Exercise 6.3

1. Find the slope of the tangent to the curve $y=3 x^{4}-4 x$ at $x=4$.
Sol. Given: Equation of the curve is $y=3 x^{4}-4 x$
$\therefore \quad$ Slope of the tangent to the curve $y=f(x)$ at the point (x, y)

$$
\begin{aligned}
& =\text { Value of } \frac{d y}{d x} \text { at the point }(x, y) \\
& =3\left(4 x^{3}\right)-4=12 x^{3}-4
\end{aligned}
$$

$\therefore \quad$ Slope of the tangent at (point) $x=4$ to curve (i) is

$$
12(4)^{3}-4=12 \times 64-4=768-4=764
$$

2. Find the slope of the tangent to the curve $y=\frac{x-1}{x-2}, x \neq 2$ at $\boldsymbol{x}=10$.
Sol. Given: Equation of the curve is $y=\frac{x-1}{x-2}$

$$
\begin{align*}
& \therefore \quad \frac{d y}{d x}=\frac{(x-2) \frac{d}{d x}(x-1)-(x-1) \frac{d}{d x}(x-2)}{(x-2)^{2}} \tag{i}\\
& \text { or } \quad \frac{d y}{d x}=\frac{(x-2)-(x-1)}{(x-2)^{2}}=\frac{x-2-x+1}{(x-2)^{2}}=\frac{-1}{(x-2)^{2}} \tag{ii}
\end{align*}
$$

Putting $x=10$ (given) in (ii), slope of the tangent to the given curve (i), at $x=10\left(=\right.$ value of $\frac{d y}{d x}$ at $\left.x=10\right)$

$$
=\frac{-1}{(10-2)^{2}}=\frac{-1}{(8)^{2}}=\frac{-1}{64}
$$

3. Find the slope of the tangent to the curve $y=x^{3}-x+1$ at the point whose x-coordinate is 2 .
Sol. Given: Equation of the curve is $y=x^{3}-x+1$

$$
\begin{equation*}
\therefore \quad \frac{d y}{d x}=3 x^{2}-1 \tag{i}
\end{equation*}
$$

Slope of the tangent to curve (i) at $x=2$ (given)

$$
\begin{aligned}
& =\text { Value of } \frac{d y}{d x}(\text { at } x=2)=3 \cdot 2^{2}-1=3(4)-1 \\
& =12-1=11
\end{aligned}
$$

4. Find the slope of the tangent to the curve $y=x^{3}-3 x+2$ at the point whose x-coordinate is 3 .
Sol. Given: Equation of the curve is $y=x^{3}-3 x+2$

$$
\begin{equation*}
\therefore \quad \frac{d y}{d x}=3 x^{2}-3 \tag{i}
\end{equation*}
$$

Slope of the tangent of curve (i) at $x=3$ (given)

$$
\begin{aligned}
& =\text { Value of } \frac{d y}{d x}(\text { at } x=3)=3 \cdot 3^{2}-3=3 \cdot 9-3 \\
& =27-3=24 .
\end{aligned}
$$

5. Find the slope of the normal to the curve

$$
x=a \cos ^{3} \theta, y=a \sin ^{3} \theta \quad \text { at } \quad \theta=\frac{\pi}{4}
$$

Sol. Given: Equations of the curve are

$$
\begin{aligned}
x & =a \cos ^{3} \theta, y=a \sin ^{3} \theta \\
\therefore \quad \frac{d x}{d \theta} & =a \frac{d}{d \theta}(\cos \theta)^{3} \quad \text { and } \quad \frac{d y}{d \theta}=a \frac{d}{d \theta}(\sin \theta)^{3} \\
& =a .3(\cos \theta)^{2} \frac{d}{d \theta}(\cos \theta) \text { and } \\
& =a .3(\sin \theta)^{2} \frac{d}{d \theta} \sin \theta \\
\text { or } \quad \frac{d x}{d \theta} & =-3 a \cos ^{2} \theta \sin \theta \text { and } \frac{d y}{d \theta}=3 a \sin ^{2} \theta \cos \theta \\
\therefore \quad \frac{d y}{d x} & =\frac{d y / d \theta}{d x / d \theta}=\frac{3 a \sin ^{2} \theta \cos \theta}{-3 a \cos ^{2} \theta \sin \theta}=\frac{-\sin \theta}{\cos \theta}=-\tan \theta
\end{aligned}
$$

Slope of the tangent at $\theta=\frac{\pi}{4}$ (given) $=$ value of $\frac{d y}{d x}$ at $\left(\theta=\frac{\pi}{4}\right)$

$$
=-\tan \frac{\pi}{4}=-1
$$

\therefore Slope of the normal $\left(\right.$ at $\left.\theta=\frac{\pi}{4}\right)=$ negative reciprocal of slope

$$
\text { of tangent }=1 . \quad\left(\because \frac{-1}{m}=\frac{-1}{-1}=1\right)
$$

6. Find the slope of the normal to the curve

$$
x=1-a \sin \theta, y=b \cos ^{2} \theta \text { at } \theta=\frac{\pi}{2}
$$

Sol. Given: Equations of the curve are

$$
\begin{aligned}
& x=1-a \sin \theta, y=b \cos ^{2} \theta \\
& \therefore \quad \frac{d x}{d \theta}=0-a \cos \theta \text { and } \frac{d y}{d \theta}=b \frac{d}{d \theta}(\cos \theta)^{2} \\
& \Rightarrow \quad \frac{d x}{d \theta}=-a \cos \theta \text { and } \quad \frac{d y}{d \theta}=b .2(\cos \theta) \frac{d}{d \theta} \cos \theta \\
&=-2 b \cos \theta \sin \theta \\
& \therefore \quad \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{-2 b \cos \theta \sin \theta}{-a \cos \theta}=\frac{2 b}{a} \sin \theta
\end{aligned}
$$

Slope of the tangent (at $\theta=\frac{\pi}{2}$ (given))

$$
\begin{aligned}
& =\text { value of } \frac{d y}{d x} \quad\left(\text { at } \theta=\frac{\pi}{2}\right) \\
& =\frac{2 b}{a} \sin \frac{\pi}{2}=\frac{2 b}{a}(1)
\end{aligned}
$$

$$
=\frac{2 b}{a}(=m \text { say })
$$

\therefore Slope of the normal $\left(\right.$ at $\left.\theta=\frac{\pi}{2}\right)=\frac{-1}{m}=-\frac{a}{2 b}$.
7. Find the points at which the tangent to the curve

$$
\begin{equation*}
y=x^{3}-3 x^{2}-9 x+7 \text { is parallel to the } x \text {-axis. } \tag{i}
\end{equation*}
$$

Sol. Equation of curve is $y=x^{3}-3 x^{2}-9 x+7$
$\therefore \quad \frac{d y}{d x}=3 x^{2}-6 x-9=$ Slope of tangent at (x, y)
Since the tangent is parallel to the x-axis, $\frac{d y}{d x}=0$
$\Rightarrow \quad 3 x^{2}-6 x-9=0$ or $\quad x^{2}-2 x-3=0$
or $\quad(x-3)(x+1)=0 \quad \therefore \quad x=3,-1$
When $x=3$, from (i), $\quad y=27-27-27+7=-20$
When $x=-1$, from (i), $y=-1-3+9+7=12$.
\therefore The required points are $(3,-20)$ and $(-1,12)$.
8. Find a point on the curve $y=(x-2)^{2}$ at which the tangent is parallel to the chord joining the points $(2,0)$ and $(4,4)$.
Sol. Let $\mathrm{A}(2,0)$ and $\mathrm{B}(4,4)$ be the given points.
Slope of chord $\mathrm{AB}=\frac{4-0}{4-2}=2 \quad\left[\because m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right]$
Equation of curve is $y=(x-2)^{2}$
\therefore Slope of tangent at $(x, y)=\frac{d y}{d x}=2(x-2)$.
If the tangent is parallel to the chord AB , then
slope of tangent $=$ slope of chord
$\Rightarrow 2(x-2)=2 \Rightarrow 2 x-4=2 \Rightarrow 2 x=6 \Rightarrow x=3$
$\therefore \quad y=(3-2)^{2}=1$
Hence, the required point is $(3,1)$.
9. Find the point on the curve $y=x^{3}-11 x+5$ at which the tangent is $y=x-11$.
Sol. Equation of curve is $\quad y=x^{3}-11 x+5$
Equation of tangent is $y=x-11$
or

$$
\begin{equation*}
x-y-11=0 \tag{i}
\end{equation*}
$$

From (i),

$$
\begin{equation*}
\frac{d y}{d x}=3 x^{2}-11 \tag{ii}
\end{equation*}
$$

\Rightarrow Slope of tangent at (x, y) is $3 x^{2}-11$.
But slope of tangent from (ii) is $\quad \frac{-a}{b}=\frac{-1}{-1}=1$.
$\therefore 3 x^{2}-11=1$ or $3 x^{2}=12$ or $x^{2}=4 \quad \therefore \quad x= \pm 2$
From (i), when $x=2, \quad y=8-22+5=-9$
when
$x=-2 \quad y=-8+22+5=19$
\therefore We get two points $(2,-9)$ and $(-2,19)$. Of these, $(-2,19)$
does not satisfy eqn. (ii) while $(2,-9)$ does. Hence, the required point is $(2,-9)$.
10. Find the equation of all lines having slope - 1 that are tangents to the curve $y=\frac{1}{x-1}, x \neq 1$.
Sol. Given: Equation of the curve is $y=\frac{1}{x-1}=(x-1)^{-1}$
$\therefore \quad \frac{d y}{d x}=(-1)(x-1)^{-2} \frac{d}{d x}(x-1)=\frac{-1}{(x-1)^{2}}$
$=$ Slope of the tangent to the given curve at any point (x, y).
But the slope is given to be -1
$\therefore \quad \frac{-1}{(x-1)^{2}}=-1 \Rightarrow-(x-1)^{2}=-1$
$\Rightarrow \quad(x-1)^{2}=1 \quad \Rightarrow \quad x-1= \pm 1 \Rightarrow x=1 \pm 1$
$\Rightarrow x=1+1=2 \quad$ or $\quad x=1-1=0$
Putting $x=2$ in $(i), y=\frac{1}{2-1}=\frac{1}{1}=1$
\therefore One point of contact is $(2,1)$.
$\therefore \quad$ Equation of one required tangent is $y-1=-1(x-2)$
i.e., $\quad y-1=-x+2$ or $x+y-3=0$

Putting $x=0$ in (i), $y=\frac{1}{0-1}=\frac{1}{-1}=-1$
\therefore The other point of contact is $(0,-1)$.
\therefore Equation of the other tangent is
or $\quad x+y+1=0$
\therefore Equations of required tangents are

$$
x+y-3=0 \quad \text { and } \quad x+y+1=0
$$

11. Find the equations of all lines having slope 2 which are tangents to the curve $y=\frac{1}{x-3}, x \neq 3$.
Sol. Equation of curve is $y=\frac{1}{x-3}=(x-3)^{-1}$
Differentiating w.r.t. x, we get

$$
\begin{aligned}
\frac{d y}{d x} & =(-1)(x-3)^{-2}=\frac{-1}{(x-3)^{2}} \\
& =\text { Slope of tangent to the given curve at any point }(x, y)
\end{aligned}
$$

But the slope is given to be 2 .

$$
\therefore \frac{-1}{(x-3)^{2}}=2 \text { or } 2(x-3)^{2}=-1 \text { or }(x-3)^{2}=-\frac{1}{2}<0
$$

which is not possible since $(x-3)^{2}>0$.

Hence, there is no tangent to the given curve having slope 2.
12. Find the equations of all lines having slope 0 which are tangents to the curve

$$
\begin{equation*}
y=\frac{1}{x^{2}-2 x+3} \tag{i}
\end{equation*}
$$

Sol. Equation of curve is $y=\frac{1}{x^{2}-2 x+3}$
Differentiating w.r.t. x, we have
$=\frac{d y}{d x}=\frac{d}{d x}\left[\left(x^{2}-2 x+3\right)^{-1}\right]=-\left(x^{2}-2 x+3\right)^{-2} \cdot(2 x-2)$
$=\frac{-2(x-1)}{\left(x^{2}-2 x+3\right)^{2}}$
$=$ Slope of tangent to the given curve at any point (x, y)
But the slope (of tangent) is given to be 0
$\therefore \quad \frac{-2(x-1)}{\left(x^{2}-2 x+3\right)^{2}}=0 \quad \Rightarrow-2(x-1)=0$
$\Rightarrow \quad x-1=0 \quad \Rightarrow \quad x=1$
Putting $x=1$ in (i), we have $\quad y=\frac{1}{1-2+3}=\frac{1}{2}$
Thus the point on the curve at which tangent has slope 0 is $\left(1, \frac{1}{2}\right)$.
\therefore Equation of tangent is $y-\frac{1}{2}=0(x-1)$
or $y-\frac{1}{2}=0 \quad$ or $y=\frac{1}{2}$.
13. Find the points on the curvem $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are
(i) parallel to x-axis
(ii) parallel to \boldsymbol{y}-axis.

Sol. Given: Equation of the curve is $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
Differentiating both sides of eqn. (i) w.r.t. x, we have

$$
\begin{align*}
\frac{2 x}{9}+\frac{2 y}{16} \frac{d y}{d x}=0 & \Rightarrow \frac{2 y}{16} \frac{d y}{d x}=-\frac{2 x}{9} \\
\Rightarrow 18 y \frac{d y}{d x}=-32 x & \Rightarrow \frac{d y}{d x}=\frac{-32 x}{18 y}=\frac{-16 x}{9 y} \tag{ii}
\end{align*}
$$

(i) If tangent is parallel to \boldsymbol{x}-axis, \Rightarrow Slope of tangent $=0$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}=\mathbf{0} \Rightarrow \text { From (ii), } \frac{-16 x}{9 y}=0 \Rightarrow-16 x=0 \\
& \Rightarrow \quad x=\frac{0}{-16}=0
\end{aligned}
$$

Putting $x=0$ in (i), $\frac{y^{2}}{16}=1$ or $y^{2}=16$. Therefore, $y= \pm 4$.
$\therefore \quad$ The points on curve (i) where tangents are parallel to x axis are $(0, \pm 4)$.
(ii) If the tangent is parallel to \boldsymbol{y}-axis

$$
\begin{aligned}
& \Rightarrow \text { Slope of the tangent }= \pm \infty \Rightarrow \frac{d y}{d x}= \pm \infty \\
& \Rightarrow \frac{\boldsymbol{d} \boldsymbol{x}}{\boldsymbol{d} \boldsymbol{y}}=\mathbf{0} \\
& \therefore \quad \text { From (ii), } \frac{9 y}{-16 x}=0 \Rightarrow 9 y=0 \Rightarrow y=\frac{0}{9}=0 \\
& \text { Putting } y=0 \text { in }(i), \frac{x^{2}}{9}=1 \text { or } x^{2}=9
\end{aligned}
$$

$$
\therefore \quad x= \pm 3
$$

Hence the points on the curve at which the tangent are parallel to y-axis are $(\pm 3,0)$.
14. Find the equations of the tangent and normal to the given curves at the indicated points:
(i) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$.
(ii) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(1,3)$.
(iii) $y=x^{3}$ at $(1,1)$.
(iv) $y=x^{2}$ at $(0,0)$.
(v) $x=\cos t, y=\sin t$ at $t=\frac{\pi}{4}$.

Sol. (i) Given: Equation of the curve is

$$
\begin{aligned}
& y=x^{4}-6 x^{3}+13 x^{2}-10 x+5 \\
& \therefore \quad \frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10 \\
&=\text { Slope of the } \\
& \text { tangent at point }(x, y)
\end{aligned}
$$

$\therefore \quad$ Slope of tangent at $(0,5)$

$$
=\text { Value of } \frac{d y}{d x} \text { at }(0,5)
$$

(Putting $\quad x=0$)

$$
\begin{aligned}
& =4(0)^{3}-18(0)^{2}+26(0)-10 \\
& =-10(=m \text { say })
\end{aligned}
$$

$\therefore \quad$ Slope of the normal at $(0,5)$

$$
=\frac{-1}{m}=\frac{-1}{-10}=\frac{1}{10}
$$

\therefore Equation of the tangent at $(0,5)$ is

$$
\begin{aligned}
& \quad y-5=-10(x-0) \quad \mid y-y_{1}=m\left(x-x_{1}\right) \\
& \text { i.e., } y-5=-10 x \text { or } 10 x+y=5 \\
& \text { and equation of the normal at }(0,5) \text { is }
\end{aligned}
$$

$$
y-5=\frac{1}{10}(x-0)
$$

$$
\begin{aligned}
& \Rightarrow \quad 10 y-50=x \text { i.e., }-x+10 y-50=0 \\
& \text { or } \quad x-10 y+50=0 .
\end{aligned}
$$

(ii) Given: Equation of the curve is

$$
\begin{align*}
y & =x^{4}-6 x^{3}+13 x^{2}-10 x+5 \tag{i}\\
\therefore \quad \frac{d y}{d x} & =4 x^{3}-18 x^{2}+26 x-10 \\
= & \text { Slope of the tangent at the point }(x, y)
\end{align*}
$$

$\therefore \quad$ Slope of the tangent at $(1,3)=$ Value of $\frac{d y}{d x}$ at $(1,3)$.
$($ Putting $x=1)=4(1)^{3}-18(1)^{2}+26(1)-10$

$$
\begin{array}{r}
=4-18+26-10=30-28=2(=m \\
\text { say })
\end{array}
$$

\therefore Slope of the normal at $(1,3)=\frac{-1}{m}=\frac{-1}{2}$
\therefore Equation of the tangent at $(1,3)$ is $y-3=2(x-1)$
$\Rightarrow \quad y-3=2 x-2 \Rightarrow y=2 x+1$
and equation of the normal at $(1,3)$ is $y-3=\frac{-1}{2}(x-1)$
$\Rightarrow \quad 2(y-3)=-(x-1) \Rightarrow 2 y-6=-x+1$
$\Rightarrow \quad x+2 y-7=0$.
(iii) Given: Equation of the curve is

$$
\begin{equation*}
y=x^{3} \tag{i}
\end{equation*}
$$

$\therefore \quad \frac{d y}{d x}=3 x^{2}=$ Slope of the tangent at the point (x, y).
Slope of the tangent at $(1,1)=$ Value of $\frac{d y}{d x}$ at $(1,1)$.
(Putting $x=1$) $\quad=3.1^{2}=3=m$ (say)
$\therefore \quad$ Slope of the normal at $(1,1)=\frac{-1}{m}=\frac{-1}{3}$
\therefore Equation of the tangent at $(1,1)$ is $y-1=3(x-1)$
$\Rightarrow y-1=3 x-3 \Rightarrow y=3 x-2$
and equation of the normal at $(1,1)$ is $y-1=\frac{-1}{3}(x-1)$
$\Rightarrow 3 y-3=-x+1 \Rightarrow x+3 y-4=0$.
(iv) Given: Equation of the curve is

$$
\begin{align*}
y= & x^{2} \tag{i}\\
\therefore \quad \frac{d y}{d x}= & 2 x \\
= & \text { Slope of the } \\
& \text { tangent at }
\end{align*}
$$

$\therefore \quad$ Slope of the tangent at $(0,0)$

$$
=\text { Value of } \frac{d y}{d x} \text { at }(0,0)
$$

(Putting $x=0)=2 \times 0=0(=m$ say $)$
\therefore Tangent at $(0,0)$ to curve (i) is $(y-0)=0(x-0)$ or $y=0$ i.e. x-axis and hence normal at $(0,0)$ to curve (i) is y-axis.
(v) Given: Equations of the curve are

$$
\begin{aligned}
x & =\cos t, \quad y=\sin t \\
\therefore \quad \frac{d x}{d t} & =-\sin t \text { and } \frac{d y}{d t}=\cos t \\
\therefore \quad \frac{d y}{d x} & =\frac{d y / d t}{d x / d t}=\frac{\cos t}{-\sin t}=-\cot t \\
& =\text { Slope of the tangent at }(x, y)
\end{aligned}
$$

\therefore Slope of the tangent at $t=\frac{\pi}{4}$ is value of $\frac{d y}{d x}$ at $t=\frac{\pi}{4}$

$$
=-\cot \frac{\pi}{4}=-1(=m \text { say })
$$

$\therefore \quad$ Slope of the normal at $t=\frac{\pi}{4}$ is $\frac{-1}{m}=\frac{-1}{-1}=1$
Point $t=\frac{\pi}{4} \Rightarrow$ Point $(x, y)=(\cos t, \sin t)$

$$
=\left(\cos \frac{\pi}{4}, \sin \frac{\pi}{4}\right)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
$$

\therefore Equation of the tangent is $y-\frac{1}{\sqrt{2}}=-1\left(x-\frac{1}{\sqrt{2}}\right)$

$$
\Rightarrow y-\frac{1}{\sqrt{2}}=-x+\frac{1}{\sqrt{2}} \Rightarrow x+y=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}=\frac{2}{\sqrt{2}}
$$

$$
\text { or } \quad x+y=\sqrt{2} \quad\left[\because \frac{2}{\sqrt{2}}=\frac{\sqrt{2} \sqrt{2}}{\sqrt{2}}=\sqrt{2}\right]
$$

and equation of the normal at $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ is

$$
y-\frac{1}{\sqrt{2}}=1\left(x-\frac{1}{\sqrt{2}}\right) \quad \text { or } \quad y-\frac{1}{\sqrt{2}}=x-\frac{1}{\sqrt{2}}
$$

or $\quad y=x$.
15. Find the equation of the tangent line to the curve

$$
y=x^{2}-2 x+7 \text { which is }
$$

(a) parallel to the line $2 x-y+9=0$
(b) perpendicular to the line $5 y-15 x=13$.

Sol. Given: Equation of the curve is $y=x^{2}-2 x+7$
$\therefore \quad$ Slope of the tangent $=\frac{d y}{d x}=2 x-2$
(a) Slope of the given line $2 x-y+9=0$ is

$$
\frac{- \text { coeff. of } x}{\text { coeff. of } y}\left(\frac{-a}{b}\right)=\frac{-2}{-1}=2
$$

$\therefore \quad$ Slope of tangent parallel to this line is also $=2$
(\because Parallel lines have same slope)
$\Rightarrow \quad(\mathrm{By}(i i)), 2 x-2=2 \Rightarrow 2 x=2+2=4$
$\Rightarrow \quad x=\frac{4}{2}=2$
Putting $x=2$ in (i), $y=4-4+7=7$
$\therefore \quad$ Point of contact is $(2,7)$
\therefore Equation of the tangent at $(2,7)$ is
$y-7=2(x-2) \quad$ or $\quad y-7=2 x-4$
or $\quad y-2 x-3=0$.
(b) Slope of the given line
$5 y-15 x=13$ i.e., $-15 x+5 y=13$
is $\frac{-a}{b}=-\left(\frac{-15}{5}\right)=3=(m$ say $)$
\therefore Slope of the required tangent
perpendicular to this line $=\frac{-1}{m}=\frac{-1}{3}$
$\Rightarrow \quad\left(\operatorname{By}(\right.$ ii) $) \quad 2 x-2=\frac{-1}{3} \Rightarrow 6 x-6=-1$
$\Rightarrow \quad 6 x=6-1=5 \quad \Rightarrow x=\frac{5}{6}$
Putting $x=\frac{5}{6}$ in (i), $y=\frac{25}{36}-\frac{5}{3}+7$

$$
=\frac{25-60+252}{36}=\frac{277-60}{36}=\frac{217}{36}
$$

\therefore Point of contact is $\left(\frac{5}{6}, \frac{217}{36}\right)$
\therefore Equation of the required tangent at $\left(\frac{5}{6}, \frac{217}{36}\right)$ is

$$
\begin{aligned}
& y-\frac{217}{36}=\frac{-1}{3}\left(x-\frac{5}{6}\right) \\
\Rightarrow & 3 y-\frac{217}{12}=-x+\frac{5}{6} \quad \Rightarrow x+3 y=\frac{217}{12}+\frac{5}{6} \\
\Rightarrow & x+3 y=\frac{217+10}{12}=\frac{227}{12}
\end{aligned}
$$

Cross-multiplying, $12 x+36 y=227$.
16. Show that the tangents to the curve $y=7 x^{3}+11$ at the points where $x=2$ and $x=-2$ are parallel.
Sol. Given: Equation of the given curve is $y=7 x^{3}+11$ $\therefore \quad \frac{d y}{d x}=21 x^{2}=$ Slope of the tangent to the curve at (x, y)
Putting $x=2$, slope of the tangent $=21(2)^{2}=21 \times 4=84$

Putting $x=-2$, slope of the tangent $=21(-2)^{2}=21 \times 4=84$
Since the slopes of the two tangents are equal (each $=84$), therefore, tangents at $x=2$ and $x=-2$ are parallel.
17. Find the points on the curve $y=x^{3}$ at which the slope of the tangent is equal to the \boldsymbol{y}-coordinate of the point.
Sol. Given: Equation of the curve is $y=x^{3}$
$\therefore \frac{d y}{d x}=3 x^{2}=$ Slope of the tangent at the point (x, y)
Given: Slope of the tangent $=y$-coordinate of the point.
Putting values from (ii) and (i),

$$
3 x^{2}=x^{3} \Rightarrow 3 x^{2}-x^{3}=0 \Rightarrow x^{2}(3-x)=0
$$

$\therefore \quad$ Either $x^{2}=0$ i.e., $x=0$ or $3-x=0$ i.e., $x=3$
Putting $x=0$ in (i), $y=0 \quad \therefore \quad$ Point is (0,0)
Putting $x=3$ in (i), $y=3^{3}=27 \quad \therefore \quad$ Point is $(3,27)$
\therefore The required points are $(0,0)$ and $(3,27)$.
18. For the curve $y=4 x^{3}-2 x^{5}$, find all the points at which the tangent passes through the origin.
Sol. Equation of curve is

$$
\begin{equation*}
y=4 x^{3}-2 x^{5} \tag{i}
\end{equation*}
$$

Let the required point be $\mathrm{P}(x, y)$, the tangent at which passes through the origin $\mathrm{O}(0,0)$.
Differentiating both sides of eqn. (i) w.r.t. $x, \frac{d y}{d x}=12 x^{2}-10 x^{4}$
\therefore Slope of the tangent OP at $\mathrm{P}(x, y)=\frac{d y}{d x}=12 x^{2}-10 x^{4}=\frac{y-0}{x-0}$
or $\quad \frac{y}{x}=12 x^{2}-10 x^{4}$ or $y=12 x^{3}-10 x^{5}$
Putting this value of y in eqn. (i), we have

$$
12 x^{3}-10 x^{5}=4 x^{3}-2 x^{5} \text { or } 8 x^{3}-8 x^{5}=0
$$

or $\quad 8 x^{3}\left(1-x^{2}\right)=0$
\therefore Either $x=0$ or $1-x^{2}=0$
i.e., $x^{2}=1 \therefore x= \pm 1$

Putting $x=0$ in (i), $\quad y=0$

Putting $x=1$ in $(i), \quad y=4-2=2$
Putting $x=-1$ in $(i), \quad y=-4+2=-2$
Hence, the required points are $(0,0),(1,2)$ and $(-1,-2)$.
19. Find the points on the curve $x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to the \boldsymbol{x}-axis.
Sol. Equation of curve is $\quad x^{2}+y^{2}-2 x-3=0$
Differentiating w.r.t. x, we get

$$
2 x+2 y \frac{d y}{d x}-2=0 \quad \text { or } 2 y \frac{d y}{d x}=2-2 x
$$

Dividing by 2 ,

$$
y \frac{d y}{d x}=1-x
$$

$\therefore \quad \frac{d y}{d x}=\frac{1-x}{y}$
Now the tangent is parallel to the x-axis if the slope of tangent is zero
i.e., $\frac{d y}{d x}=0$ or $\frac{1-x}{y}=0$ or $x=1$

Putting $x=1$ in (i), we get $1+y^{2}-2-3=0$
or $\quad y^{2}=4 \therefore y= \pm 2$
Hence, the required points are $(1,2)$ and $(1,-2)$.
20. Find the equation of the normal at the point ($\mathrm{am}^{2}, \mathrm{am}^{3}$) for the curve $a y^{2}=x^{3}$.
Sol. Given: Equation of the curve is $a y^{2}=x^{3}$
Differentiating both sides of (i) w.r.t. x,
$a \frac{d}{d x} y^{2}=\frac{d}{d x} x^{3} \Rightarrow a .2 y \frac{d y}{d x}=3 x^{2}$
$\Rightarrow \frac{d y}{d x}=\frac{3 x^{2}}{2 a y}=$ Slope of the tangent at the point (x, y)
$\therefore \quad$ Slope of the tangent at the point $\left(a m^{2}, a m^{3}\right)$
(Putting $\left.x=a m^{2}, y=a m^{3}\right)=\frac{3\left(a m^{2}\right)^{2}}{2 a \cdot a m^{3}}=\frac{3 a^{2} m^{4}}{2 a^{2} m^{3}}=\frac{3 m}{2}$
$\therefore \quad$ Slope of the normal at the point $\left(a m^{2}, a m^{3}\right)=-\frac{2}{3 m}$
(Negative reciprocal)
\therefore Equation of the normal at $\left(a m^{2}, a m^{3}\right)$ is

$$
\begin{array}{rlrl}
& & y-a m^{3} & =-\frac{2}{3 m}\left(x-a m^{2}\right) \\
\Rightarrow & & 3 m\left(y-a m^{3}\right) & =-2\left(x-a m^{2}\right) \\
\Rightarrow & 3 m y-3 a m^{4} & =-2 x+2 a m^{2} \\
\text { or } & 2 x+3 m y-2 a m^{2}-3 a m^{4} & =0 \\
\text { or } & 2 x+3 m y-a m^{2}\left(2+3 m^{2}\right) & =0 .
\end{array}
$$

21. Find the equations of the normal to the curve $y=x^{3}+2 x+6$ which are parallel to the line $x+14 y+4=0$.
Sol. Equation of curve is $y=x^{3}+2 x+6$
Differentiating w.r.t. x, we get
Slope of tangent to the curve at $(x, y)=\frac{d y}{d x}=3 x^{2}+2$
\Rightarrow Slope of normal to the curve at (x, y)

$$
\begin{equation*}
=\frac{-1}{3 x^{2}+2} \tag{ii}
\end{equation*}
$$

Now the slope of given line $x+14 y+4=0$ is $-\frac{1}{14}$. Since the normal is parallel to this line, the slope of normal is also $-\frac{1}{14}$ as parallel lines have equal slopes.
\therefore By (ii), we have $\quad \frac{-1}{3 x^{2}+2}=-\frac{1}{14}$
or $3 x^{2}+2=14$ or $3 x^{2}=12$ or $x^{2}=4 \therefore x= \pm 2$
Putting $x=2$ in $(i), \quad y=8+4+6=18$
Putting $x=-2$ in (i), $\quad y=-8-4+6=-6$
\therefore The coordinates of the feet of normals (i.e., points of contact) are $(2,18)$ and $(-2,-6)$.
\therefore Equation of normal at $(2,18)$ is
or $\quad 14 y-252=-x+2 \quad$ or $\quad x+14 y-254=0$
and equation of normal at $(-2,-6)$ is

$$
y+6=-\frac{1}{14}(x+2)
$$

or $\quad 14 y+84=-x-2 \quad$ or $\quad x+14 y+86=0$.
22. Find the equation of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$.
Sol. Given: Equation of the parabola is $y^{2}=4 a x$
Differentiating both sides of (i) w.r.t. x, we have

$$
\frac{d}{d x} y^{2}=4 a \frac{d}{d x}(x) \quad \Rightarrow 2 y \frac{d y}{d x}=4 a
$$

$\therefore \quad \frac{d y}{d x}=\frac{4 a}{2 y}=\frac{2 a}{y}=$ Slope of the tangent at the point (x, y)
$\therefore \quad$ Slope of the tangent at the point $\left(a t^{2}, 2 a t\right)$ is
(Putting $x=a t^{2}, y=2 a t$)

$$
=\frac{2 a}{2 a t}=\frac{1}{t}
$$

$\therefore \quad$ Slope of the normal $=-t$ (Negative reciprocal)
\therefore Equation of the tangent at the point $\left(a t^{2}, 2 a t\right)$ is

$$
\begin{aligned}
y-2 a t & =\frac{1}{t}\left(x-a t^{2}\right) \text { or } \quad t y-2 a t^{2}=x-a t^{2} \\
\Rightarrow \quad t y & =x+a t^{2}
\end{aligned}
$$

Again equation of the normal at the point ($\alpha t^{2}, 2 a t$) is

$$
y-2 a t=-t\left(x-a t^{2}\right) \quad \text { or } \quad y-2 a t=-t x+a t^{3}
$$

or $\quad t x+y=2 a t+a t^{3}$.
23. Prove that the curves $x=y^{2}$ and $x y=k$ cut at right angles if $8 k^{2}=1$.
Sol. Equations of curves are $x=y^{2} \ldots(i)$ and $x y=k$
To find the point(s) of intersection, we solve them simultaneously for x and y.
Putting $x=y^{2}$ from eqn. (i) in eqn. (ii), we have $y^{2} \cdot y=k$ or $y^{3}=k \quad \therefore y=k^{1 / 3}$
Putting this value of y in $(i), \quad x=\left(k^{1 / 3}\right)^{2}=k^{2 / 3}$
\therefore The point of intersection is $\left(k^{2 / 3}, k^{1 / 3}\right)=(x, y)$ (say)

Differentiating (i), w.r.t. $x, \quad 1=2 y \frac{d y}{d x}$
or

$$
\begin{equation*}
\frac{d y}{d x}=\frac{1}{2 y}=m_{1} \tag{iv}
\end{equation*}
$$

Differentiating (ii) w.r.t. $x, \quad x \frac{d y}{d x}+y=0$
or $\quad \frac{d y}{d x}=-\frac{y}{x}=m_{2}$
Because the curves (i) and (ii) cut at right angles at their point of intersection (x, y), therefore $m_{1} m_{2}=-1$.
Putting values of m_{1} and m_{2} from (iv) and (v), we have

$$
\frac{1}{2 y}\left(-\frac{y}{x}\right)=-1 \quad \text { or } \quad \frac{1}{2 x}=1
$$

or $\quad 2 x=1$. But from (iii), $\quad x=k^{2 / 3} \quad \therefore \quad 2 . k^{2 / 3}=1$
Cubing both sides, $\quad 8 k^{2}=1$.
24. Find the equation of the tangent and normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{0}, y_{0}\right)$.
Sol. Equation of hyperbola is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Differentiating w.r.t. x, we have $\frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0$
or $\quad \frac{-2 y}{b^{2}} \frac{d y}{d x}=\frac{-2 x}{a^{2}}$ or $\frac{d y}{d x}=\frac{b^{2} x}{a^{2} y}$
Putting $x=x_{0}$ and $y=y_{0}$ in (ii), slope of tangent at $\left(x_{0}, y_{0}\right)$ is $\frac{b^{2} x_{0}}{a^{2} y_{0}}$ $\therefore \quad$ Equation of tangent at $\left(x_{0}, y_{0}\right)$ is $y-y_{0}=\frac{b^{2} x_{0}}{a^{2} y_{0}}\left(x-x_{0}\right)$
or $\quad y y_{0}-y_{0}{ }^{2}=\frac{b^{2}}{a^{2}}\left(x x_{0}-x_{0}{ }^{2}\right) \quad$ or $\quad \frac{y y_{0}}{b^{2}}-\frac{y_{0}{ }^{2}}{b^{2}}=\frac{x x_{0}}{a^{2}}-\frac{x_{0}{ }^{2}}{a^{2}}$
or

$$
\begin{equation*}
\frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=\frac{x_{0}^{2}}{a^{2}}-\frac{y_{0}^{2}}{b^{2}} \tag{iiii}
\end{equation*}
$$

Since $\left(x_{0}, y_{0}\right)$ lies on the hyperbola (i), $\therefore \frac{x_{0}{ }^{2}}{a^{2}}-\frac{y_{0}{ }^{2}}{b^{2}}=1$
Putting this value in R.H.S. of equation (iii), equation of tangent at $\left(x_{0}, y_{0}\right)$ becomes $\frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=1$.

Now, slope of tangent at $\left(x_{0}, y_{0}\right)$ is $\frac{b^{2} x_{0}}{a^{2} y_{0}}$
\Rightarrow Slope of normal at $\left(x_{0}, y_{0}\right)$ is $-\frac{a^{2} y_{0}}{b^{2} x_{0}}$. (Negative reciprocal)
\therefore Equation of normal at $\left(x_{0}, y_{0}\right)$ is

$$
y-y_{0}=-\frac{a^{2} y_{0}}{b^{2} x_{0}}\left(x-x_{0}\right)
$$

or

$$
b^{2} x_{0}\left(y-y_{0}\right)=-a^{2} y_{0}\left(x-x_{0}\right)
$$

Dividing every term by $a^{2} b^{2} x_{0} y_{0}$,

$$
\frac{y-y_{0}}{a^{2} y_{0}}=-\frac{\left(x-x_{0}\right)}{b^{2} x_{0}} \quad \text { or } \quad \frac{\left(x-x_{0}\right)}{b^{2} x_{0}}+\frac{\left(y-y_{0}\right)}{a^{2} y_{0}}=0
$$

25. Find the equation of the tangent to the curve $y=\sqrt{3 x-2}$ which is parallel to the line $4 \boldsymbol{x}-\mathbf{2 y + 5}=\mathbf{0}$.
Sol. Given: Equation of the curve is $y=\sqrt{3 x-2}$
$\therefore \quad \frac{d y}{d x}=\frac{d}{d x}(3 x-2)^{1 / 2}=\frac{1}{2}(3 x-2)^{-1 / 2} \frac{d}{d x}(3 x-2)=\frac{1}{2 \sqrt{3 x-2}} \cdot 3$
$=$ Slope of the tangent at point (x, y) of curve (i)
Again slope of the given line $4 x-2 y+5=0$ is $\frac{-a}{b}=\frac{-4}{-2}=2$
Since required tangent is parallel to the given line, therefore

$$
\frac{3}{2 \sqrt{3 x-2}}=2
$$

[Parallel lines have same slope]
Cross-multiplying, $\quad 4 \sqrt{3 x-2}=3$
Squaring both sides, $16(3 x-2)=9 \Rightarrow 48 x-32=9$
$\Rightarrow 48 x=32+9=41 \quad \Rightarrow \quad x=\frac{41}{48}$
Putting $x=\frac{41}{48}$ in $(i), y=\sqrt{3\left(\frac{41}{48}\right)-2}$

$$
=\sqrt{\frac{41}{16}-2}=\sqrt{\frac{41-32}{16}}=\sqrt{\frac{9}{16}}=\frac{3}{4}
$$

$\therefore \quad$ Point of contact is $(x, y)=\left(\frac{41}{48}, \frac{3}{4}\right)$
$\therefore \quad$ Equation of the required tangent is $y-\frac{3}{4}=2\left(x-\frac{41}{48}\right)$
$\Rightarrow y-\frac{3}{4}=2 x-\frac{41}{24} \Rightarrow y=2 x+\frac{3}{4}-\frac{41}{24} \Rightarrow y=2 x+\frac{18-41}{24}$

$$
\Rightarrow \quad 24 y=48 x-23 \quad \text { or } \quad-48 x+24 y=-23
$$

Dividing by $-1,48 x-24 y=23$.
Choose the correct answer in Exercise 26 and 27.
26. The slope of the normal to the curve $y=2 x^{2}+3 \sin x$ at $x=0$ is
(A) 3
(B) $\frac{1}{3}$
(C) -3
(D) $\frac{-1}{3}$.

Sol. Given: Equation of the curve is $y=2 x^{2}+3 \sin x$
$\therefore \frac{d y}{d x}=4 x+3 \cos x=$ Slope of the tangent at the point (x, y)
Putting $x=0$ (given), slope of the tangent (at $x=0$)

$$
=4(0)+3 \cos 0=3=m \text { (say) }
$$

$\therefore \quad$ Slope of the normal at $x=0$ is $\frac{-1}{m}=\frac{-1}{3}$
\therefore Option (D) is the correct answer.
27. The line $y=x+1$ is a tangent to the curve $y^{2}=4 x$ at the point
(A) $(1,2)$
(B) $(2,1)$
(C) $(1,-2)$
(D) $(-1,2)$.

Sol. Given: Equation of the curve is $y^{2}=4 x \ldots(i)$
Differentiating both sides of (i) w.r.t. x,

$$
\begin{equation*}
2 y \frac{d y}{d x}=4 \quad \Rightarrow \quad \frac{d y}{d x}=\frac{4}{2 y}=\frac{2}{y} \tag{ii}
\end{equation*}
$$

$=$ Slope of tangent to curve (i) at point (x, y)
Again slope of the given (tangent) line $y=x+1$
i.e., $\quad-x+y-1=0$ i.e., $x-y+1=0$ is

$$
-\frac{a}{b}=\frac{-1}{-1}=1
$$

From (ii) and (iii), $\frac{2}{y}=1$
I \because Both are slopes of the same line
$\therefore \quad y=2$
Putting $y=2$ in $(i), 4=4 x$ or $x=1$
\therefore Required point of contact is $\mathrm{P}(x, y)=(1,2)$.
\therefore Option (A) is the correct answer.

