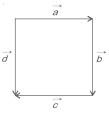
Exercise 10.1

- 1. Represent graphically a displacement of 40 km, 30° east of north.
- **Sol.** Displacement 40 km, 30° East of North.
 - \Rightarrow Displacement vector \overrightarrow{OA} (say)

such that $|\overrightarrow{OA}| = 40$ (given)

and vector OA makes an angle 30° with North in East-North quadrant.

Note. α° South of West \Rightarrow A vector in South-West quadrant making an angle of α° with West.


- 2. Check the following measures as scalars and vectors:
 - (i) 10 kg (ii) 2 meters north-west (iii) 40°
 - (iv) 40 Watt (v) 10^{-19} coulomb (vi) 20 m/sec².
- **Sol.** (i) 10 kg is a measure of mass and therefore a **scalar**. (: 10 kg has no direction, it is magnitude only).
 - (ii) 2 meters North-West is a measure of velocity (i.e., has magnitude and direction both) and hence is a **vector.**
 - (iii) 40° is a measure of angle i.e., is magnitude only and, therefore, a scalar.
 - (iv) 40 Watt is a measure of power (i.e., 40 watt has no direction) and, therefore, a scalar.
 - (v) 10^{-19} coulomb is a measure of electric charge (i.e., is magnitude only) and, therefore, a scalar.
 - (vi) 20 m/sec² is a measure of acceleration *i.e.*, is a measure of rate of change of velocity and hence is a vector.
- 3. Classify the following as scalar and vector quantities:
 - (i) time period

(iv) Velocity-vector

(ii) distance

(iii) force

- (iv) velocity
- (v) work done.
- **Sol.** (i) Time-scalar
- (ii) Distance-scalar(v) Work done-scalar.
- (iii) Force-vector
- 4. In the adjoining figure, (a square), identify the following vectors.
 - (i) Coinitial
 - (ii) Equal
 - (iii) Collinear but not equal.
- **Sol.** (i) \overrightarrow{a} and \overrightarrow{d} have same initial point and, therefore, coinitial vectors.

- (ii) \vec{b} and \vec{d} have same direction and same magnitude. Therefore, \vec{b} and \vec{d} are equal vectors.
- (iii) \overrightarrow{a} and \overrightarrow{c} have parallel supports, so that they are collinear. Since they have opposite directions, they are not equal. Hence \overrightarrow{a} and \overrightarrow{c} are collinear but not equal.
- 5. Answer the following as true or false.
 - (i) \overrightarrow{a} and \overrightarrow{a} are collinear.
 - (ii) Two collinear vectors are always equal in magnitude.
 - (iii) Two vectors having same magnitude are collinear.
 - (iv) Two collinear vectors having the same magnitude are equal.
- Sol. (i) True.
 - (ii) False. (: \overrightarrow{a} and $2\overrightarrow{a}$ are collinear vectors but $|2\overrightarrow{a}| = 2|\overrightarrow{a}|$)
 - (iii) False.
 - (:. $|\hat{i}| = |\hat{j}| = 1$ but \hat{i} and \hat{j} are vectors along x-axis (OX) and y-axis (OY) respectively.)
 - (iv) False.
 - (: Vectors \overrightarrow{a} and $-\overrightarrow{a}$ (= (-1) \overrightarrow{a} = $m\overrightarrow{a}$) are collinear vectors and $|\overrightarrow{a}| = |-\overrightarrow{a}|$ but we know that $\overrightarrow{a} \neq -\overrightarrow{a}$ because their directions are opposite).

Note. Two vectors \overrightarrow{a} and \overrightarrow{b} are said to be equal if

 $(i) \mid \overrightarrow{a} \mid = \mid \overrightarrow{b} \mid (ii) \mid \overrightarrow{a} \text{ and } \overrightarrow{b} \text{ have same (like) direction.}$