frac{y}{x}=v \quad \therefore \quad y=v x$
$\therefore \quad \frac{d y}{d x}=v \cdot 1+x \frac{d v}{d x}=v+x \frac{d v}{d x}$
Putting these values of $\frac{d y}{d x}$ and y in (i),
$v+x \frac{d v}{d x}=1+v \quad \Rightarrow \quad x \frac{d v}{d x}=1 \quad \Rightarrow x d v=d x$
Separating variables, $d v=\frac{d x}{x}$
Integrating both sides, $\int 1 d v=\int \frac{d x}{x} \quad v=\log |x|+c$
Putting $v=\frac{y}{x}, \frac{y}{x}=\log |x|+c \quad \therefore \quad y=x \log |x|+c x$ which is the required solution.
3. $(x-y) d y-(x+y) d x=0$

Sol. The given differential equation is

$$
\begin{equation*}
(x-y) d y-(x+y) d x=0 \tag{i}
\end{equation*}
$$

Differential equation (i) looks to be homogeneous because each coefficient of $d x$ and $d y$ is of degree 1 .
From (i), $\quad(x-y) d y=(x+y) d x$
$\therefore \frac{d y}{d x}=\frac{x+y}{x-y}=\frac{x\left(1+\frac{y}{x}\right)}{x\left(1-\frac{y}{x}\right)}$ or $\frac{d y}{d x}=\frac{1+\frac{y}{x}}{1-\frac{y}{x}}=f\left(\frac{y}{x}\right)$
\therefore Differential equation (i) is homogeneous.
Put $\frac{y}{x}=v$

$$
\therefore \quad y=v x
$$

$\therefore \quad \frac{d y}{d x}=v \cdot 1+x \frac{d v}{d x}=v+x \frac{d v}{d x}$
Putting these values in (ii), $v+x \frac{d v}{d x}=\frac{1+v}{1-v}$
Shifting v to R.H.S., $x \frac{d v}{d x}=\frac{1+v}{1-v}-v=\frac{1+v-v+v^{2}}{1-v}$
$\Rightarrow x \frac{d v}{d x}=\frac{1+v^{2}}{1-v}$
Cross-multiplying, $\quad x(1-v) d v=\left(1+v^{2}\right) d x$
Separating variables, $\frac{(1-v)}{1+v^{2}} d v=\frac{d x}{x}$
Integrating both sides, $\int \frac{1-v}{1+v^{2}} d v=\int \frac{1}{x} d x+c$

$$
\begin{aligned}
& \Rightarrow \int \frac{1}{1+v^{2}} d v-\int \frac{v}{1+v^{2}} d v=\int \frac{1}{x} d x+c \\
& \Rightarrow \tan ^{-1} v-\frac{1}{2} \int \frac{2 v}{1+v^{2}} d v=\log x+c \\
& \Rightarrow \tan ^{-1} v-\frac{1}{2} \log \left(1+v^{2}\right)=\log x+c \quad\left[\because \int \frac{f^{\prime}(v)}{f(v)} d v=\log f(v)\right] \\
& \text { Putting } v=\frac{y}{x}, \tan ^{-1} \frac{y}{x}-\frac{1}{2} \log \left(1+\frac{y^{2}}{x^{2}}\right)=\log x+c \\
& \Rightarrow \quad \tan ^{-1} \frac{y}{x}-\frac{1}{2} \log \left(\frac{x^{2}+y^{2}}{x^{2}}\right)=\log x+c \\
& \Rightarrow \quad \tan ^{-1} \frac{y}{x}-\frac{1}{2}\left[\log \left(x^{2}+y^{2}\right)-\log x^{2}\right]=\log x+c \\
& \Rightarrow \tan ^{-1} \frac{y}{x}-\frac{1}{2} \log \left(x^{2}+y^{2}\right)+\frac{1}{2} 2 \log x=\log x+c \\
& \Rightarrow \tan ^{-1} \frac{y}{x}-\frac{1}{2} \log \left(x^{2}+y^{2}\right)=c \Rightarrow \tan -\frac{y}{x}=\frac{1}{2} \log \left(x^{2}+y^{2}\right)+c \\
& \text { which is the required solution. }
\end{aligned}
$$

4. $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$

Sol. The given differential equation is

$$
\begin{equation*}
\left(x^{2}-y^{2}\right) d x+2 x y d y=0 \tag{i}
\end{equation*}
$$

This differential equation looks to be homogeneous because degree of each coefficient of $d x$ and $d y$ is same (here 2).
From (i), $2 x y d y=-\left(x^{2}-y^{2}\right) d x$

$$
\Rightarrow \quad \frac{d y}{d x}=\frac{-\left(x^{2}-y^{2}\right)}{2 x y}=\frac{y^{2}-x^{2}}{2 x y}
$$

Dividing every term in the numerator and denominator of R.H.S. by x^{2},

$$
\begin{equation*}
\frac{d y}{d x}=\frac{\left(\frac{y}{x}\right)^{2}-1}{2 \frac{y}{x}}=f\left(\frac{y}{x}\right) \tag{ii}
\end{equation*}
$$

\therefore The given differential equation is homogeneous.
Put $\frac{y}{x}=v$. Therefore $y=v x \therefore \quad \frac{d y}{d x}=v .1+x \frac{d v}{d x}=v+x \frac{d v}{d x}$ Putting these values of $\frac{y}{x}$ and $\frac{d y}{d x}$ in differential equation (ii), we have

$$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{v^{2}-1}{2 v} \quad \Rightarrow \quad x \frac{d v}{d x}=\frac{v^{2}-1}{2 v}-v=\frac{v^{2}-1-2 v^{2}}{2 v} \\
& \Rightarrow \quad x \frac{d v}{d x}=\frac{-v^{2}-1}{2 v}=-\frac{\left(v^{2}+1\right)}{2 v} \quad \therefore x 2 v d v=-\left(v^{2}+1\right) d x
\end{aligned}
$$

$\Rightarrow \quad \frac{2 v d v}{v^{2}+1}=-\frac{d x}{x}$
Integrating both sides, $\int \frac{2 v}{v^{2}+1} d v=-\int \frac{1}{x} d x$
$\Rightarrow \quad \log \left(v^{2}+1\right)=-\log x+\log c$
$\Rightarrow \log \left(v^{2}+1\right)+\log x=\log c$
$\Rightarrow \quad \log \left(v^{2}+1\right) x=\log c$
$\Rightarrow \quad\left(v^{2}+1\right) x=c$
Put $v=\frac{y}{x},\left(\frac{y^{2}}{x^{2}}+1\right) x=c \quad$ or $\quad\left(\frac{y^{2}+x^{2}}{x^{2}}\right) x=c$ or $\quad \frac{y^{2}+x^{2}}{x}=c \quad$ or $\quad x^{2}+y^{2}=c x$
which is the required solution.
5. $x^{2}\left(\frac{d y}{d x}\right)=x^{2}-2 y^{2}+x y$

Sol. The given differential equation is $x^{2} \frac{d y}{d x}=x^{2}-2 y^{2}+x y$
The given differential equation looks to be Homogeneous as all terms in x and y are of same degree (here 2).

Dividing by $x^{2}, \quad \frac{d y}{d x}=\frac{x^{2}}{x^{2}}-\frac{2 y^{2}}{x^{2}}+\frac{x y}{x^{2}}$
or

$$
\begin{align*}
\frac{d y}{d x} & =1-2\left(\frac{y}{x}\right)^{2}+\left(\frac{y}{x}\right) \tag{i}\\
& =\mathrm{F}\left(\frac{y}{x}\right)
\end{align*}
$$

\therefore Differential equation (i) is homogeneous.
So put $\frac{y}{x}=v \quad \therefore \quad y=v x$
$\therefore \quad \frac{d y}{d x}=v \cdot 1+x \frac{d v}{d x}=v+x \frac{d v}{d x}$
Putting these values of $\frac{y}{x}$ and $\frac{d y}{d x}$ in (i),
$v+x \frac{d v}{d x}=1-2 v^{2}+v$ or $x \frac{d v}{d x}=1-2 v^{2} \Rightarrow x d v=\left(1-2 v^{2}\right) d x$
Separating variables, $\frac{d v}{1-2 v^{2}}=\frac{d x}{x}$

Integrating both sides, $\int \frac{1}{1^{2}-(\sqrt{2} v)^{2}} d v=\int \frac{1}{x} d x$
$\Rightarrow \frac{1}{2.1} \frac{\log \left|\frac{1+\sqrt{2} v}{1-\sqrt{2} v}\right|}{\sqrt{2} \rightarrow \text { Coefficient of } v}=\log |x|+c$

$$
\left[\because \int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|\right]
$$

Putting $v=\frac{y}{x}, \quad \frac{1}{2 \sqrt{2}} \log \left|\frac{1+\sqrt{2} \frac{y}{x}}{1-\sqrt{2} \frac{y}{x}}\right|=\log |x|+c$
Multiplying within logs by x in L.H.S.,

$$
\frac{1}{2 \sqrt{2}} \log \left|\frac{x+\sqrt{2} y}{x-\sqrt{2} y}\right|=\log |x|+c
$$

In each of the Exercises 6 to 10, show that the given D.E. is homogeneous and solve each of them:
6. $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$

Sol. The given differential equation is $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$ or $x d y=y d x+\sqrt{x^{2}+y^{2}} \cdot d x$

Dividing by $d x$

$$
x \frac{d y}{d x}=y+\sqrt{x^{2}+y^{2}} \text { or } x \frac{d y}{d x}=y+x \sqrt{1+\left(\frac{y}{x}\right)^{2}}
$$

Dividing by $x, \frac{d y}{d x}=\frac{y}{x}+\sqrt{1+\left(\frac{y}{x}\right)^{2}}=\mathrm{F}\left(\frac{y}{x}\right)$
\therefore Given differential equation is homogeneous.
Put $\frac{y}{x}=v$ i.e., $y=v x$.
Differentiating w.r.t. $x, \frac{d y}{d x}=v+x \frac{d v}{d x}$
Putting these values of $\frac{y}{x}$ and $\frac{d y}{d x}$ in (i), it becomes

$$
\begin{array}{rlrl}
v+x \frac{d v}{d x} & =v+\sqrt{1+v^{2}} \quad \text { or } \quad x \frac{d v}{d x}=\sqrt{1+v^{2}} \\
\therefore & x d v & =\sqrt{1+v^{2}} d x \quad \text { or } \quad \frac{d v}{\sqrt{1+v^{2}}}=\frac{d x}{x}
\end{array}
$$

Integrating both sides, $\int \frac{d v}{\sqrt{1+v^{2}}}=\int \frac{d x}{x}$
$\therefore \quad \log \left(v+\sqrt{1+v^{2}}\right)=\log x+\log c$
Replacing v by $\frac{y}{x}$, we have

$$
\begin{aligned}
\log \left(\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}\right) & =\log c x \quad \text { or } \quad \frac{y+\sqrt{x^{2}+y^{2}}}{x}=c x \\
y+\sqrt{x^{2}+y^{2}} & =c x^{2}
\end{aligned}
$$

or
which is the required solution.
7. $\left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y d x=\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x d y$

Sol. The given D.E. is

$$
\begin{aligned}
& \left\{x \cos \left(\frac{y}{x}\right)+y \sin \left(\frac{y}{x}\right)\right\} y d x=\left\{y \sin \left(\frac{y}{x}\right)-x \cos \left(\frac{y}{x}\right)\right\} x d y \\
& \therefore \frac{d y}{d x}=\frac{\left(x \cos \frac{y}{x}+y \sin \frac{y}{x}\right) y}{\left(y \sin \frac{y}{x}-x \cos \frac{y}{x}\right) x}=\frac{x y \cos \frac{y}{x}+y^{2} \sin \frac{y}{x}}{x y \sin \frac{y}{x}-x^{2} \cos \frac{y}{x}}
\end{aligned}
$$

Dividing every term in R.H.S. by x^{2},

$$
\begin{equation*}
\frac{d y}{d x}=\frac{\frac{y}{x} \cos \frac{y}{x}+\left(\frac{y}{x}\right)^{2} \sin \frac{y}{x}}{\frac{y}{x} \sin \frac{y}{x}-\cos \frac{y}{x}}=\mathrm{F}\left(\frac{y}{x}\right) \tag{i}
\end{equation*}
$$

\therefore The given differential equation is homogeneous.
So let us put $\frac{\boldsymbol{y}}{\boldsymbol{x}}=\boldsymbol{v}$. Therefore $y=v x$.
$\therefore \quad \frac{d y}{d x}=v \cdot 1+x \frac{d v}{d x}=v+x \frac{d v}{d x}$
Putting these values in differential equation (i), we have
$v+x \frac{d v}{d x}=\frac{v \cos v+v^{2} \sin v}{v \sin v-\cos v} \Rightarrow x \frac{d v}{d x}=\frac{v \cos v+v^{2} \sin v}{v \sin v-\cos v}-v$
$=\frac{v \cos v+v^{2} \sin v-v^{2} \sin v+v \cos v}{v \sin v-\cos v} \Rightarrow x \frac{d v}{d x}=\frac{2 v \cos v}{v \sin v-\cos v}$
Cross-multiplying, $x(v \sin v-\cos v) d v=2 v \cos v d x$
Separating variables, $\quad \frac{v \sin v-\cos v}{v \cos v} d v=2 \frac{d x}{x}$
Integrating both sides, $\int \frac{v \sin v-\cos v}{v \cos v} d v=2 \int \frac{1}{x} d x$
Using $\frac{a-b}{c}=\frac{a}{c}-\frac{b}{c}, \Rightarrow \int\left(\frac{v \sin v}{v \cos v}-\frac{\cos v}{v \cos v}\right) d v=2 \int \frac{1}{x} d x$
$\Rightarrow \quad \int\left(\tan v-\frac{1}{v}\right) d v=2 \int \frac{1}{x} d x$
$\Rightarrow \quad \log |\sec v|-\log |v|=2 \log |x|+\log |c|$
$\Rightarrow \quad \log \left|\frac{\sec v}{v}\right|=\log |x|^{2}+\log |c| \quad=\log \left(|c| x^{2}\right)$
$\Rightarrow\left|\frac{\sec v}{v}\right|=|c| x^{2} \quad \Rightarrow \quad \frac{\sec v}{v}= \pm|c| x^{2}$
$\Rightarrow \quad \sec v= \pm|c| x^{2} v$
Putting $v=\frac{y}{x}, \sec \frac{y}{x}=\mathrm{C} x^{2} \frac{y}{x}$ where $\mathrm{C}= \pm|c|$
or $\quad \sec \frac{y}{x}=\mathrm{C} x y \quad \Rightarrow \quad \frac{1}{\cos \frac{y}{x}}=\mathrm{C} x y$
$\Rightarrow \mathrm{C} x y \cos \frac{y}{x}=1 \quad \Rightarrow \quad x y \cos \frac{y}{x}=\frac{1}{\mathrm{C}}=\mathrm{C}_{1}$ (say)
which is the required solution.
8. $x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$

Sol. The given D.E. is $x \frac{d y}{d x}-y+x \sin \left(\frac{y}{x}\right)=0$
or $\quad x \frac{d y}{d x}=y-x \sin \left(\frac{y}{x}\right)$
Dividing every term by $x, \frac{d y}{d x}=\frac{y}{x}-\sin \left(\frac{y}{x}\right)=\mathrm{F}\left(\frac{y}{x}\right) \ldots(i)$
Since $\frac{d y}{d x}=\mathrm{F}\left(\frac{y}{x}\right)$, the given differential equation is homogeneous.
Putting $\frac{y}{x}=v$ i.e., $y=v x$ so that $\frac{d y}{d x}=v+x \frac{d v}{d x}$
Putting these values of $\frac{y}{x}$ and $\frac{d y}{d x}$ in (i), we have

$$
v+x \frac{d v}{d x}=v-\sin v
$$

or

$$
x \frac{d v}{d x}=-\sin v \quad \therefore \quad x d v=-\sin v d x
$$

or $\quad \frac{d v}{\sin v}=\frac{-d x}{x} \quad$ or $\operatorname{cosec} v \mathrm{~d} v=-\frac{d x}{x}$
Integrating, $\quad \log |\operatorname{cosec} v-\cot v|=-\log |x|+\log |c|$
or $\log |\operatorname{cosec} v-\cot v|=\log \left|\frac{c}{x}\right|$
or $\quad \operatorname{cosec} v-\cot v= \pm \frac{c}{x}$
Replacing v by $\frac{y}{x}, \operatorname{cosec} \frac{y}{x}-\cot \frac{y}{x}=\frac{\mathrm{C}}{x}$ where $\mathrm{C}= \pm c$
$\Rightarrow \frac{1}{\sin \frac{y}{x}}-\frac{\cos \frac{y}{x}}{\sin \frac{y}{x}}=\frac{\mathrm{C}}{x} \Rightarrow \frac{1-\cos \frac{y}{x}}{\sin \frac{y}{x}}=\frac{\mathrm{C}}{x}$
Cross-multiplying, $x\left(1-\cos \frac{y}{x}\right)=\mathrm{C} \sin \frac{y}{x}$ which is the required solution.
9. $y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0$

Sol. The given differential equation is $y d x+x\left(\log \frac{y}{x}\right) d y$

$$
-2 x d y=0
$$

$\therefore \quad y d x=2 x d y-x\left(\log \frac{y}{x}\right) d y$ or $y d x=x\left(2-\log \frac{y}{x}\right) d y$
$\therefore \quad \frac{d y}{d x}=\frac{\frac{y}{x}}{2-\log \frac{y}{x}}=\mathrm{F}\left(\frac{y}{x}\right)$
Since $\frac{d y}{d x}=F\left(\frac{y}{x}\right)$, the given differential equation is homogeneous.
Putting $\frac{y}{x}=v$ i.e., $y=v x$, so that $\frac{d y}{d x}=v+x \frac{d v}{d x}$
Putting these values of $\frac{y}{x}$ and $\frac{d y}{d x}$ in (i), we have

$$
v+x \frac{d v}{d x}=\frac{v}{2-\log v}
$$

or $\quad x \frac{d v}{d x}=\frac{v}{2-\log v}-v=\frac{v-2 v+v \log v}{2-\log v}=\frac{-v+v \log v}{2-\log v}$
or

$$
x \frac{d v}{d x}=\frac{v(\log v-1)}{2-\log v}
$$

$\therefore \quad x(2-\log v) d v=v(\log v-1) d x$
or $\quad \frac{2-\log v}{v(\log v-1)} d v=\frac{d x}{x} \quad$ or $\quad \frac{1-(\log v-1)}{v(\log v-1)} d v=\frac{d x}{x}$
or $\quad\left[\frac{1}{v(\log v-1)}-\frac{1}{v}\right] d v=\frac{d x}{x}$

Integrating $\int\left[\frac{1 / v}{\log v-1}-\frac{1}{v}\right] d v=\log |x|+\log |c|$
or $\log |\log v-1|-\log |v|=\log |x|+\log |c|$

$$
\left[\because \int \frac{f^{\prime}(v)}{f(v)} d v=\log |f(v)|\right]
$$

or $\quad \log \left|\frac{\log v-1}{v}\right|=\log |c x| \quad$ or $\quad\left|\frac{\log v-1}{v}\right|=|c x|$
or $\quad \frac{\log v-1}{v}= \pm c x=\mathrm{C} x$ where $\mathrm{C}= \pm c$
or $\quad \log v-1=\mathrm{C} x v$
Replacing v by $\frac{y}{x}$, we have

$$
\log \frac{y}{x}-1=\mathrm{C} x\left(\frac{y}{x}\right) \quad \text { or } \quad \log \frac{y}{x}-1=\mathrm{C} y
$$

which is a primitive (solution) of the given differential equation.

Second solution

The given D.E. is $y d x+x \log \left(\frac{y}{x}\right) d y-2 x d y=0$
Dividing every term by $d y$,
$y \frac{d x}{d y}-x \log \frac{x}{y}-2 x=0\left[\because \log \frac{y}{x}=\log y-\log x=-(\log x-\log y)=-\log \frac{x}{y}\right]$
Dividing every term by y,

$$
\begin{aligned}
& \frac{d x}{d y}-\frac{x}{y} \log \frac{x}{y}-2 \frac{x}{y}=0 \\
& \Rightarrow \quad \frac{d x}{d y}=\frac{x}{y} \log \frac{x}{y}+2 \frac{x}{y} \ldots(i)\left(=\mathrm{F}\left(\frac{x}{y}\right)\right)
\end{aligned}
$$

\therefore The given differential is homogeneous.
Put $\frac{x}{y}=v$ i.e. $x=v y$
so that $\frac{d x}{d y}=v+y \frac{d v}{d y}$
Putting these values in D. E. (i), we have
$v+y \frac{d v}{d y}=v \log v+2 v$
$\Rightarrow y \frac{d v}{d y}=v \log v+v=v(\log v+1)$
Cross-multiplying $y d v=v(\log v+1) d y$

Separating variables $\frac{d v}{v(\log v+1)}=\frac{d y}{y}$
Integrating both sides $\int \frac{\frac{1}{v}}{\log v+1} d v=\int \frac{1}{y} d y$
$\therefore \quad \log |\log v+1|=\log |y|+\log |c|=\log |c y|\left[\because \int \frac{f^{\prime}(v)}{f(v)} d v=\log |f(v)|\right]$
$\therefore \log v+1= \pm c y=\mathrm{C} y$ where $\mathrm{C}= \pm c$
Replacing v by $\frac{x}{y}$, we have
$\log \frac{x}{y}+1=\mathrm{C} y$
or $-\log \frac{y}{x}+1=\mathrm{C} y \quad\left[\because \log \frac{x}{y}=-\log \frac{y}{x}\right.$ see page 632$]$

Dividing by $-1, \log \frac{y}{x}-1=-\mathrm{C} y$ or $=\mathrm{C}_{1} y$ which is a primitive (solution) of the given D.E.
10. $\left(1+e^{x / y}\right) d x+e^{x / y}\left(1-\frac{x}{y}\right) d y=0$

Sol. The given differential equation is $\left(1+e^{x / y}\right) d x+e^{x / y}\left(1-\frac{x}{y}\right) d y=0$ Dividing by $d y,\left(1+e^{x / y}\right) \frac{d x}{d y}+e^{x / y}\left(1-\frac{x}{y}\right)=0$
or $\left(1+e^{x / y}\right) \frac{d x}{d y}=-e^{x / y}\left(1-\frac{x}{y}\right)$ or $\quad \frac{d x}{d y}=\frac{e^{x / y}\left(\frac{x}{y}-1\right)}{1+e^{x / y}}$
which is a differential equation of the form $\frac{d x}{d y}=f\left(\frac{x}{y}\right)$.
\therefore The given differential equation is homogeneous.
Hence put $\frac{\boldsymbol{x}}{\boldsymbol{y}}=\boldsymbol{v}$ i.e., $x=v y$
Differentiating w.r.t. $y, \quad \frac{d x}{d y}=v+y \frac{d v}{d y}$
Putting these values of $\frac{x}{y}$ and $\frac{d x}{d y}$ in (i), we have

$$
v+y \frac{d v}{d y}=\frac{e^{v}(v-1)}{1+e^{v}} .
$$

Now transposing v to R.H.S.

$$
\begin{aligned}
& \quad y \frac{d v}{d y}=\frac{v e^{v}-e^{v}}{1+e^{v}}-v=\frac{v e^{v}-e^{v}-v-v e^{v}}{1+e^{v}}=\frac{-e^{v}-v}{1+e^{v}} \\
& \therefore \quad y\left(1+e^{v}\right) d v=-\left(e^{v}+v\right) d y \quad \text { or } \quad \frac{1+e^{v}}{v+e^{v}} d v=-\frac{d y}{y} \\
& \text { Integrating, } \log \left|\left(v+e^{v}\right)\right|=-\log |y|+\log |c|
\end{aligned}
$$

Replacing v by $\frac{x}{y}$, we have

$$
\begin{array}{rlrl}
& \log \left|\left(\frac{x}{y}+e^{x / y}\right)\right| & =\log \left|\frac{c}{y}\right| \quad \text { or }\left|\frac{x}{y}+e^{x / y}\right|=\left|\frac{c}{y}\right| \\
\therefore \quad \frac{x}{y}+e^{x / y} & = \pm \frac{\mathrm{C}}{y}
\end{array}
$$

Multiplying every term by y,

$$
x+y e^{x / y}=\mathrm{C} \text { where } \mathrm{C}= \pm c
$$

which is the required general solution.
For each of the differential equations in Exercises from 11 to
15, find the particular solution satisfying the given condition:
11. $(x+y) d y+(x-y) d x=0 ; y=1$ when $x=1$

Sol. The given differential equation is

$$
\begin{equation*}
(x+y) d y+(x-y) d x=0, y=1 \text { when } x=1 \tag{i}
\end{equation*}
$$

It looks to be a homogeneous differential equation because each coefficient of $d x$ and $d y$ is of same degree (here 1).
From $(i),(x+y) d y=-(x-y) d x$

$$
\begin{array}{ll}
\therefore & \frac{d y}{d x}=\frac{-(x-y)}{x+y}=\frac{y-x}{y+x}=\frac{x\left(\frac{y}{x}-1\right)}{x\left(\frac{y}{x}+1\right)} \\
& \text { or } \tag{ii}
\end{array} \quad \frac{d y}{d x}=\frac{\frac{y}{x}-1}{\frac{y}{x}+1}=f\left(\frac{y}{x}\right), ~ l
$$

\therefore Given differential equation is homogeneous.
Put $\frac{y}{x}=v$. Therefore $y=v x$.

$$
\therefore \quad \frac{d y}{d x}=v \cdot 1+x \frac{d v}{d x}=v+x \frac{d v}{d x}
$$

Putting these values in eqn. (ii), $\quad v+x \frac{d v}{d x}=\frac{v-1}{v+1}$

$$
\begin{aligned}
& \Rightarrow \quad x \frac{d v}{d x}=\frac{v-1}{v+1}-v=\frac{v-1-v(v+1)}{v+1}=\frac{v-1-v^{2}-v}{v+1}=\frac{-v^{2}-1}{v+1} \\
& \Rightarrow \quad x \frac{d v}{d x}=-\frac{\left(v^{2}+1\right)}{v+1} \quad \therefore \quad x(v+1) d v=-\left(v^{2}+1\right) d x
\end{aligned}
$$

Separating variables, $\frac{v+1}{v^{2}+1} d v=-\frac{d x}{x}$
$\therefore \quad \int \frac{v}{v^{2}+1} d v+\int \frac{1}{v^{2}+1} d v=-\int \frac{1}{x} d x$
$\Rightarrow \frac{1}{2} \int \frac{2 v}{v^{2}+1} d v+\tan ^{-1} v=-\log x+c$
$\Rightarrow \frac{1}{2} \log \left(v^{2}+1\right)+\tan ^{-1} v=-\log x+c\left[\because \int \frac{f^{\prime}(v)}{f(v)} d v=\log f(v)\right]$
Putting $v=\frac{y}{x}, \frac{1}{2} \log \left(\frac{y^{2}}{x^{2}}+1\right)+\tan ^{-1} \frac{y}{x}=-\log x+c$
$\Rightarrow \quad \frac{1}{2} \log \left(\frac{y^{2}+x^{2}}{x^{2}}\right)+\tan ^{-1} \frac{y}{x}=-\log x+c$
$\Rightarrow \quad \frac{1}{2}\left[\log \left(x^{2}+y^{2}\right)-\log x^{2}\right]+\tan ^{-1} \frac{y}{x}=-\log x+c$
$\Rightarrow \frac{1}{2} \log \left(x^{2}+y^{2}\right)-\frac{1}{2} 2 \log x+\tan ^{1} \frac{y}{x}=-\log x+c$
$\Rightarrow \quad \frac{1}{2} \log \left(x^{2}+y^{2}\right)+\tan ^{-1} \frac{y}{x}=c$
To find c : Given: $y=1$ when $x=1$.
Putting $x=1$ and $y=1$ in (iii), $\quad \frac{1}{2} \log 2+\tan ^{-1} 1=c$
or $\quad c=\frac{1}{2} \log 2+\frac{\pi}{4} \quad\left(\because \tan \frac{\pi}{4}=1 \Rightarrow \tan ^{-1} 1=\frac{\pi}{4}\right)$
Putting this value of c in (iii),

$$
\frac{1}{2} \log \left(x^{2}+y^{2}\right)+\tan ^{-1} \frac{y}{x}=\frac{1}{2} \log 2+\frac{\pi}{4}
$$

Multiplying by 2,

$$
\log \left(x^{2}+y^{2}\right)+2 \tan ^{-1} \frac{y}{x}=\log 2+\frac{\pi}{2}
$$

which is the required particular solution.
12. $x^{2} d y+\left(x y+y^{2}\right) d x=0 ; y=1$ when $x=1$

Sol. The given differential equation is

$$
\begin{aligned}
& x^{2} d y+\left(x y+y^{2}\right) d x=0 \text { or } x^{2} d y=-y(x+y) d x \\
\therefore & \frac{d y}{d x}=-\frac{y(x+y)}{x^{2}}=-\frac{y x\left(1+\frac{y}{x}\right)}{x^{2}}
\end{aligned}
$$

or $\frac{d y}{d x}=-\frac{y}{x}\left(1+\frac{y}{x}\right)=\mathrm{F}\left(\frac{y}{x}\right)$
\therefore The given differential equation is homogeneous.
Put $\frac{y}{x}=v$, i.e., $y=v x$
Differentiating w.r.t. $x, \quad \frac{d y}{d x}=v+x \frac{d v}{d x}$
Putting these values of $\frac{y}{x}$ and $\frac{d y}{d x}$ in differential equation (i),
we have $v+x \frac{d v}{d x}=-v(1+v)=-v-v^{2}$
Transposing v to R.H.S., $\quad x \frac{d v}{d x}=-v^{2}-2 v$
or $\quad x \frac{d v}{d x}=-v(v+2) \quad x d v=-v(v+2) d x$
or $\frac{d v}{v(v+2)}=-\frac{d x}{x}$
Integrating both sides, $\int \frac{1}{v(v+2)} d v=-\int \frac{1}{x} d x$
or $\frac{1}{2} \int \frac{2}{v(v+2)} d v=-\log |x|$ or $\frac{1}{2} \int \frac{(v+2)-v}{v(v+2)} d v=-\log |x|$
Separating terms
or $\quad \int\left(\frac{1}{v}-\frac{1}{v+2}\right) d v=-2 \log |x|$
or $\log |v|-\log |v+2|=\log x^{-2}+\log |c|$
or $\quad \log \left|\frac{v}{v+2}\right|=\log \left|c x^{-2}\right|$

$$
\therefore\left|\frac{v}{v+2}\right|=\left|\frac{c}{x^{2}}\right| \quad \therefore \frac{v}{v+2}= \pm \frac{c}{x^{2}}
$$

Replacing v to $\frac{y}{x}$, we have

$$
\begin{align*}
\frac{\frac{y}{x}}{\frac{y}{x}+2} & = \pm \frac{c}{x^{2}} \quad \text { or } \quad \frac{y}{y+2 x}= \pm \frac{c}{x^{2}} \\
\text { or } x^{2} y & =\mathrm{C}(y+2 x) \\
\text { where } \mathrm{C} & = \pm c \tag{ii}
\end{align*}
$$

To find C

Put $x=1$ and $y=1$ (given) in eqn. (ii), $1=3 \mathrm{C} \quad \therefore \mathrm{C}=\frac{1}{3}$
Putting $\mathrm{C}=\frac{1}{3}$ in eqn. (ii), required particular solution is

$$
x^{2} y=\frac{1}{3}(y+2 x) \quad \text { or } \quad 3 x^{2} y=y+2 x
$$

13. $\left[x \sin ^{2}\left(\frac{y}{x}\right)-y\right] d x+x d y=0 ; y=\frac{\pi}{4}$ when $x=1$

Sol. The given differential equation is

$$
\begin{aligned}
& \left(x \sin ^{2} \frac{y}{x}-y\right) d x+x d y=0 ; y=\frac{\pi}{4}, x=1 \\
\Rightarrow & x d y=-\left(x \sin ^{2} \frac{y}{x}-y\right) d x
\end{aligned}
$$

Dividing by $d x, \quad x \frac{d y}{d x}=-x \sin ^{2} \frac{y}{x}+y$
Dividing by $x, \quad \frac{d y}{d x}=-\sin ^{2} \frac{y}{x}+\frac{y}{x}$

$$
\begin{equation*}
=\mathrm{F}\left(\frac{y}{x}\right) \tag{i}
\end{equation*}
$$

\therefore The given differential equation is homogeneous.
Put $\frac{\boldsymbol{y}}{\boldsymbol{x}}=\boldsymbol{v} \quad \therefore \quad y=v x \quad \therefore \quad \frac{d y}{d x}=v .1+x \frac{d v}{d x}=v+x \frac{d v}{d x}$
Putting these values in differential equation (i), we have

$$
\Rightarrow \quad \begin{aligned}
v+x \frac{d v}{d x} & =-\sin ^{2} v+v \Rightarrow x \frac{d v}{d x}=-\sin ^{2} v \\
\Rightarrow \quad x d v & =-\sin ^{2} v d x
\end{aligned}
$$

Separating variables, $\frac{d v}{\sin ^{2} v}=-\frac{d x}{x}$
Integrating, $\int \operatorname{cosec}^{2} v d v=-\int \frac{1}{x} d x$
$\Rightarrow \quad-\cot v=-\log |x|+c$
Dividing by $-1, \quad \cot v=\log |x|-c$
Putting $v=\frac{y}{x}, \quad \cot \frac{y}{x}=\log |x|-c$
To find $\boldsymbol{c}: y=\frac{\pi}{4}$ when $x=1$ (given)
Putting $x=1$ and $y=\frac{\pi}{4}$ in (ii), $\cot \frac{\pi}{4}=\log 1-c$
or $1=0-c$ or $c=-1$
Putting $c=-1$ in (ii), required particular solution is

$$
\cot \frac{y}{x}=\log |x|+1=\log |x|+\log e=\log |e x| .
$$

14. $\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec}\left(\frac{y}{x}\right)=0 ; y=0$ when $x=1$

Sol. The given differential equation is

$$
\frac{d y}{d x}-\frac{y}{x}+\operatorname{cosec} \frac{y}{x}=0 ; y=0 \text { when } x=1
$$

or $\quad \frac{d y}{d x}=\frac{y}{x}-\operatorname{cosec} \frac{y}{x}=f\left(\frac{y}{x}\right)$
\therefore Given differential equation (i) is homogeneous.
Put $\quad \frac{y}{x}=v \quad \therefore \quad y=v x \quad \therefore \quad \frac{d y}{d x}=v \cdot 1+x \frac{d v}{d x}$
Putting these values in differential equation (i),

$$
\begin{aligned}
v+x \frac{d v}{d x} & =v-\operatorname{cosec} v \Rightarrow x \frac{d v}{d x}=\frac{-1}{\sin v} \\
\therefore \quad x \sin v d v & =-d x
\end{aligned}
$$

Separating variables, $\quad \sin v d v=-\frac{d x}{x}$
Integrating both sides, $\int \sin v d v=-\int \frac{1}{x} d x$ $-\cos v=-\log |x|+c$ $\cos v=\log |x|-c$
Dividing by -1 ,

$$
\begin{equation*}
\cos \frac{y}{x}=\log |x|-c \tag{ii}
\end{equation*}
$$

To find c : Given: $y=0$ when $x=1$
\therefore From (ii), $\cos 0=\log 1-c \quad$ or $1=0-c=-c$
$\therefore \quad c=-1$
Putting $\quad c=-1$ in (ii), $\cos \frac{y}{x}=\log |x|+1=\log |x|+\log e$
$\Rightarrow \cos \frac{y}{x}=\log |e x|$ which is the required particular solution.
15. $2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0 ; y=2$ when $x=1$

Sol. The given differential equation is

$$
\begin{equation*}
2 x y+y^{2}-2 x^{2} \frac{d y}{d x}=0 ; y=2 \text { when } x=1 \tag{i}
\end{equation*}
$$

The given differential equation looks to be homogeneous because each coefficient of $d x$ and $d y$ is of same degree (2 here).

From (i), $-2 x^{2} \frac{d y}{d x}=-2 x y-y^{2} \quad \therefore \quad \frac{d y}{d x}=\frac{-2 x y}{-2 x^{2}}-\frac{y^{2}}{-2 x^{2}}$
or

$$
\begin{equation*}
\frac{d y}{d x}=\frac{y}{x}+\frac{1}{2}\left(\frac{y}{x}\right)^{2}=\mathrm{F}\left(\frac{y}{x}\right) \tag{ii}
\end{equation*}
$$

\therefore The given differential equation is homogeneous.
Put $\frac{y}{x}=v \quad \therefore \quad y=v x \quad \therefore \quad \frac{d y}{d x}=v .1+x \frac{d v}{d x}=v+x \frac{d v}{d x}$ Putting these values in differential equation (ii), we have

$$
v+x \frac{d v}{d x}=v+\frac{1}{2} v^{2} \Rightarrow x \frac{d v}{d x}=\frac{1}{2} v^{2} \Rightarrow 2 x d v=v^{2} d x
$$

Separating variables,

$$
2 \frac{d v}{v^{2}}=\frac{d x}{x}
$$

Integrating both sides, $2 \int v^{-2} d v=\int \frac{1}{x} d x$
$\Rightarrow \quad 2 \frac{v^{-1}}{-1}=\log |x|+c \quad \Rightarrow \frac{-2}{v}=\log |x|+c$
Putting $v=\frac{y}{x}, \quad \frac{-2}{\left(\frac{y}{x}\right)}=\log |x|+c$
or $\frac{-2 x}{y}=\log |x|+c$
To find c : Given: $y=2$, when $x=1$.
$\therefore \quad$ From (iii), $\frac{-2}{2}=\log 1+c$ or $-1=c$
Putting $c=-1$ in (iii), the required particular solution is

$$
\begin{aligned}
& -\frac{2 x}{y}=\log |x|-1 \\
\Rightarrow & y(\log |x|-1)=-2 x \\
\Rightarrow & y=\frac{-2 x}{-(1-\log |x|)} \Rightarrow y=\frac{2 x}{\log |x|-1} \\
& \quad y-\log |x|
\end{aligned}
$$

16. Choose the correct answer:

A homogeneous differential equation of the form $\frac{d x}{d y}=h\left(\frac{x}{y}\right)$ can be solved by making the substitution:
(A) $\boldsymbol{y}=\boldsymbol{v} \boldsymbol{x}$
(B) $\boldsymbol{v}=\boldsymbol{y} \boldsymbol{x}$
(C) $\boldsymbol{x}=\boldsymbol{v} \boldsymbol{y}$
(D) $x=v$

Sol. We know that a homogeneous differential equation of the form $\frac{d x}{d y}=h\left(\frac{x}{y}\right)$ can be solved by the substitution $\frac{\boldsymbol{x}}{\boldsymbol{y}}=\boldsymbol{v}$ i.e., $x=v y$. \therefore Option (C) is the correct answer.
17. Which of the following is a homogeneous differential equation?
(A) $(4 x+6 y+5) d y-(3 y+2 x+4) d x=0$
(B) $(x y) d x-\left(x^{3}+y^{3}\right) d y=0$
(C) $\left(x^{3}+2 y^{2}\right) d x+2 x y d y=0$
(D) $y^{2} d x+\left(x^{2}-x y-y^{2}\right) d y=0$

Sol. Out of the four given options; option (D) is the only option in which all coefficients of $d x$ and $d y$ are of same degree (here 2). It may be noted that $x y$ is a term of second degree.
Hence differential equation in option (D) is Homogeneous differential equation.

