Exercise 8.2

- 1. Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$.
- Sol. Step I. Let us draw graphs and shade the region of integration.

Given: Equation of the circle is $4x^2 + 4y^2 = 9$

Dividing by 4,
$$x^2 + y^2 = \frac{9}{4} = \left(\frac{3}{2}\right)^2$$
 ...(*i*)

We know that this equation (i) represents a circle whose centre is

...(*ii*)

(0, 0) and radius $\frac{3}{2}(x^2 + y^2 = r^2)$

Equation of parabola is $x^2 = 4y$

(eqn. (*ii*) represents an upward parabola symmetrical about y-axis)

Step II. Let us solve eqns. of circle (i) and parabola (ii) for x and y to find their points of intersection.

Putting $x^2 = 4y$ from (*ii*) in (*i*), we have $4y + y^2 = \frac{9}{4}$ Multiplying by L.C.M. (= 4), $16y + 4y^2 = 9$ or $4y^2 + 16y - 9 = 0$ $\Rightarrow 4y^2 + 18y - 2y - 9 = 0 \Rightarrow 2y(2y + 9) - 1(2y + 9) = 0$ $\Rightarrow (2y + 9)(2y - 1) = 0$ \therefore Either 2y + 9 = 0 or 2y - 1 = 0 $\Rightarrow 2y = -9$ or 2y = 1 $\Rightarrow y = -\frac{9}{2}$ or $y = \frac{1}{2}$ For $y = -\frac{9}{2}$, from (*i*) $x^2 = 4y = 4\left(-\frac{9}{2}\right) = -18$ which is impossible because square of a real number can never be negative.

For
$$y = \frac{1}{2}$$
, from (i), $x^2 = 4y = 4 \times \frac{1}{2} = 2$
 $\therefore x = \pm \sqrt{2}$
 \therefore Points of intersections of circle (i) and parabola (ii) are
 $A\left(-\sqrt{2}, \frac{1}{2}\right)$ and $B\left(\sqrt{2}, \frac{1}{2}\right)$.
Step III. Area OBM = Area between parabola (ii) and y-axis
 $= \left|\int_{0}^{\frac{1}{2}} x \, dy\right|$
(\therefore at O, $y = 0$ and at B, $y = \frac{1}{2}$)
From (ii), putting $x = \sqrt{4y} = 2\sqrt{y} = 2y^{\frac{1}{2}}$,
Area OBM $= \left|\int_{0}^{\frac{1}{2}} 2y^{\frac{1}{2}} \, dy\right| = 2 \cdot \frac{\left(y^{\frac{3}{2}}\right)_{0}^{\frac{1}{2}}}{\frac{3}{2}}$
 $= 2 \cdot \frac{2}{3} \left[\left(\frac{1}{2}\right)^{\frac{3}{2}} - 0\right] = \frac{4}{3} \cdot \frac{1}{2} \sqrt{\frac{1}{2}}$ $\left[(\cdot, x^{\frac{3}{2}}) = x\sqrt{x}\right]$
 $= \frac{2}{3} \cdot \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{3}$...(iii) $\left|(\cdot, \frac{x}{\sqrt{x}}) = \sqrt{x}\right|$
Step IV. Now area BDM = Area between circle (i) and y-axis
 $= \left|\int_{\frac{1}{2}}^{\frac{3}{2}} x \, dy\right|$ $\left[(\cdot, At point B, y = \frac{1}{2} and at point D, y = \frac{3}{2}\right]$
From (i), putting $x^2 = \left(\frac{3}{2}\right)^2 - y^2$ i.e., $x = \sqrt{\left(\frac{3}{2}\right)^2 - y^2}$,
 $= \left|\int_{\frac{1}{2}}^{\frac{3}{2}} \sqrt{\left(\frac{3}{2}\right)^2 - y^2} \, dy\right| = \left[\frac{y}{2}\sqrt{\left(\frac{3}{2}\right)^2 - y^2} + \left(\frac{\frac{3}{2}}{2}\right)^2 \sin^{-1}\frac{y}{(3)}\right]^{\frac{3}{2}}$

$$\begin{bmatrix} 3\frac{1}{2} & \sqrt{2} & \frac{3}{2} \end{bmatrix}_{\frac{1}{2}} \\ \begin{bmatrix} \because \int \sqrt{a^2 - y^2} \, dy = \frac{y}{2} \sqrt{a^2 - y^2} + \frac{a^2}{2} \sin^{-1} \frac{y}{a} \end{bmatrix} \\ = \frac{3}{4} & \sqrt{\left(\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2} + \frac{9}{8} \sin^{-1} \left(\frac{3}{\frac{2}{3}}{\frac{3}{2}}\right) - \left[\frac{1}{4} \sqrt{\frac{9}{4} - \frac{1}{4}} + \frac{9}{8} \sin^{-1} \left(\frac{1}{\frac{2}{3}}{\frac{3}{2}}\right)\right] \end{bmatrix}$$

$$= \left(\frac{3}{4} \times 0\right) + \frac{9}{8} \sin^{-1} 1 - \left[\frac{1}{4}\sqrt{\frac{8}{4}} + \frac{9}{8}\sin^{-1}\frac{1}{3}\right]$$
$$= \frac{9}{8} \times \frac{\pi}{2} - \frac{1}{4}\sqrt{2} - \frac{9}{8}\sin^{-1}\frac{1}{3}$$
$$= \frac{9\pi}{16} - \frac{\sqrt{2}}{4} - \frac{9}{8}\sin^{-1}\frac{1}{3} \qquad \dots (iv)$$

Step V. \therefore Required shaded area (of circle (*i*) which is interior to parabola (*ii*)) = Area AOBDA

= 2(Area OBD) = 2[Area OBM + Area MBD]

$$= 2\left[\frac{\sqrt{2}}{3} + \left(\frac{9\pi}{16} - \frac{\sqrt{2}}{4} - \frac{9}{8}\sin^{-1}\frac{1}{3}\right)\right]$$
(By (*iii*)) (By (*iv*))
$$= 2\left[\sqrt{2}\left(\frac{1}{3} - \frac{1}{4}\right) + \frac{9\pi}{16} - \frac{9}{8}\sin^{-1}\frac{1}{3}\right]$$

$$= 2\sqrt{2} \left(\frac{4-3}{12}\right) + \frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3}$$

$$= \left(\frac{\sqrt{2}}{6} + \frac{9\pi}{8} - \frac{9}{4}\sin^{-1}\frac{1}{3}\right) = \frac{\sqrt{2}}{6} + \frac{9}{4} \left(\frac{\pi}{2} - \sin^{-1}\frac{1}{3}\right)$$

$$= \frac{\sqrt{2}}{6} + \frac{9}{4}\cos^{-1}\frac{1}{3}$$
sq. units.

 $\mathbf{Ans}\left(\because \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}\right)$

Remark: =
$$\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \sqrt{1 - \frac{1}{9}}$$
 (:: $\cos^{-1} x = \sin^{-1} \sqrt{1 - x^2}$)

$$= \frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \sqrt{\frac{8}{9}} = \left(\frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3}\right)$$
sq. units.

Note: The equation $(x-\alpha)^2 + (y-\beta)^2 = r^2$ represents a circle whose centre is (α, β) and radius is r.

- 2. Find the area bounded by the curves $(x 1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$.
- **Sol.** The equations of the two circles are

and

$$x^{2} + y^{2} = 1 \qquad \dots(i)$$

(x - 1)² + y² = 1 \...(ii)

The first circle has centre at the origin and radius 1. The second circle has centre at (1, 0) and radius 1. Both are symmetrical about the x-axis. Circle (i) is symmetrical about y-axis also.

For points of intersections of circles (i) and (ii), let us solve equations (i) and (ii) for x and y.

$$= \left\{ -\frac{1}{2}\sqrt{\frac{3}{4}} + \sin^{-1}\left(-\frac{1}{2}\right) \right\} - \left\{ \sin^{-1}\left(-1\right) \right\} + \sin^{-1}\left(1 - \frac{1}{2}\sqrt{\frac{3}{4}} + \sin^{-1}\frac{1}{2}\right)$$
$$= -\frac{\sqrt{3}}{4} - \frac{\pi}{6} + \frac{\pi}{2} + \frac{\pi}{2} - \frac{\sqrt{3}}{4} - \frac{\pi}{6} = \left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right) \text{ sq. units.}$$

3. Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3.

Sol. Equation of the given curve is $y = x^2 + 2$...(*i*) or $x^2 = y - 2$

It is an upward parabola (\therefore An equation of the form $x^2 = ky$, k > 0 represents an upward parabola).

Eqn. (i) contains only even powers of x and hence remains unchanged on changing x to -x in (i).

 \therefore The parabola (*i*) is symmetrical about *y*-axis.

Parabola (i) meets y-axis (its line of symmetry) i.e. x = 0 in (0, 2) [put x = 0 in (i) to get y = 2]

 \therefore Vertex of the parabola is (0, 2).

Equation of the given line is y = x

We know that it is a straight line passing through the origin and having slope 1 *i.e.*, making an angle of 45° with x-axis.

Table of values for the line y = x

x	0	1	2
у	0	1	2
		1 1111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.7

Also the required area is given to be bounded by the vertical lines x = 0 to x = 3.

Area bounded by line (*ii*) namely y = x, the x-axis and the ordinates x = 0, x = 3 is

...(ii)

area OAB and =
$$\int_{0}^{3} y \, dx = \int_{0}^{3} x \, dx = \left(\frac{x^{2}}{2}\right)_{0}^{3}$$

= $\frac{9}{2} - 0 = \frac{9}{2}$...(*iv*)

 \therefore Required area (shown shaded) *i.e.*, area OBCD

= area OACD - area OAB

= Area given by (iii) – Area given by (iv)

$$= 15 - \frac{9}{2} = \frac{21}{2}$$
 sq. units.

Remark: On solving Eqns (i) and (ii) for x we get imaginary values of x and hence curves (i) and (ii) don't intersect.

4. Using integration, find the area of the region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

Sol. Given: Vertices of triangle are
$$A(-1, 0)$$
, $B(1, 3)$ and $C(3, 2)$.

 \therefore Equation of line AB is

$$y - 0 = \frac{3 - 0}{1 - (-1)} (x - (-1))$$

$$\left(y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1) \right)$$

$$X' \leftarrow A = 0$$

$$(-1, 0)$$

$$(-1, 0)$$

$$Y' \leftarrow M$$

 \therefore Area of $\triangle ABL$ = Area bounded by this line AB and *x*-axis

$$= \left| \int_{-1}^{1} y \, dx \right|$$

dx(:: At point A, x = -1 and at point B, x = 1)

Υ

B(1, 3)

$$= \left| \int_{-1}^{1} \frac{3}{2} (x+1) \, dx \right| = \frac{3}{2} \left| \int_{-1}^{1} (x+1) \, dx \right|$$
$$= \frac{3}{2} \left| \left(\frac{x^2}{2} + x \right)_{-1}^{1} \right| = \frac{3}{2} \left[\left(\frac{1}{2} + 1 \right) - \left(\frac{1}{2} - 1 \right) \right]$$
$$= \frac{3}{2} \left(\frac{3}{2} - \left(-\frac{1}{2} \right) \right) = \frac{3}{2} \left(\frac{3}{2} + \frac{1}{2} \right) = \frac{3}{2} \cdot \frac{4}{2} = 3 \qquad \dots(i)$$

Again equation of line BC is

$$y - 3 = \frac{2 - 3}{3 - 1}(x - 1)$$

$$\Rightarrow y - 3 = -\frac{1}{2}(x - 1) \Rightarrow y = 3 - \left(\frac{x - 1}{2}\right) = \frac{6 - x + 1}{2}$$

$$\Rightarrow y = \frac{7 - x}{2} = \frac{1}{2}(7 - x)$$

 \therefore Area of trapezium BLMC = Area bounded by line BC and *x*-axis

$$= \left| \int_{1}^{3} y \, dx \right| = \left| \int_{1}^{3} \frac{1}{2} (7 - x) \, dx \right|$$

$$= \frac{1}{2} \left(7x - \frac{x^{2}}{2} \right)_{1}^{3} = \frac{1}{2} \left[21 - \frac{9}{2} - \left(7 - \frac{1}{2} \right) \right]$$

$$= \frac{1}{2} \left(21 - \frac{9}{2} - 7 + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{42 - 9 - 14 + 1}{2} \right) = \frac{1}{4} (20)$$

$$= 5 \qquad \dots (ii)$$

Again equation of line AC is

$$y - 0 = \frac{2 - 0}{3 - (-1)} (x - (-1)) \implies y = \frac{2}{4} (x + 1)$$
$$\implies y = \frac{1}{2} (x + 1)$$

:. Area of \triangle ACM = Area bounded by line AC and *x*-axis

$$= \left| \int_{-1}^{3} y \, dx \right| = \left| \int_{-1}^{3} \frac{1}{2} (x+1) \, dx \right| = \frac{1}{2} \left(\frac{x^{2}}{2} + x \right)_{-1}^{3}$$
$$= \frac{1}{2} \left[\frac{9}{2} + 3 - \left(\frac{1}{2} - 1 \right) \right] = \frac{1}{2} \left[\frac{9}{2} + 3 - \frac{1}{2} + 1 \right]$$
$$= \frac{1}{2} \left[\frac{9 + 6 - 1 + 2}{2} \right] = \frac{16}{4} = 4$$
...(iii)

0

We can observe from the figure that required area of $\triangle ABC$

- = Area of $\triangle ABL$ + Area of Trapezium BLMC Area of $\triangle ACM$
- = 3 + 5 4 = 4 sq. units. By (*i*) By (*ii*) By (*iii*)
- 5. Using integration, find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

Sol. Equation of one side of triangle is y = 2x + 1...(i) Equation of second side of triangle is y = 3x + 1...(*ii*) Third side of triangle is x = 4....(*iii*) It is a line parallel to y-axis at a distance 4 to right of y-axis. Let us solve (i) and (ii) for x and y. Eqn. (ii) – eqn. (i)gives x = 0. Put x = 0 in (*i*), y = 1. \therefore Point of intersection of lines (i) and (ii) is A(0, 1) Putting x = 4 from (*iii*) in (*i*), y = 8 + 1 = 9:. Point of intersection of lines (i) and (iii) is B(4, 9). Putting x = 4 from (*iii*) in (*ii*), y = 12 + 1 = 13.

:. Graph of equation (iii) is the straight line joining the points (0, 2) and (2, 0).

The region for required area is shown as shaded in the figure.

Step II. From the graphs of circle (i) and straight line (iii), it is clear that points of intersections of circle (i) and straight line (iii) are A(2, 0) and B(0, 2).

Step III. Area OACB, bounded by circle (i) and coordinate axes in first quadrant

$$\begin{split} &= \left| \int_{0}^{2} y \, dx \right| = \int_{0}^{2} \sqrt{2^{2} - x^{2}} \, dx \quad (\because \text{ From } (ii), y = \sqrt{2^{2} - x^{2}}) \\ &= \left(\frac{x}{2} \sqrt{2^{2} - x^{2}} + \frac{2^{2}}{2} \sin^{-1} \frac{x}{2} \right)_{0}^{2} \\ &\qquad \left[\because \int \sqrt{a^{2} - x^{2}} \, dx = \frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a} \right] \\ &= \left(\frac{2}{2} \sqrt{4 - 4} + 2 \sin^{-1} 1 \right) - (0 + 2 \sin^{-1} 0) \\ &= 0 + 2 \left(\frac{\pi}{2} \right) - 2(0) = \pi \qquad \dots (iv) \end{split}$$

Step IV. Area of triangle OAB, bounded by straight line (iii) and co-ordinate axes

$$= \left| \int_{0}^{2} y \, dx \right| = \left| \int_{0}^{2} (2 - x) \, dx \right| \quad (\because \text{From } (iii), y = 2 - x)$$
$$= \left(2x - \frac{x^{2}}{2} \right)_{0}^{2} = (4 - 2) - (0 - 0) = 2 \qquad \dots (v)$$

Step V. ∴ Required shaded area

= Area OACB given by (iv) – Area of triangle OAB by (v)

= $(\pi - 2)$ sq. units.

 \therefore Option (B) is the correct answer.

7. Choose the correct answer: Area lying between the curves $y^2 = 4x$ and y = 2x is

(parabola) is $y^2 = 4x$...(*i*)

 \therefore $y = \sqrt{4x} = 2\sqrt{x} = 2x^2$...(*ii*) for arc of the parabola in first quadrant.

We know that eqn. (i) represents a rightward parabola symmetrical about *x*-axis.

Equation of second curve (line) is y = 2x

...(*iii*)

We know that y = 2x represents a straight line passing through the origin.

We are required to find the area of the shaded region.

II. Let us solve (i) and (iii) for x and y.

Putting y = 2x from (*iii*) in (*i*), we have

 $4x^{2} = 4x \implies 4x^{2} - 4x = 0 \implies 4x(x - 1) = 0$ $\therefore \text{ Either } 4x = 0 \text{ or } x - 1 = 0$

i.e.,
$$x = \frac{0}{4} = 0$$
 or $x = 1$

When x = 0, from (*ii*), y = 0 \therefore point is O(0, 0)

When x = 1, from (*ii*), y = 2x = 2 \therefore point is A(1, 2)

:. Points of intersections of circle (i) and line (ii) are O(0, 0) and A(1, 2).

III. Area OBAM = Area bounded by parabola (i) and x-axis

$$= \left| \int_{0}^{1} y \, dx \right| = \left| \int_{0}^{1} 2x^{\frac{1}{2}} \, dx \right| \quad [\because \text{ From } (ii) \ y = 2x^{\frac{1}{2}}]$$
$$= 2 \frac{\left(\frac{x^{\frac{3}{2}}}{x^{\frac{3}{2}}}\right)^{1}}{\frac{3}{2}} = \frac{4}{3}(1-0) = \frac{4}{3} \qquad \dots (iv)$$

IV. Area of $\triangle OAM =$ Area of bounded by line (*iii*) and x-axis

$$= \left| \int_{0}^{1} y \, dx \right| = \left| \int_{0}^{1} 2x \, dx \right| \quad (\because \text{ From } (iii) \ y = 2x)$$
$$= 2 \left(\frac{x^{2}}{2} \right)_{0}^{1} = \left(x^{2} \right)_{0}^{1} = 1 - 0 = 1 \qquad \dots (v)$$

V. \therefore Required shaded area OBA = Area OBAM - Area of \triangle OAM = $\frac{4}{3} - 1 = \frac{4-3}{3} = \frac{1}{3}$ sq. units.

$$(By (iv)) (By (v))$$

.. Option (B) is the correct answer.