

NCERT Class 12 Maths

Solutions

Chapter - 10

Vector Algebra

Exercise 10.3

Find the angle between two vectors a and b with magnitude √3 and 2, respectively having a.b = √6.
 Sol. Given: |a| = √3, |b| = 2 and a.b = √6

Let θ be the angle between the vectors \overrightarrow{a} and \overrightarrow{b} . We know that $\cos \theta = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{a}| |\overrightarrow{b}|}$ Putting values, $\cos \theta = \frac{\sqrt{6}}{\sqrt{3}(2)}$ $= \frac{\sqrt{6}}{\sqrt{3}\sqrt{4}} = \frac{\sqrt{6}}{\sqrt{12}} = \sqrt{\frac{6}{12}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \cos \frac{\pi}{4} \qquad \therefore \quad \theta = \frac{\pi}{4} \,.$ 2. Find the angle between the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$. **Sol. Given:** Let $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$. $\therefore \mid \overrightarrow{a} \mid = \sqrt{1+4+9} = \sqrt{14} \mid \because \mid x \hat{i} + y \hat{j} + z \hat{k} \mid = \sqrt{x^2 + y^2 + z^2}$ $|\overrightarrow{b}| = \sqrt{9+4+1} = \sqrt{14}$ and Also, \overrightarrow{a} . \overrightarrow{b} = Product of coefficients of \hat{i} + Product of coefficient of \hat{j} + Product of coefficients of k= 1(3) + (-2)(-2) + 3(1) = 3 + 4 + 3 = 10 Let θ be the angle between the vectors \vec{a} and \vec{b} We know that $\cos \theta = \overrightarrow{a \cdot b} = \frac{10}{\sqrt{14}\sqrt{14}} = \frac{10}{14} = \frac{5}{7}$ $\therefore \quad \theta = \cos^{-1} \frac{5}{7}.$

3. Find the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$. Sol. Let $\vec{a} = \hat{i} - \hat{j} = \hat{i} - \hat{j} + 0\hat{k}$ and $\vec{b} = \hat{i} + \hat{j} = \hat{i} + \hat{j} + 0\hat{k}$ Projection of vector \vec{a} and \vec{b} = Length $LM = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$ $= \frac{(1)(1) + (-1)(1) + 0(0)}{\sqrt{(1)^2 + (1)^2 + 0^2}} = \frac{1 - 1 + 0}{\sqrt{2}} = \frac{0}{\sqrt{2}} = 0.$ Remark. If projection of vector \vec{a} on \vec{b} is zero, then vector \vec{a} is perpendicular to

vector \overrightarrow{b} .

4. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} - \hat{i} + 8\hat{k}$

vector $7\hat{i}_{,} - \hat{j}_{,} + 8\hat{k}_{,}$ Sol. Let $\vec{a} = \hat{i}_{,} + 3\hat{j}_{,} + 7\hat{k}_{,}$ and $\vec{b} = 7\hat{i}_{,} - \hat{j}_{,} + 8\hat{k}_{,}$ $\rightarrow \rightarrow \vec{a}_{,} \vec{b}_{,}$

We know that projection of vector \overrightarrow{a} on vector $\overrightarrow{b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|}$ 1(7) + 3(-1) + 7(8) 7 - 3 + 56 60

$$= \frac{1(7) + 5(-1) + 7(8)}{\sqrt{(7)^2 + (-1)^2 + (8)^2}} = \frac{7 - 3 + 56}{\sqrt{49 + 1 + 64}} = \frac{60}{\sqrt{114}}.$$

5. Show that each of the given three vectors is a unit vector: $\frac{1}{7} (2\hat{i} + 3\hat{j} + 6\hat{k}), \frac{1}{7} (3\hat{i} - 6\hat{j} + 2\hat{k}), \frac{1}{7} (6\hat{i} + 2\hat{j} - 3\hat{k}).$

Also show that they are mutually perpendicular to each other.

Sol. Let
$$\vec{a} = \frac{1}{7} (2\hat{i} + 3\hat{j} + 6\hat{k}) = \frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k} \dots (i)$$

$$\vec{b} = \frac{1}{7} (3\hat{i} - 6\hat{j} + 2\hat{k}) = \frac{3}{7}\hat{i} - \frac{6}{7}\hat{j} + \frac{2}{7}\hat{k} \qquad \dots (ii)$$

$$\vec{c} = \frac{1}{7} (\hat{6i} + 2\hat{j} - 3\hat{k}) = \frac{6}{7} \hat{i} + \frac{2}{7} \hat{j} - \frac{3}{7}\hat{k} \quad ...(iii)$$

$$\therefore \quad |\vec{a}| = \sqrt{\left(\frac{2}{7}\right)^2} + \left(\frac{3}{7}\right)^2 + \left(\frac{6}{7}\right)^2 = \sqrt{\frac{4}{49} + \frac{9}{49} + \frac{36}{49}} \\ = \sqrt{\frac{49}{49}} = \sqrt{1} = 1 \\ |\vec{b}| = \sqrt{\left(\frac{3}{7}\right)^2 + \left(\frac{-6}{7}\right)^2 + \left(\frac{2}{7}\right)^2} = \sqrt{\frac{9}{49} + \frac{36}{49} + \frac{4}{49}} = \sqrt{\frac{49}{49}} \\ = \sqrt{1} = 1 \\ |\vec{c}| = \sqrt{\left(\frac{6}{7}\right)^2 + \left(\frac{2}{7}\right)^2 + \left(\frac{-3}{7}\right)^2} = \sqrt{\frac{36}{49} + \frac{4}{49} + \frac{9}{49}} = \sqrt{\frac{49}{49}} \\ = \sqrt{1} = 1$$

 \therefore Each of the three given vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} is a unit vector. From (i) and (ii),

$$\vec{a} \cdot \vec{b} = \left(\frac{2}{7}\right) \cdot \left(\frac{3}{7}\right) + \left(\frac{3}{7}\right) \left(\frac{-6}{7}\right) + \left(\frac{6}{7}\right) \left(\frac{2}{7}\right)$$
$$[\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3]$$

$$= \frac{6}{49} - \frac{18}{49} + \frac{12}{49} = \frac{6 - 18 + 12}{49} = \frac{0}{49} = 0$$

 \therefore \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other. From (*ii*) and (*iii*),

$$\vec{b} \quad . \quad \vec{c} = \left(\frac{3}{7}\right) \left(\frac{6}{7}\right) + \left(\frac{-6}{7}\right) \left(\frac{2}{7}\right) + \frac{2}{7} \left(\frac{-3}{7}\right) \\ = \frac{18}{49} - \frac{12}{49} - \frac{6}{49} = \frac{18 - 12 - 6}{49} = \frac{0}{49} = 0$$

 \therefore \overrightarrow{b} and \overrightarrow{c} are perpendicular to each other. From (i) and (iii),

$$\vec{a} \quad . \quad \vec{c} = \frac{2}{7} \left(\frac{6}{7}\right) + \frac{3}{7} \left(\frac{2}{7}\right) + \left(\frac{6}{7}\right) \left(\frac{-3}{7}\right) \\ = \frac{12}{49} + \frac{6}{49} - \frac{18}{49} = \frac{12 + 6 - 18}{49} = \frac{0}{49} = 0$$

 $\therefore \vec{a}$ and \vec{c} are perpendicular to each other. Hence, \vec{a} , \vec{b} , \vec{c} are mutually perpendicular vectors.

6. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a} + \vec{b})$. $(\vec{a} - \vec{b}) = 8$ and $|\vec{a}| = 8|\vec{b}|$.

Sol. Given:
$$(\overrightarrow{a} + \overrightarrow{b}) \cdot (\overrightarrow{a} - \overrightarrow{b}) = 8$$
 and $|\overrightarrow{a}| = 8 |\overrightarrow{b}|$...(i)
 $\Rightarrow \overrightarrow{a} \cdot \overrightarrow{a} - \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{a} - \overrightarrow{b} \cdot \overrightarrow{b} = 8$
 $\Rightarrow |\overrightarrow{a}|^2 - \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{b} - |\overrightarrow{b}|^2 = 8$
[:: We know that $\overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}|^2$ and $\overrightarrow{b} \cdot \overrightarrow{b} = |\overrightarrow{b}|^2$ and
 $\overrightarrow{b} \cdot \overrightarrow{a} = \overrightarrow{a} \cdot \overrightarrow{b}$]

$$\Rightarrow |\overrightarrow{a}|^{2} - |\overrightarrow{b}|^{2} = 8 \qquad \dots (ii)$$

Putting $|\overrightarrow{a}| = 8 |\overrightarrow{b}|$ from (i) in (ii) , $64 |\overrightarrow{b}|^{2} - |\overrightarrow{b}|^{2} = 8$
or $(64 - 1) |\overrightarrow{b}|^{2} = 8 \Rightarrow 63 |\overrightarrow{b}|^{2} = 8$
$$\Rightarrow |\overrightarrow{b}|^{2} = \frac{8}{63} \Rightarrow |\overrightarrow{b}| = \sqrt{\frac{8}{63}} = \sqrt{\frac{4 \times 2}{9 \times 7}}$$

(:: Length *i.e.*, modulus of a vector is never negative.)

$$\Rightarrow \qquad |\overrightarrow{b}| = \frac{2}{3}\sqrt{\frac{2}{7}}$$

Putting this value of $|\overrightarrow{b}|$ in (i),

$$|\overrightarrow{a}| = 8\left(\frac{2}{3}\sqrt{\frac{2}{7}}\right) = \frac{16}{3}\sqrt{\frac{2}{7}}.$$

7. Evaluate the product $(3\overrightarrow{a} - 5\overrightarrow{b}) \cdot (2\overrightarrow{a} + 7\overrightarrow{b})$.

Sol. The given expression = $(3\overrightarrow{a} - 5\overrightarrow{b}) \cdot (2\overrightarrow{a} + 7\overrightarrow{b})$ = $(3\overrightarrow{a}) \cdot (2\overrightarrow{a}) + (3\overrightarrow{a}) \cdot (7\overrightarrow{b}) - (5\overrightarrow{b}) \cdot (2\overrightarrow{a}) - (5\overrightarrow{b}) \cdot (7\overrightarrow{b})$ = $6\overrightarrow{a} \cdot \overrightarrow{a} + 21\overrightarrow{a} \cdot \overrightarrow{b} - 10\overrightarrow{b} \cdot \overrightarrow{a} - 35\overrightarrow{b} \cdot \overrightarrow{b}$ = $6|\overrightarrow{a}|^2 + 21\overrightarrow{a} \cdot \overrightarrow{b} - 10\overrightarrow{a} \cdot \overrightarrow{b} - 35|\overrightarrow{b}|^2$ [$\therefore \overrightarrow{a} \cdot \overrightarrow{a} = |\overrightarrow{a}|^2$ and $\overrightarrow{b} \cdot \overrightarrow{b} = |\overrightarrow{b}|^2$ and $\overrightarrow{b} \cdot \overrightarrow{a} = \overrightarrow{a} \cdot \overrightarrow{b}$] = $6|\overrightarrow{a}|^2 + 11\overrightarrow{a} \cdot \overrightarrow{b} - 35|\overrightarrow{b}|^2$.

- 8. Find the magnitude of two vectors \vec{a} and \vec{b} , having the same magnitude such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.
- **Sol. Given:** $|\overrightarrow{a}| = |\overrightarrow{b}|$ and angle θ (say) between \overrightarrow{a} and \overrightarrow{b} is 60° and their scalar (*i.e.*, dot) product = $\frac{1}{2}$

i.e.,
$$\overrightarrow{a} \cdot \overrightarrow{b} = \frac{1}{2}$$

 $\Rightarrow |\overrightarrow{a}| | \overrightarrow{b}| \cos \theta = \frac{1}{2}$ [$\because \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| | \overrightarrow{b}| \cos \theta$]
Putting $|\overrightarrow{b}| = |\overrightarrow{a}|$ (given) and $\theta = 60^{\circ}$ (given), we have
 $|\overrightarrow{a}| | \overrightarrow{a}| \cos 60^{\circ} = \frac{1}{2} \Rightarrow |\overrightarrow{a}|^{2} \left(\frac{1}{2}\right) = \frac{1}{2}$
Multiplying by 2, $|\overrightarrow{a}|^{2} = 1 \Rightarrow |\overrightarrow{a}| = 1$...(*i*)
(\because Length of a vector is never negative)
 $\therefore |\overrightarrow{b}| = |\overrightarrow{a}| = 1$ [By (*i*)]
 $\therefore |\overrightarrow{a}| = 1$ and $|\overrightarrow{b}| = 1$.
9. Find $|\overrightarrow{x}|$, if for a unit vector \overrightarrow{a} , $(\overrightarrow{x} - \overrightarrow{a}) \cdot (\overrightarrow{x} + \overrightarrow{a}) = 12$.
Sol. Given: \overrightarrow{a} is a unit vector $\Rightarrow |\overrightarrow{a}| = 1$...(*i*)
Also given $(\overrightarrow{x} - \overrightarrow{a}) \cdot (\overrightarrow{x} + \overrightarrow{a}) = 12$
 $\Rightarrow |\overrightarrow{x}|^{2} + |\overrightarrow{a}| | |\overrightarrow{x}| - |\overrightarrow{a}| | |^{2} = 12$

 $|\overrightarrow{x}|^2 - |\overrightarrow{a}|^2 = 12$

 \Rightarrow

Putting $|\overrightarrow{a}| = 1$ from (i), $|\overrightarrow{x}|^2 - 1 = 12$ $\Rightarrow |\overrightarrow{x}| = \sqrt{13}.$ (:: Length of a vector is never negative.) $\Rightarrow |\overrightarrow{x}|^2 = 13$ 10. If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\overrightarrow{a} + \lambda \overrightarrow{b}$ is perpendicular to \overrightarrow{c} , then find the value of λ . **Sol. Given**: $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ $\overrightarrow{c} = 3 \hat{i} + \hat{i}$ and Now, $\overrightarrow{a} + \lambda \overrightarrow{b} = 2\hat{i} + 2\hat{j} + 3\hat{k} + \lambda(-\hat{i} + 2\hat{j} + \hat{k})$ $= 2\hat{i} + 2\hat{i} + 3\hat{k} - \lambda\hat{i} + 2\lambda\hat{i} + \lambda\hat{k}$ $\Rightarrow \quad \overrightarrow{a} + \lambda \overrightarrow{b} = (2 - \lambda) \hat{i} + (2 + 2\lambda) \hat{i} + (3 + \lambda) \hat{k}$ Again given $\vec{c} = 3\hat{i} + \hat{j} = 3\hat{i} + \hat{j} + 0\hat{k}$. Because vector $\vec{a} + \lambda \vec{a}$ is perpendicular to \vec{c} , therefore, $(\overrightarrow{a} + \lambda \overrightarrow{b}) \cdot \overrightarrow{c} = 0$ *i.e.*, Product of coefficients of $i + \dots = 0$ $\Rightarrow (2 - \lambda)3 + (2 + 2\lambda)1 + (3 + \lambda)0 = 0$ $\Rightarrow 6 - 3\lambda + 2 + 2\lambda = 0$ $\Rightarrow -\lambda + 8 = 0$ $\Rightarrow \lambda = 8. \Rightarrow \lambda = 8.$ 11. Show that $|\overrightarrow{a} | \overrightarrow{b} + | \overrightarrow{b} | \overrightarrow{a}$ is perpendicular to $|\vec{a}|\vec{b} - |\vec{b}|\vec{a}$, for any two non-zero vectors \vec{a} and \vec{b} . **Sol.** Let $\overrightarrow{c} = |\overrightarrow{a}| \overrightarrow{b} + |\overrightarrow{b}| \overrightarrow{a} = l\overrightarrow{b} + m\overrightarrow{a}$ where $l = |\overrightarrow{a}|$ and $m = |\overrightarrow{b}|$ Let $\overrightarrow{d} = |\overrightarrow{a}| \overrightarrow{b} - |\overrightarrow{b}| \overrightarrow{a} = l\overrightarrow{b} - m\overrightarrow{a}$ Now, $\overrightarrow{c} \cdot \overrightarrow{d} = (l \overrightarrow{b} + m \overrightarrow{a}) \cdot (l \overrightarrow{b} - m \overrightarrow{a})$ $= l^2 \overrightarrow{b}, \overrightarrow{b} - lm \overrightarrow{b}, \overrightarrow{a} + lm \overrightarrow{a}, \overrightarrow{b} - m^2 \overrightarrow{a} \overrightarrow{a}$ $= l^{2} |\overrightarrow{b}|^{2} - lm \overrightarrow{a} \cdot \overrightarrow{b} + lm \overrightarrow{a} \cdot \overrightarrow{b} - m^{2} |\overrightarrow{a}|^{2} = l^{2} |\overrightarrow{b}|^{2} - m^{2} |\overrightarrow{a}|$ Putting $l = |\overrightarrow{a}|$ and $m = |\overrightarrow{b}|$, $= |\overrightarrow{a}|^2 |\overrightarrow{b}|^2 - |\overrightarrow{b}|^2 |\overrightarrow{a}|^2 = 0$ *i.e.*, \overrightarrow{c} , \overrightarrow{d} = 0 \therefore Vectors \overrightarrow{c} and \overrightarrow{d} are perpendicular to each other.

- 12. If $\overrightarrow{a} \cdot \overrightarrow{a} = 0$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 0$, then what can be concluded about the vector \overrightarrow{b} ?
- **Sol. Given:** $\overrightarrow{a}, \overrightarrow{a} = 0 \implies |\overrightarrow{a}|^2 = 0 \implies |\overrightarrow{a}| = 0$ $\dots(i)$ $(\Rightarrow \overrightarrow{a} \text{ is a zero vector by definition of zero vector.})$ Again given $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ \Rightarrow $|\overrightarrow{a}| |\overrightarrow{b}| \cos \theta = 0$ Putting $|\overrightarrow{a}| = 0$ from (i), we have $0 |\overrightarrow{b}| \cos \theta = 0$ *i.e.*, 0 = 0 for all (any) vectors \overrightarrow{b} . \therefore \overrightarrow{b} can be any vector. Note. $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})^2 = (\overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c}))^2$ $= \overrightarrow{a}^2 + (\overrightarrow{b} + \overrightarrow{c})^2 + 2\overrightarrow{a} \cdot (\overrightarrow{b} + \overrightarrow{c})$ $[\because (\overrightarrow{A} + \overrightarrow{B})^2 = \overrightarrow{A}^2 + \overrightarrow{B}^2 + 2\overrightarrow{A}, \overrightarrow{B}]$ $= \overrightarrow{a}^{2} + \overrightarrow{b}^{2} + \overrightarrow{c}^{2} + 2\overrightarrow{b} \cdot \overrightarrow{c} + 2\overrightarrow{a} \cdot \overrightarrow{b} + 2\overrightarrow{a} \cdot \overrightarrow{c}$ Using $\overrightarrow{a} \cdot \overrightarrow{c} = \overrightarrow{c} \cdot \overrightarrow{a}$ or $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})^2 = \overrightarrow{a}^2 + \overrightarrow{b}^2 + \overrightarrow{c}^2 + 2(\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a})$ 13. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors such that \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = $\overrightarrow{0}$, find the value of \overrightarrow{a} , \overrightarrow{b} + \overrightarrow{b} , \overrightarrow{c} + \overrightarrow{c} , \overrightarrow{a} . Sol. Because \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit vectors, therefore, $|\overrightarrow{a}| = 1, |\overrightarrow{b}| = 1 \text{ and } |\overrightarrow{c}| = 1.$...(i) $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ Again given Squaring both sides $(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c})^2 = 0$ Using formula of Note above $\Rightarrow \quad \overrightarrow{a}^{2} + \overrightarrow{b}^{2} + \overrightarrow{c}^{2} + 2(\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{c}, \overrightarrow{a}) = 0$ or $|\overrightarrow{a}|^2 + |\overrightarrow{b}|^2 + |\overrightarrow{c}|^2 + 2(\overrightarrow{a}, \overrightarrow{b} + \overrightarrow{b}, \overrightarrow{c} + \overrightarrow{c}, \overrightarrow{a}) = 0$ Putting $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 1$, $|\overrightarrow{c}| = 1$ from (i), $1 + 1 + 1 + 2(\overrightarrow{a}, \overrightarrow{b}, + \overrightarrow{b}, \overrightarrow{c}, + \overrightarrow{c}, \overrightarrow{a}) = 0$ $2(\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{b}.\overrightarrow{c}+\overrightarrow{c}.\overrightarrow{a})=-3$ \Rightarrow Dividing both sides by 2, \overrightarrow{a} , \overrightarrow{b} + \overrightarrow{b} , \overrightarrow{c} + \overrightarrow{c} , \overrightarrow{a} = $\frac{-3}{2}$.
 - 14. If either vector $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{0}$, then $\overrightarrow{a} \cdot \overrightarrow{b} = 0$. But the converse need not be true. Justify your answer with an example.

Sol. Case I. Vector $\overrightarrow{a} = \overrightarrow{0}$. Therefore, by definition of zero vector,

$$|\overrightarrow{a}| = 0 \qquad \dots (i)$$

$$\therefore \quad \overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta = 0 (|\overrightarrow{b}| \cos \theta) \qquad [By (i)]$$
$$= 0$$

Case II. Vector $\overrightarrow{b} = \overrightarrow{0}$. Proceeding as above we can prove that $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ But the converse is not true.

Let us justify it with an example.

Let $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$. Therefore, $|\overrightarrow{a}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \neq 0$. Therefore $\overrightarrow{a} \neq \overrightarrow{0}$ (By definition of Zero Vector) Let $\overrightarrow{b} = \hat{i} + \hat{j} - 2\hat{k}$.

Therefore, $|\overrightarrow{b}| = \sqrt{(1)^2 + (1)^2 + (-2)^2} = \sqrt{6} \neq 0$. Therefore, $\overrightarrow{b} \neq \overrightarrow{0}$. But $\overrightarrow{a} \cdot \overrightarrow{b} = 1(1) + 1(1) + 1(-2) = 1 + 1 - 2 = 0$ So here $\overrightarrow{a} \cdot \overrightarrow{b} = 0$ but neither $\overrightarrow{a} = \overrightarrow{0}$ nor $\overrightarrow{b} = \overrightarrow{0}$.

- 15. If the vertices A, B, C of a triangle ABC are (1, 2, 3), (-1, 0, 0) and (0, 1, 2), respectively, then find $\angle ABC$.
- **Sol. Given:** Vertices A, B, C of a triangle are A(1, 2, 3), B(-1, 0, 0) and C(0, 1, 2) respectively.

:. Position vector (P.V.) of point A (=s OA) = (1, 2, 3)

$$= \hat{i} + 2\hat{j} + 3\hat{k}$$

Position vector (P.V.) of point B (= \overrightarrow{OB}) = (-1, 0, 0) = $-\hat{i} + 0\hat{j} + 0\hat{k}$

and position vector (P.V.) of point C (= \overrightarrow{OC}) = (0, 1, 2)

 $= 0\hat{i} + \hat{j} + 2\hat{k}$ We can see from the above figure that $\angle ABC$ is the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC} Now $\overrightarrow{BA} = P.V.$ of terminal point A - P.V. of initial point B $= \hat{i} + 2\hat{j} + 3\hat{k} - (-\hat{i} + 0\hat{j} + 0\hat{k})$ $= \hat{i} + 2\hat{j} + 3\hat{k} + \hat{i} - 0\hat{j} - 0\hat{k} = 2\hat{i} + 2\hat{j} + 3\hat{k} \qquad \dots(i)$ and $\overrightarrow{BC} = P.V.$ of point C - P.V. of point B $= 0\hat{i} + \hat{j} + 2\hat{k} - (-\hat{i} + 0\hat{j} + 0\hat{k})$ $= 0\hat{i} + \hat{j} + 2\hat{k} + \hat{i} - 0\hat{j} - 0\hat{k} = \hat{i} + \hat{j} + 2\hat{k} \qquad \dots(ii)$

We know that $\cos \angle ABC = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{|\overrightarrow{BA}||\overrightarrow{BC}|}$ $\cos \theta = \frac{\overrightarrow{a \cdot b}}{|\overrightarrow{a}||\overrightarrow{b}|}$

Using (i) and (ii)

...

$$= \frac{2(1) + 2(1) + 3(2)}{\sqrt{4 + 4 + 9}\sqrt{1 + 1 + 4}} = \frac{10}{\sqrt{17}\sqrt{6}} = \frac{10}{\sqrt{102}}$$
$$\angle ABC = \cos^{-1} \frac{10}{\sqrt{102}}.$$

- 16. Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1) are collinear.
- Sol. Given points are A(1, 2, 7), B(2, 6, 3) and C(3, 10, -1).

$$\Rightarrow P.V.'s \overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC} \text{ of points A, B, C are}$$

$$\overrightarrow{OA} = (1, 2, 7) = \hat{i} + 2\hat{j} + 7\hat{k}$$

$$\overrightarrow{OB} = (2, 6, 3) = 2\hat{i} + 6\hat{j} + 3\hat{k}$$
and $\overrightarrow{OC} = (3, 10, -1) = 3\hat{i} + 10\hat{j} - \hat{k}$

$$\therefore \overrightarrow{AB} = P.V. \text{ of terminal point B} - P.V. \text{ of initial point A}$$

$$= 2\hat{i} + 6\hat{j} + 3\hat{k} - (\hat{i} + 2\hat{j} + 7\hat{k})$$

$$= 2\hat{i} + 6\hat{j} + 3\hat{k} - \hat{i} - 2\hat{j} - 7\hat{k} = \hat{i} + 4\hat{j} - 4\hat{k} \dots(i)$$
and $\overrightarrow{AC} = P.V. \text{ of point C} - P.V. \text{ of point A}$

$$= 3\hat{i} + 10\hat{j} - \hat{k} - (\hat{i} + 2\hat{j} + 7\hat{k})$$

$$= 3\hat{i} + 10\hat{j} - \hat{k} - (\hat{i} + 2\hat{j} - 7\hat{k})$$

$$= 3\hat{i} + 10\hat{j} - \hat{k} - (\hat{i} - 2\hat{j} - 7\hat{k})$$

$$= 3\hat{i} + 10\hat{j} - \hat{k} - (\hat{i} - 2\hat{j} - 7\hat{k})$$

$$= 3\hat{i} + 10\hat{j} - \hat{k} - (\hat{i} - 2\hat{j} - 7\hat{k})$$

$$= 3\hat{i} + 10\hat{j} - \hat{k} - (\hat{i} - 2\hat{j} - 7\hat{k})$$

$$= 3\hat{i} + 10\hat{j} - \hat{k} - (\hat{i} - 2\hat{j} - 7\hat{k})$$

$$= 2\hat{i} + 8\hat{j} - 8\hat{k} = 2(\hat{i} + 4\hat{j} - 4\hat{k})$$

$$\Rightarrow \overrightarrow{AC} = 2\overrightarrow{AB} \qquad [By (i)]$$

Vectors \overrightarrow{AB} and \overrightarrow{AC} are collinear or parallel. $|::\overrightarrow{a} = m\overrightarrow{b}$ Points A, B, C are collinear. (:: Vectors \overrightarrow{AB} and \overrightarrow{AC} have a common point A and hence can't be parallel.) Remark. When we come to exercise 10.4 and learn that Exercise, we have a second solution for proving points A, B, C to be collinear: Prove that $\overrightarrow{AB} \times \overrightarrow{AC} = \overrightarrow{0}$. 17. Show that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ form the vertices of a right angled triangle. Sol. Let the given (position) vectors be P.V.'s of the points A, B, C respectively. P.V. of point A is $2\hat{i} - \hat{j} + \hat{k}$ and P.V. of point B is $\hat{i} - 3\hat{j} - 5\hat{k}$ and $\vec{AB} = P.V. \text{ of point } B - P.V. \text{ of point } A$ P.V. of point C is $3\hat{i} - 4\hat{j} - 4\hat{k}$. $=\hat{i}-3\hat{j}-5\hat{k}-(2\hat{i}-\hat{j}+\hat{k})=\hat{i}-3\hat{j}-5\hat{k}-2\hat{i}+\hat{j}-\hat{k}$ $= -\hat{i} - 2\hat{j} - 6\hat{k}$...(i) and $\overrightarrow{BC} = P.V.$ of point C – P.V. of point B $= 3\hat{i} - 4\hat{j} - 4\hat{k} - (\hat{i} - 3\hat{j} - 5\hat{k}) = 3\hat{i} - 4\hat{j} - 4\hat{k} - \hat{i} + 3\hat{j} + 5\hat{k}$ $=2\hat{i}-\hat{j}+\hat{k}$...(*ii*) and \overrightarrow{AC} = P.V. of point C – P.V. of point A $=3\hat{i}-4\hat{j}-4\hat{k}-(2\hat{i}-\hat{j}+\hat{k})=3\hat{i}-4\hat{j}-4\hat{k}-2\hat{i}+\hat{j}-\hat{k}$ $=\hat{i} - 3\hat{j} - 5\hat{k}$...(iii) Adding (i) and (ii), we have $\overrightarrow{AB} + \overrightarrow{BC} = -\hat{i} - 2\hat{j} - 6\hat{k} + 2\hat{i} - \hat{j} + \hat{k}$ $=\hat{i}-3\hat{j}-5\hat{k}=\overrightarrow{AC}$ [By (iii)]:. By Triangle Law of addition of vectors, points A, B, C are the vertices of a triangle ABC or points A, B, C are collinear. Now from (i) and (ii), $AB \cdot BC = (-1)(2) + (-2)(-1) + (-6)(1)$ $= -2 + 2 - 6 = -6 \neq 0$

From (*ii*) and (*iii*), $\overrightarrow{BC} \cdot \overrightarrow{AC} = 2(1) + (-1)(-3) + 1(-5)$ = 2 + 3 - 5 = 0 \Rightarrow \overrightarrow{BC} is perpendicular to \overrightarrow{AC} \therefore $\triangle ABC$ is right angled at point C. \Rightarrow Angle C is 90°. : Points A, B, C are the vertices of a right angled triangle. 18. If \overrightarrow{a} is a non-zero vector of magnitude 'a' and λ is a nonzero scalar, then $\lambda \vec{a}$ is a unit vector if (D) $a = \frac{1}{|\lambda|}$ (A) $\lambda = 1$ (B) $\lambda = -1$ (C) $a = |\lambda|$ **Sol. Given:** \overrightarrow{a} is a non-zero vector of magnitude *a* $\Rightarrow |\overrightarrow{a}| = 1$...(i) Also given: $\lambda \neq 0$ and $\lambda \overrightarrow{a}$ is a unit vector. $\Rightarrow |\lambda| |\overrightarrow{a}| = 1$ $\Rightarrow |\lambda \overrightarrow{a}| = 1$ Same textbooks, Hisc $\Rightarrow |\lambda| a = 1$ \therefore Option (D) is the correct answer.