Kopykitab
 Same textbooks, klfock away

Exercise 7.8

Definition of definite integral as the limit of a sum:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x=\operatorname{Lt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}} h[f(a)+f(a+h) & +f(a+2 h) \\
& +\ldots \ldots+f(a+(n-1) h)]
\end{aligned}
$$

where $n h=b-a$
Note. The series within brackets represents the sum of n terms.
Evaluate the following definite integrals as limit of sums:

1. $\int_{a}^{b} x d x$

Sol. Step I. Comparing $\int_{a}^{b} x d x$ with $\int_{a}^{b} f(x) d x$ we have

$$
\begin{array}{rlrl}
& & a & =a, b=b \text { and } f(x)=x \tag{i}\\
\therefore & n h & =b-a=b-a
\end{array}
$$

Step II. Putting $x=a, a+h, a+2 h, \ldots . . ., a+(n-1) h$ in (i), we have $f(a)=a, f(a+h)=a+h$,
$f(a+2 h)=a+2 h, \ldots . ., f(a+(n-1) h)=a+(n-1) h$
Step III. Putting these values in

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=\operatorname{Lt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}} h[f(a)+f(a+h)+f(a+2 h) \\
& +\ldots . . .+f(a+(n-1) h)]
\end{aligned}
$$

where $\boldsymbol{n h}=\boldsymbol{b}-\boldsymbol{a}$, we have

$$
\int_{a}^{b} x d x=\operatorname{Lt}_{h \rightarrow 0} h[a+(a+h)+(a+2 h)+\ldots \ldots+(a+(n-1) h)]
$$

where $n h=b-a$

$$
=\operatorname{Lt}_{\substack{h \rightarrow 0 \\ n \rightarrow \infty}} h[n a+h(1+2+3+\ldots \ldots+(n-1)]
$$

$$
\begin{aligned}
& =\operatorname{Ltt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}\left[a n h+h h \frac{n(n-1)}{2}\right]\left[\because 1+2+3+\ldots \ldots+(n-1)=\frac{n(n-1)}{2}\right] \\
& =\operatorname{Lt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}\left[a n h+\frac{n h(n h-h)}{2}\right] .
\end{aligned}
$$

Step IV. Putting $n h=b-a$,

$$
=\operatorname{Lt}_{h \rightarrow 0}\left[a(b-a)+\frac{(b-a)(b-a-h)}{2}\right] .
$$

Step V. Taking Limits as $h \rightarrow 0$ (i.e., putting $h=0$ here)

$$
\begin{aligned}
& =a(b-a)+\frac{(b-a)(b-a)}{2} \\
& =(b-a)\left[a+\frac{b-a}{2}\right]=(b-a)\left[\frac{2 a+b-a}{2}\right] \\
& =\frac{(b-a)(b+a)}{2}=\frac{b^{2}-a^{2}}{2} .
\end{aligned}
$$

2. $\int_{0}^{5}(x+1) d x$

Sol. Step I. Comparing $\int_{0}^{5}(x+1) d x$ with $\int_{a}^{b} f(x) d x$, we have

$$
\begin{align*}
a & =0, b=5 \text { and } f(x)=x+1 \tag{i}\\
\therefore \quad n h & =b-a=5-0=5 .
\end{align*}
$$

Step II. Putting $x=a, a+h, a+2 h, \ldots . . ., a+(n-1) h$ in (i), we have

$$
\begin{aligned}
f(a)=f(0) & =0+1=1, f(a+h)=f(h)=h+1, \\
f(a+2 h) & =f(2 h)=2 h+1, \ldots \ldots . \\
f(a+(n-1) h) & =f((n-1) h)=(n-1) h+1 .
\end{aligned}
$$

Step III. Putting these values in

$$
\begin{aligned}
& \quad \int_{\boldsymbol{a}}^{\boldsymbol{b}} \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d} \boldsymbol{x}=\underset{\substack{\boldsymbol{h} \mathbf{L t}_{n \rightarrow \infty}}}{ } \boldsymbol{h}[\boldsymbol{f}(\boldsymbol{a})+\boldsymbol{f}(\boldsymbol{a}+\boldsymbol{h})+\boldsymbol{f}(\boldsymbol{a}+\mathbf{2 h}) \\
& +\ldots \ldots+\boldsymbol{f}(\boldsymbol{a}+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{h})], \text { we have } \\
& \int_{0}^{5}(x+1) d x=\operatorname{Ltt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}} h[1+(h+1)+(2 h+1)+\ldots \ldots+[(n-1) h+1)] \\
& =\operatorname{Ltt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}} h\left[n+h(1+2+\ldots . .+(n-1)]=\operatorname{Lt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}\left[n h+h h \frac{n(n-1)}{2}\right]\right. \\
& = \\
& =\underset{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}{\operatorname{Lt}_{n \rightarrow \infty}}\left[n h+\frac{(n h)(n h-h)}{2}\right] .
\end{aligned}
$$

Step IV. Putting $n h=5,=\operatorname{Lt}_{h \rightarrow 0}\left[5+\frac{5(5-h)}{2}\right]$.
Step V. Taking limits as $h \rightarrow 0$ (i.e., putting $h=0$ here)

$$
=5+\frac{5(5-0)}{2}=5+\frac{25}{2}=\frac{10+25}{2}=\frac{35}{2} .
$$

3. $\int_{2}^{3} x^{2} d x$

Sol. Step I. Comparing $\int_{2}^{3} x^{2} d x$ with $\int_{a}^{b} f(x)$, we have

$$
\begin{align*}
a & =2, b=3 \text { and } f(x)=x^{2} \tag{i}\\
\therefore \quad n h & =b-a=3-2=1 .
\end{align*}
$$

Step II. Putting $x=a, a+h, a+2 h, \ldots \ldots, a+(n-1) h$ in (i), we have

$$
\begin{aligned}
& f(a)=f(2)=2^{2}=4 \\
& f(a+h)=f(2+h)=(2+h)^{2}=4+4 h+h^{2} \\
& f(a+2 h)=f(2+2 h)=(2+2 h)^{2}=4+8 h+2^{2} h^{2} \\
& \text { | } \\
& f(a+(n-1) h)=f(2+(n-1) h)=(2+(n-1) h)^{2} \\
& =4+4(n-1) h+(n-1)^{2} h^{2} .
\end{aligned}
$$

Step III. Putting these values in

$$
\int_{a}^{b} f(x) d x=\underset{\substack{h \rightarrow 0 \\ n \rightarrow \infty}}{\operatorname{LLt}} h[f(a)+f(a+h)+f(a+2 h)
$$

where $n h=1$, we have

$$
\begin{aligned}
& \int_{2}^{3} x^{2} d x=\operatorname{Lt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}} h\left[4+\left(4+4 h+h^{2}\right)+\left(4+8 h+2^{2} h^{2}\right)\right. \\
& =\operatorname{Lt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}} h\left[4 n+4 h\left(1+2+\ldots \ldots+\left(4+4(n-1) h+(n-1)^{2} h^{2}\right)\right]\right. \\
& =\operatorname{Lt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}\left[4 n h+4 h h \frac{n(n-1)}{2}+h h h \frac{n(n-1)(2 n-1)}{6}\right] \\
& \left.\left.+\ldots . .+(n-1)^{2}\right)\right] \\
& \\
& \left.\qquad \because\left(\because 1+2+\ldots .+(n-1)=\frac{n(n-1)}{2} \text { and } 1^{2}+2^{2}+\ldots .1^{2}+2^{2}\right)\right] \\
& = \\
& =\underset{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}{\operatorname{Lt}}\left[4 n h+4 n h \frac{(n h-h)}{2}+\frac{n h(n h-h)(2 n h-h)}{6}\right] .
\end{aligned}
$$

Step IV. Putting $n h=1$;

$$
=\operatorname{Lt}_{h \rightarrow 0}\left[4+2(1-h)+1 \frac{(1-h)(2-h)}{6}\right]
$$

Step V. Taking limits as $h \rightarrow 0$ (i.e., putting $h=0$ here)

$$
=4+2(1-0)+\frac{1(2)}{6}=6+\frac{1}{3}=\frac{19}{3} .
$$

4. $\int_{1}^{4}\left(x^{2}-x\right) d x$

Sol. Step I. Comparing $\int_{1}^{4}\left(x^{2}-x\right) d x$ with $\int_{a}^{b} f(x) d x$, we have

$$
\begin{array}{rlrl}
& & a & =1, b=4, f(x)=x^{2}-x \\
\therefore & n h & =b-a=4-1=3 .
\end{array}
$$

Step II. Putting $x=a, a+h, a+2 h, \ldots . . a+(n-1) h$ in (i),

$$
\begin{aligned}
f(a) & =f(1)=1^{2}-1=1-1=0 \\
f(a+h) & =f(1+h)=(1+h)^{2}-(1+h) \\
& =1+h^{2}+2 h-1-h=h+h^{2} \\
f(a+2 h) & =f(1+2 h)=(1+2 h)^{2}-(1+2 h) \\
& =1+4 h^{2}+4 h-1-2 h \\
& =2 h+4 h^{2} \\
f(a+(n-1) h) & =(1+(n-1) h)^{2}-(1+(n-1) h) \\
& =1+(n-1)^{2} h^{2}+2(n-1) h-1-(n-1) h \\
& =(n-1) h+(n-1)^{2} h^{2} .
\end{aligned}
$$

Step III. Putting these values in

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \underset{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}{ } h[f(a)+f(a+h)+f(a+2 h) \\
& +\ldots .+f(a+(n-1) h)]
\end{aligned}
$$

we have

$$
\begin{aligned}
& \int_{1}^{4}\left(x^{2}-x\right) d x=\operatorname{Lt}_{\substack{h \rightarrow 0 \\
h \rightarrow \infty}} h\left[0+h+h^{2}+2 h+4 h^{2}\right. \\
& \left.+\ldots .+(n-1) h+(n-1)^{2} h^{2}\right) \\
& =\operatorname{Lt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}} h\left[h(1+2+\ldots \ldots .+(n-1))+h^{2}\left(1^{2}+2^{2}+\ldots . .+(n-1)^{2}\right)\right] \\
& =\underset{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}{\operatorname{Lt}}\left[h \cdot h \cdot \frac{n(n-1)}{2}+h \cdot h \cdot h \frac{n(n-1)(2 n-1)}{6}\right] \\
& =\operatorname{Ltt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}\left[n h \frac{(n h-h)}{2}+\frac{(n h)(n h-h)(2 n h-h)}{6}\right] \text {. }
\end{aligned}
$$

Step IV. Putting $n h=3$

$$
=\operatorname{Lt}_{h \rightarrow 0}\left[\frac{3(3-h)}{2}+\frac{3(3-h)(6-h)}{6}\right] .
$$

Step V. Taking limits as $h \rightarrow 0$ (Putting $h=0$ here)

$$
=\frac{3(3-0)}{2}+\frac{3(3-0)(6-0)}{6}=\frac{9}{2}+9=\frac{27}{2} .
$$

5. $\int_{-1}^{1} e^{x} d x$

Sol. Step I. Comparing $\int_{-1}^{1} e^{x} d x$ with $\int_{a}^{b} f(x) d x$, we have

$$
\begin{equation*}
a=-1, b=1 \text { and } f(x)=e^{x} \tag{i}
\end{equation*}
$$

$\therefore \quad n h=b-a=1-(-1)=2$.
Step II. Putting $x=a, a+h, a+2 h, \ldots \ldots ., a+(n-1) h$ in (i), we have

$$
\begin{aligned}
f(a) & =f(-1)=e^{-1} \\
f(a+h) & =f(-1+h)=e^{-1+h}=e^{-1} \cdot e^{h} \\
f(a+2 h) & =f(-1+2 h)=e^{-1+2 h}=e^{-1} \cdot e^{2 h}
\end{aligned}
$$

$$
f(a+(n-1) h)=f(-1+(n-1) h)=e^{-1+(n-1) h}=e^{-1} e^{(n-1) h}
$$

Step III. Putting these values in

$$
\int_{a}^{b} f(x) d x=\underset{\substack{h \rightarrow 0 \\ n \rightarrow \infty}}{\operatorname{Lt}} h[f(a)+f(a+h)+f(a+2 h)
$$

$$
+\ldots \ldots+f(a+(n-1) h)]
$$

we have

$$
\begin{aligned}
\int_{-1}^{1} e^{x} d x & =\operatorname{Lt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}} h\left[e^{-1}+e^{-1} e^{h}+e^{-1} e^{2 h}+\ldots+e^{-1} e^{(n-1) h}\right] \\
& =\operatorname{Ltt}_{\substack{h \rightarrow 0 \\
n \rightarrow \infty}} h e^{-1} \frac{\left[\left(e^{h}\right)^{n}-1\right]}{e^{h}-1}[\because \text { The series within brackets }
\end{aligned}
$$

is a G.P. series with First term $\mathrm{A}=e^{-1}$ and common ratio $\mathrm{R}=e^{h}$, Number of terms is n and S_{n} of G.P. $\left.=\mathrm{A} \frac{\left(\mathrm{R}^{n}-1\right)}{\mathrm{R}-1}\right]$.

$$
=\int_{-1}^{1} e^{x} d x=\operatorname{Ltt}_{\substack{h \rightarrow 0 \\ n \rightarrow \infty}} h e^{-1} \frac{\left(e^{n h}-1\right)}{e^{h}-1}
$$

Step IV. Putting $n h=2,=\operatorname{Lt}_{h \rightarrow 0} h e^{-1} \frac{\left(e^{2}-1\right)}{e^{h}-1}$

$$
\begin{gathered}
=e^{-1}\left(e^{2}-1\right) \operatorname{Ltt}_{h \rightarrow 0} \frac{h}{e^{h}-1}=e^{-1}\left(e^{2}-1\right) \times 1\left[\because \operatorname{Lt}_{x \rightarrow 0} \frac{x}{e^{x}-1}=1\right] \\
=e^{-1+2}-e^{-1}=e^{1}-e^{-1}=e-e^{-1}
\end{gathered}
$$

6. $\int_{0}^{4}\left(x+e^{2 x}\right) d x$

Sol. Step I. Comparing $\int_{0}^{4}\left(x+e^{2 x}\right) d x$ with $\int_{a}^{b} f(x) d x$, we have

$$
\begin{array}{rlrl}
& & a & =0, b=4 \text { and } f(x)=x+e^{2 x} \tag{i}\\
\therefore \quad n h & =b-a=4-0=4
\end{array}
$$

Step II. Putting $x=a, a+h, a+2 h, \ldots . . ., a+(n-1) h$ in (i), we have $f(a)=f(0)=0+e^{0}=1$

$$
\begin{aligned}
f(a+h) & =f(h)=h+e^{2 h} \\
f(a+2 h) & =f(2 h)=2 h+e^{4 h}
\end{aligned}
$$

$$
f(a+(n-1) h)=f((n-1) h)=(n-1) h+e^{2(n-1) h} .
$$

Step III. Putting these values in

$$
\begin{aligned}
\int_{a}^{b} f(x) d x= & \underset{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}{\operatorname{Lt}} h[f(a)+f(a+h)+f(a+2 h) \\
& +\ldots \ldots+f(a+(n-1) h)]
\end{aligned}
$$

we have

$$
\begin{aligned}
& \int_{0}^{4}\left(x+e^{2 x}\right) d x=\underset{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}{\operatorname{Lt}^{2}} h\left[1+\left(h+e^{2 \boldsymbol{h}}\right)+\left(2 h+e^{4 h}\right)+\ldots \ldots\right. \\
& \text { (G.P. series : } \left.\left.\mathrm{A}=1, \mathrm{R}=e^{2 h}, n=n\right) \quad\left((n-1) h+e^{2(n-1) h}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\underset{\substack{\boldsymbol{h} \rightarrow \mathbf{0} \\
\boldsymbol{L t}}}{\boldsymbol{h}}\left[(\boldsymbol{h}+\mathbf{2 h}+\ldots+(\boldsymbol{n}-\mathbf{1}) \boldsymbol{h})+\left(\mathbf{1}+\boldsymbol{e}^{2 \boldsymbol{h}}+\boldsymbol{e}^{4 \boldsymbol{h}}+\ldots+\boldsymbol{e}^{2(\boldsymbol{n}-\mathbf{1}) \boldsymbol{h}}\right)\right] \\
& =\underset{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}{\operatorname{Lt}^{n}} h\left[h(1+2+\ldots \ldots+(n-1))+\mathrm{A}\left(\frac{\mathrm{R}^{n}-1}{\mathrm{R}-1}\right)\right] \\
& =\underset{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}{\operatorname{Lt}^{n}} h\left[h \frac{n(n-1)}{2}+\frac{1\left(\left(e^{2 h}\right)^{n}-1\right)}{e^{2 h}-1}\right] \\
& =\underset{\substack{h \rightarrow 0 \\
n \rightarrow \infty}}{\operatorname{Ltt}_{n}}\left[\frac{n h(n h-h)}{2}+\frac{h\left(e^{2 n h}-1\right)}{e^{2 h}-1}\right] .
\end{aligned}
$$

Step IV. Putting $n h=4,=\operatorname{Lt}_{h \rightarrow 0}\left[\frac{4(4-h)}{2}+\frac{h\left(e^{8}-1\right)}{e^{2 h}-1}\right]$.
Step V. Taking limits as $h \rightarrow 0$

$$
\begin{aligned}
& =\frac{4(4-0)}{2}+\left(e^{8}-1\right) \operatorname{Ltt}_{h \rightarrow 0} \frac{h}{e^{2 h}-1}=8+\left(e^{8}-1\right) \frac{1}{2} \operatorname{Lt}_{h \rightarrow 0} \frac{2 h}{e^{2 h}-1} \\
& =8+\frac{\left(e^{8}-1\right)}{2} \cdot\left[\because \operatorname{Ltt}_{h \rightarrow 0} \frac{e^{2 h}}{e^{2 h}-1}\left(\Rightarrow \operatorname{Lt}_{x \rightarrow 0} \frac{x}{e^{x}-1}\right)=1\right]
\end{aligned}
$$

