Exercise 8.2

1. Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$.
Sol. Step I. Let us draw graphs and shade the region of integration.
Given: Equation of the circle is $4 x^{2}+4 y^{2}=9$
Dividing by $4, \quad x^{2}+y^{2}=\frac{9}{4}=\left(\frac{3}{2}\right)^{2}$
We know that this equation (i) represents a circle whose centre is $(0,0)$ and radius $\frac{3}{2}\left(x^{2}+y^{2}=r^{2}\right)$
Equation of parabola is $x^{2}=4 y$

(eqn. (ii) represents an upward parabola symmetrical about y-axis)
Step II. Let us solve eqns. of circle (i) and parabola (ii) for x and y to find their points of intersection.
Putting $x^{2}=4 y$ from (ii) in (i), we have $4 y+y^{2}=\frac{9}{4}$
Multiplying by L.C.M. (= 4),

$$
16 y+4 y^{2}=9 \quad \text { or } \quad 4 y^{2}+16 y-9=0
$$

$\Rightarrow \quad 4 y^{2}+18 y-2 y-9=0 \Rightarrow 2 y(2 y+9)-1(2 y+9)=0$
$\Rightarrow \quad(2 y+9)(2 y-1)=0$
$\begin{aligned} \therefore & \text { Either } & 2 y+9 & =0 & \text { or } & 2 y-1\end{aligned}=0$
For $y=-\frac{9}{2}$, from (i) $x^{2}=4 y=4\left(-\frac{9}{2}\right)=-18$
which is impossible because square of a real number can never be negative.
For $y=\frac{1}{2}$, from $(i), \quad x^{2}=4 y=4 \times \frac{1}{2}=2$
$\therefore \quad x= \pm \sqrt{2}$
\therefore Points of intersections of circle (i) and parabola (ii) are

$$
\mathrm{A}\left(-\sqrt{2}, \frac{1}{2}\right) \text { and } \mathrm{B}\left(\sqrt{2}, \frac{1}{2}\right)
$$

Step III. Area $\mathrm{OBM}=$ Area between parabola (ii) and y-axis

$$
=\left|\int_{0}^{\frac{1}{2}} x d y\right|
$$

$\left(\because \quad\right.$ at $\mathrm{O}, y=0$ and at $\left.\mathrm{B}, y=\frac{1}{2}\right)$
From (ii), putting $x=\sqrt{4 y}=2 \sqrt{y}=2 y^{\frac{1}{2}}$,

$$
\begin{aligned}
& \text { Area } \left.\begin{aligned}
\mathrm{OBM} & =\left|\int_{0}^{\frac{1}{2}} 2 y^{\frac{1}{2}} d y\right|=2 \cdot \frac{\left(y^{\frac{3}{2}}\right)_{0}^{\frac{1}{2}}}{\frac{3}{2}} \\
& =2 \cdot \frac{2}{3}\left[\left(\frac{1}{2}\right)^{\frac{3}{2}}-0\right]=\frac{4}{3} \frac{1}{2} \sqrt{\frac{1}{2}}\left[\because x^{\frac{3}{2}}=x \sqrt{x}\right] \\
& =\frac{2}{3} \frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{3}
\end{aligned} \quad \cdots(\because i i) \right\rvert\, \because \frac{x}{\sqrt{x}}=\sqrt{x}
\end{aligned}
$$

Step IV. Now area BDM $=$ Area between circle (i) and y-axis $=\left|\int_{\frac{1}{2}}^{\frac{3}{2}} x d y\right|\left[\because\right.$ At point $\mathrm{B}, y=\frac{1}{2}$ and at point $\left.\mathrm{D}, y=\frac{3}{2}\right]$ From (i), putting $x^{2}=\left(\frac{3}{2}\right)^{2}-y^{2}$ i.e., $x=\sqrt{\left(\frac{3}{2}\right)^{2}-y^{2}}$, $=\left|\int_{\frac{1}{2}}^{\frac{3}{2}} \sqrt{\left(\frac{3}{2}\right)^{2}-y^{2}} d y\right|=\left[\frac{y}{2} \sqrt{\left(\frac{3}{2}\right)^{2}-y^{2}}+\frac{\left(\frac{3}{2}\right)^{2}}{2} \sin ^{-1} \frac{y}{\left(\frac{3}{2}\right)}\right]_{\frac{1}{2}}^{\frac{3}{2}}$ $\left[\because \int \sqrt{a^{2}-y^{2}} d y=\frac{y}{2} \sqrt{a^{2}-y^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{y}{a}\right]$
$=\frac{3}{4} \sqrt{\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}}+\frac{9}{8} \sin ^{-1}\left(\frac{\frac{3}{2}}{\frac{3}{2}}\right)-\left[\frac{1}{4} \sqrt{\frac{9}{4}-\frac{1}{4}}+\frac{9}{8} \sin ^{-1}\left(\frac{\frac{1}{2}}{\frac{3}{2}}\right)\right]$
$=\left(\frac{3}{4} \times 0\right)+\frac{9}{8} \sin ^{-1} 1-\left[\frac{1}{4} \sqrt{\frac{8}{4}}+\frac{9}{8} \sin ^{-1} \frac{1}{3}\right]$
$=\frac{9}{8} \times \frac{\pi}{2}-\frac{1}{4} \sqrt{2}-\frac{9}{8} \sin ^{-1} \frac{1}{3}$
$=\frac{9 \pi}{16}-\frac{\sqrt{2}}{4}-\frac{9}{8} \sin ^{-1} \frac{1}{3}$
Step V. \therefore Required shaded area (of circle (i) which is interior to parabola $(i i))=$ Area AOBDA

$$
\begin{aligned}
= & 2(\text { Area OBD })=2[\text { Area OBM }+ \text { Area MBD }] \\
= & 2\left[\frac{\sqrt{2}}{3}+\left(\frac{9 \pi}{16}-\frac{\sqrt{2}}{4}-\frac{9}{8} \sin ^{-1} \frac{1}{3}\right)\right] \\
& (\text { By }(\text { iii })) \\
= & 2\left[\sqrt{2}\left(\frac{1}{3}-\frac{1}{4}\right)+\frac{9 \pi}{16}-\frac{9}{8} \sin ^{-1} \frac{1}{3}\right] \\
= & 2 \sqrt{2}\left(\frac{4-3}{12}\right)+\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3} \\
= & \left(\frac{\sqrt{2}}{6}+\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1} \frac{1}{3}\right)=\frac{\sqrt{2}}{6}+\frac{9}{4}\left(\frac{\pi}{2}-\sin ^{-1} \frac{1}{3}\right) \\
= & \frac{\sqrt{2}}{6}+\frac{9}{4} \cos ^{-1} \frac{1}{3} \text { sq. units. }
\end{aligned}
$$

Ans $\left(\because \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}\right)$
Remark: $=\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \sqrt{1-\frac{1}{9}} \quad\left(\because \cos ^{-1} x=\sin ^{-1} \sqrt{1-x^{2}}\right)$
$=\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \sqrt{\frac{8}{9}}=\left(\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right)$ sq. units.
Note: The equation $(x-\alpha)^{2}+(y-\beta)^{2}=r^{2}$ represents a circle whose centre is (α, β) and radius is r.
2. Find the area bounded by the curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$.
Sol. The equations of the two circles are

$$
\begin{align*}
& x^{2}+y^{2} \tag{i}
\end{align*}=1
$$

The first circle has centre at the origin and radius 1 . The second circle has centre at $(1,0)$ and radius 1 . Both are symmetrical about the x-axis. Circle (i) is symmetrical about y-axis also.
For points of intersections of circles (i) and (ii), let us solve equations (i) and (ii) for x and y.

From (i), $y^{2}=1-x^{2}$
Putting $y^{2}=1-x^{2}$ in eqn. (ii), $(x-1)^{2}+1-x^{2}=1$
or $\quad x^{2}+1-2 x+1-x^{2}=1$
or

$$
-2 x+1=0 \quad \therefore \quad x=\frac{1}{2}
$$

Putting $x=\frac{1}{2}, y^{2}=1-x^{2}=1-\frac{1}{4}=\frac{3}{4}$
$\therefore \quad y= \pm \sqrt{\frac{3}{4}}= \pm \frac{\sqrt{3}}{2}$
\therefore The two points of intersections of circles (i) and (ii) are $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$
From (i), $\quad y^{2}=1-x^{2}$;
$\therefore \quad y=\sqrt{1-x^{2}}$ in first quadrant.
From (ii), $y^{2}=1-(x-1)^{2}$ and
$\therefore \quad y=\sqrt{1-(x-1)^{2}}$ in first quadrant.
Required area OACBO (area enclosed between the two circles) (shown shaded)
$=2 \times$ Area OAC
$=2[$ Area $\mathrm{OAD}+$ Area DAC$]$
$=2\left[\int_{0}^{1 / 2} y\right.$ of circle $(i i) d x+\int_{1 / 2}^{1} y$ of circle $\left.(i) d x\right]$
$=2\left[\int_{0}^{1 / 2} \sqrt{1-(x-1)^{2}} d x+\int_{1 / 2}^{1} \sqrt{1-x^{2}} d x\right]$
$=2\left[\left\{\frac{(x-1) \sqrt{1-(x-1)^{2}}}{2}+\frac{1}{2} \sin ^{-1}(x-1)\right\}_{0}^{1 / 2}+\left\{\frac{x \sqrt{1-x^{2}}}{2}+\frac{1}{2} \sin ^{-1} x\right\}_{1 / 2}^{1}\right]$

$$
\left[\because \int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]
$$

$=\left\{-\frac{1}{2} \sqrt{\frac{3}{4}}+\sin ^{-1}\left(-\frac{1}{2}\right)\right\}-\left\{\sin ^{-1}(-1)\right\}+\sin ^{-1} 1-\left\{\frac{1}{2} \sqrt{\frac{3}{4}}+\sin ^{-1} \frac{1}{2}\right\}$
$=-\frac{\sqrt{3}}{4}-\frac{\pi}{6}+\frac{\pi}{2}+\frac{\pi}{2}-\frac{\sqrt{3}}{4}-\frac{\pi}{6} \quad=\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)$ sq. units.

3. Find the area of the region bounded by the curves

 $y=x^{2}+2, y=x, x=0$ and $x=3$.Sol. Equation of the given curve is $y=x^{2}+2$
or

$$
\begin{equation*}
x^{2}=y-2 \tag{i}
\end{equation*}
$$

It is an upward parabola (\because An equation of the form $x^{2}=k y$, $k>0$ represents an upward parabola).
Eqn. (i) contains only even powers of x and hence remains unchanged on changing x to $-x$ in (i).
\therefore The parabola (i) is symmetrical about y-axis.
Parabola (i) meets y-axis (its line of symmetry) i.e. $x=0$ in (0,2) [put $x=0$ in (i) to get $y=2]$
\therefore Vertex of the parabola is $(0,2)$.
Equation of the given line is $y=x$
We know that it is a straight line passing through the origin and having slope 1 i.e., making an angle of 45° with x-axis.

Table of values for the line $y=x$

x	0	1	2
y	0	1	2

Also the required area is given to be bounded by the vertical lines $x=0$ to $x=3$.
\therefore Limits of integration are given to be $x=0$ to $x=3$.
Area bounded by parabola (i) namely $y=x^{2}+2$, the x axis and the ordinates $x=$ 0 to $x=3$ is the area OACD and

$$
\begin{aligned}
& =\int_{0}^{3} y d x=\int_{0}^{3}\left(x^{2}+2\right) d x \\
& \quad=\left(\frac{x^{3}}{3}+2 x\right)_{0}^{3}=(9+6)-0=15
\end{aligned}
$$

Area bounded by line (ii) namely $y=x$, the x -axis and the ordinates $x=0, x=3$ is

$$
\begin{align*}
\text { area } \mathrm{OAB} \text { and } & =\int_{0}^{3} y d x=\int_{0}^{3} x d x=\left(\frac{x^{2}}{2}\right)_{0}^{3} \\
& =\frac{9}{2}-0=\frac{9}{2} \tag{iv}
\end{align*}
$$

\therefore Required area (shown shaded) i.e., area OBCD

$$
\begin{aligned}
& =\text { area OACD }- \text { area OAB } \\
& =\text { Area given by (iii) - Area given by (iv) } \\
& =15-\frac{9}{2}=\frac{21}{2} \text { sq. units. }
\end{aligned}
$$

Remark: On solving Eqns (i) and (ii) for x we get imaginary values of x and hence curves (i) and (ii) don't intersect.
4. Using integration, find the area of the region bounded by the triangle whose vertices are $(-1,0),(1,3)$ and $(3,2)$.
Sol. Given: Vertices of triangle are $\mathrm{A}(-1,0), \mathrm{B}(1,3)$ and $\mathrm{C}(3,2)$.
\therefore Equation of line AB is
$y-0=\frac{3-0}{1-(-1)}(x-(-1))$

$$
\left(y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)\right)
$$

or $\quad y=\frac{3}{2}(x+1)$

\therefore Area of $\triangle \mathrm{ABL}=$ Area bounded by this line AB and x-axis

$$
=\left|\int_{-1}^{1} y d x\right|
$$

$(\because$ At point $\mathrm{A}, x=-1$ and at point $\mathrm{B}, x=1)$

$$
=\left|\int_{-1}^{1} \frac{3}{2}(x+1) d x\right|=\frac{3}{2}\left|\int_{-1}^{1}(x+1) d x\right|
$$

$$
=\frac{3}{2}\left|\left(\frac{x^{2}}{2}+x\right)_{-1}^{1}\right|=\frac{3}{2}\left[\left(\frac{1}{2}+1\right)-\left(\frac{1}{2}-1\right)\right]
$$

$$
\begin{equation*}
=\frac{3}{2}\left(\frac{3}{2}-\left(-\frac{1}{2}\right)\right)=\frac{3}{2}\left(\frac{3}{2}+\frac{1}{2}\right)=\frac{3}{2} \cdot \frac{4}{2}=3 \tag{i}
\end{equation*}
$$

Again equation of line BC is

$$
\begin{aligned}
y-3 & =\frac{2-3}{3-1}(x-1) \\
\Rightarrow y-3 & =-\frac{1}{2}(x-1) \Rightarrow y=3-\left(\frac{x-1}{2}\right)=\frac{6-x+1}{2} \\
\Rightarrow y & =\frac{7-x}{2}=\frac{1}{2}(7-x)
\end{aligned}
$$

$\therefore \quad$ Area of trapezium BLMC $=$ Area bounded by line BC and x-axis

$$
\begin{align*}
& =\left|\int_{1}^{3} y d x\right|=\left|\int_{1}^{3} \frac{1}{2}(7-x) d x\right| \\
& =\frac{1}{2}\left(7 x-\frac{x^{2}}{2}\right)_{1}^{3}=\frac{1}{2}\left[21-\frac{9}{2}-\left(7-\frac{1}{2}\right)\right] \\
& =\frac{1}{2}\left(21-\frac{9}{2}-7+\frac{1}{2}\right)=\frac{1}{2}\left(\frac{42-9-14+1}{2}\right)=\frac{1}{4}(20) \\
& =5 \tag{ii}
\end{align*}
$$

Again equation of line AC is
$y-0=\frac{2-0}{3-(-1)}(x-(-1)) \quad \Rightarrow \quad y=\frac{2}{4}(x+1)$
$\Rightarrow \quad y=\frac{1}{2}(x+1)$
$\therefore \quad$ Area of $\triangle \mathrm{ACM}=$ Area bounded by line AC and x-axis

$$
\begin{align*}
& =\left|\int_{-1}^{3} y d x\right|=\left|\int_{-1}^{3} \frac{1}{2}(x+1) d x\right|=\frac{1}{2}\left(\frac{x^{2}}{2}+x\right)_{-1}^{3} \\
& =\frac{1}{2}\left[\frac{9}{2}+3-\left(\frac{1}{2}-1\right)\right]=\frac{1}{2}\left[\frac{9}{2}+3-\frac{1}{2}+1\right] \\
& =\frac{1}{2}\left[\frac{9+6-1+2}{2}\right]=\frac{16}{4}=4 \tag{iiii}
\end{align*}
$$

We can observe from the figure that required area of $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& =\text { Area of } \triangle \mathrm{ABL}+\text { Area of Trapezium BLMC }- \text { Area of } \triangle \mathrm{ACM} \\
& =3+5-4=4 \text { sq. units. } \\
& =\mathrm{By} \text { (i) } \mathrm{By} \text { (ii) } \mathrm{By}(\text { (iii) }
\end{aligned}
$$

5. Using integration, find the area of the triangular region whose sides have the equations $y=2 x+1, y=3 x+1$ and $x=4$.
Sol. Equation of one side of triangle is $y=2 x+1$
Equation of second side of triangle is $y=3 x+1$
Third side of triangle is $x=4$.
It is a line parallel to y-axis at a distance 4 to right of y-axis.
Let us solve (i) and (ii) for x and y.
Eqn. (ii) - eqn. (i)
gives $x=0$.
Put $x=0$ in (i), $y=1$.
\therefore Point of intersection of lines (i) and (ii) is $\mathrm{A}(0,1)$
Putting $x=4$ from (iii) in (i), $y=8+1=9$
$\therefore \quad$ Point of intersection of lines (i) and (iii) is $\mathrm{B}(4,9)$.
Putting $x=4$ from (iii) in (ii), $y=12+1=13$.
\therefore Point of intersection of lines (ii) and (iii) is $\mathrm{C}(4,13)$.

Area between line (ii) i.e., line AC and x-axis

$$
=\int_{0}^{4} y d x=\int_{0}^{4}(3 x+1) d x
$$

[By (ii)]

$$
=\left(\frac{3 x^{2}}{2}+x\right)_{0}^{4}
$$

$$
=24+4=28 \text { sq. units } \ldots(i v)
$$

Area between line (i) i.e., line AB and x-axis
$=\int_{0}^{4} y d x=\int_{0}^{4}(2 x+1) d x$
$=\left(x^{2}+x\right)_{0}^{4}[\mathrm{By}(i)]$
$=16+4=20$ sq. units
\therefore Area of triangle $\mathrm{ABC}=$
Area given by (iv)

- Area given by (v)
$=28-20=8$ sq. units.

6. Choose the correct answer:
Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is
(A) $2(\pi-2)$
(B) $\pi-2$
(C) $2 \pi-1$
(D) $\mathbf{2}(\pi+2)$.

Sol. Step I. Equation of circle is $x^{2}+y^{2}$

$$
\begin{align*}
& =4=2^{2} \tag{i}\\
& \therefore \\
& \therefore
\end{align*} \quad y^{2}=2^{2}-x^{2}+y=\sqrt{2^{2}-x^{2}}
$$

for arc $A B$ of the circle in first quadrant.
We know that eqn. (i) represents a circle whose centre is origin and radius is 2 .
Equation of the line is $x+y=2$

Table of values

x	0	2
y	2	0

\therefore Graph of equation (iii) is the straight line joining the points $(0,2)$ and $(2,0)$.
The region for required area is shown as shaded in the figure.

Step II. From the graphs of circle (i) and straight line (iii), it is clear that points of intersections of circle (i) and straight line (iii) are $\mathrm{A}(2,0)$ and $\mathrm{B}(0,2)$.

Step III. Area OACB, bounded by circle (i) and coordinate axes in first quadrant

$$
\begin{align*}
& =\left|\int_{0}^{2} y d x\right|=\int_{0}^{2} \sqrt{2^{2}-x^{2}} d x \quad\left(\because \text { From (ii), } y=\sqrt{2^{2}-x^{2}}\right) \\
& =\left(\frac{x}{2} \sqrt{2^{2}-x^{2}}+\frac{2^{2}}{2} \sin ^{-1} \frac{x}{2}\right)_{0}^{2} \\
& \left.\qquad \because \because \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right] \\
& =\left(\frac{2}{2} \sqrt{4-4}+2 \sin ^{-1} 1\right)-\left(0+2 \sin ^{-1} 0\right) \\
& =0+2\left(\frac{\pi}{2}\right)-2(0)=\pi \tag{iv}
\end{align*}
$$

Step IV. Area of triangle OAB, bounded by straight line (iii) and co-ordinate axes

$$
\begin{align*}
& =\left|\int_{0}^{2} y d x\right|=\left|\int_{0}^{2}(2-x) d x\right| \quad(\because \text { From (iii), } y=2-x) \\
& =\left(2 x-\frac{x^{2}}{2}\right)_{0}^{2}=(4-2)-(0-0)=2 \tag{v}
\end{align*}
$$

Step V. \therefore Required shaded area
$=$ Area OACB given by (iv) - Area of triangle OAB by (v) $=(\pi-2)$ sq. units.
\therefore Option (B) is the correct answer.
7. Choose the correct answer:

Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is
(A) $\frac{2}{3}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $\frac{3}{4}$.

Sol. Step I. Equation of one curve (parabola) is
$y^{2}=4 x$
$\therefore y=\sqrt{4 x}=2 \sqrt{x}=2^{\frac{1}{2}}$
for arc of the parabola in first quadrant.
We know that eqn. (i) represents a rightward parabola symmetrical about x-axis.

Equation of second curve (line) is $y=2 x$
We know that $y=2 x$ represents a straight line passing through the origin.
We are required to find the area of the shaded region.

II. Let us solve (i) and (iii) for \boldsymbol{x} and \boldsymbol{y}.

Putting $y=2 x$ from (iii) in (i), we have

$$
4 x^{2}=4 x \Rightarrow 4 x^{2}-4 x=0 \Rightarrow 4 x(x-1)=0
$$

\therefore Either $4 x=0$ or $x-1=0$
i.e., $\quad x=\frac{0}{4}=0 \quad$ or $\quad x=1$

When $x=0$, from (ii), $\quad y=0 \quad \therefore$ point is $\mathrm{O}(0,0)$
When $x=1$, from (ii), $y=2 x=2 \quad \therefore \quad$ point is $\mathrm{A}(1,2)$
\therefore Points of intersections of circle (i) and line (ii) are $\mathrm{O}(0,0)$ and A(1, 2).
III. Area OBAM $=$ Area bounded by parabola (i) and x-axis

$$
\begin{align*}
& =\left|\int_{0}^{1} y d x\right|=\left|\int_{0}^{1} 2 x^{\frac{1}{2}} d x\right|\left[\because \text { From (ii) } y=2^{x^{\frac{1}{2}}}\right] \\
& =2 \frac{\left(x^{\frac{3}{2}}\right)_{0}^{1}}{\frac{3}{2}}=\frac{4}{3}(1-0)=\frac{4}{3} \tag{iv}
\end{align*}
$$

IV. Area of $\triangle \mathrm{OAM}=$ Area of bounded by line (iii) and x-axis

$$
\begin{align*}
& =\left|\int_{0}^{1} y d x\right|=\left|\int_{0}^{1} 2 x d x\right| \quad(\because \text { From (iii) } y=2 x) \\
& =2\left(\frac{x^{2}}{2}\right)_{0}^{1}=\left(x^{2}\right)_{0}^{1}=1-0=1 \tag{v}
\end{align*}
$$

V. \therefore Required shaded area OBA
= Area OBAM - Area of \triangle OAM

$$
=\frac{4}{3}-1=\frac{4-3}{3}=\frac{1}{3} \text { sq. units. }
$$

$$
(\text { By }(i v)) \quad(\text { By }(v))
$$

\therefore Option (B) is the correct answer.

