

NCERT Class 12 Maths Solutions

Exercise 6.2

- 1. Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
- **Sol. Given:** f(x) = 3x + 17
 - f'(x) = 3(1) + 0 = 3 > 0 *i.e.*, + ve for all $x \in \mathbb{R}$.
 - \therefore f(x) is strictly increasing on R.
 - 2. Show that the function given by $f(x) = e^{2x}$ is strictly increasing on R.
- **Sol.** Given: $f(x) = e^{2x}$
 - $f'(x) = e^{2x} \frac{d}{dx} 2x = e^{2x}(2) = 2e^{2x} > 0 \text{ i.e., } + \text{ve for all } x \in \mathbb{R}.$
 - [:. We know that e is approximately equal to 2.718 and is always positive]
 - \therefore f(x) is strictly increasing on R.

Remark.
$$e^{-2} = \frac{1}{(e^2)} > 0$$
 and $e^0 = 1 > 0$.

- 3. Show that the function given by $f(x) = \sin x$ is (a) strictly increasing in $\left(0, \frac{\pi}{2}\right)$ (b) strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$
 - (c) neither increasing nor decreasing in $(0, \pi)$.
- **Sol. Given:** $f(x) = \sin x$
 - $\therefore f'(x) = \cos x$
 - (a) We know that $f'(x) = \cos x > 0$ *i.e.*, + ve in first quadrant *i.e.*, in $\left(0, \frac{\pi}{2}\right)$.
 - $f(x) \text{ is strictly increasing in } \left(0, \frac{\pi}{2}\right).$

- (b) We know that $f'(x) = \cos x < 0$ i.e., ve in second quadrant i.e., in $\left(\frac{\pi}{2}, \pi\right)$.
 - \therefore f(x) is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$.
- (c) Because $f'(x) = \cos x > 0$ i.e., +ve in $\left(0, \frac{\pi}{2}\right)$ and $f'(x) = \cos x < 0$

i.e., - ve in
$$\left(\frac{\pi}{2}, \pi\right)$$
 and $f'\left(\frac{\pi}{2}\right) = \cos \frac{\pi}{2} = 0$

f'(x) does not keep the same sign in the interval $(0, \pi)$.

Hence f(x) is neither increasing nor decreasing in $(0, \pi)$.

- 4. Find the intervals in which the function f given by $f(x) = 2x^2 3x$ is
 - (a) strictly increasing (b) strictly decreasing.

$$f(x) = 2x^2 - 3x$$

$$f'(x) = 4x - 3$$
 ...(i)

Step I. Let us put f'(x) = 0 to find turning points *i.e.*, points on the given curve where tangent is parallel to x-axis.

From (i),
$$4x - 3 = 0$$
 i.e., $4x = 3$ or $x = \frac{3}{4}$ (= 0.75).

$$-\infty$$
 $\frac{3}{4}$ ∞

This turning point divides the real line in two disjoint sub-intervals $\left(-\infty,\frac{3}{4}\right)$ and $\left(\frac{3}{4},\infty\right)$.

Step II.

	TAX STREET, AND THE	
Interval	$\mathbf{sign of } f'(x) = 4x - 3$	Nature of function f
	(i)	
$\left(-\infty, \frac{3}{4}\right)$	Take $x = 0.5$ (say)	\therefore f is strictly decreasing \downarrow
	then from (i) $f'(x) < 0$	
$\left(\frac{3}{4},\infty\right)$	Take $x = 1$ (say)	\therefore f is strictly increasing \uparrow
	then from (i) , $f'(x) > 0$	

Thus, (a) f is strictly increasing in $\left(\frac{3}{4}, \infty\right)$.

- (b) f is strictly decreasing in $\left(-\infty, \frac{3}{4}\right)$.
- 5. Find the intervals in which the function f given by

$$f(x) = 2x^3 - 3x^2 - 36x + 7$$
 is

(a) strictly increasing (b) strictly decreasing.

Sol. Given:
$$f(x) = 2x^3 - 3x^2 - 36x + 7$$

$$f'(x) = 6x^2 - 6x - 36$$

Step I. Form factors of f'(x)

$$f'(x) = 6(x^2 - x - 6)$$

(Caution: Don't omit 6. It can't be cancelled only from R.H.S.)

or
$$f'(x) = 6(x^2 - 3x + 2x - 6) = 6[x(x - 3) + 2(x - 3)]$$

= $6(x + 2)(x - 3)$...(i)

Step II. Put
$$f'(x) = 0 \implies 6(x + 2)(x - 3) = 0$$

But
$$6 \neq 0$$
 :. Either $x + 2 = 0$ or $x - 3 = 0$
i.e., $x = -2, x = 3$.

These turning points x = -2 and x = 3 divide the real line into three disjoint sub-intervals $(-\infty, -2)$, (-2, 3) and $(3, \infty)$.

Step III.

Interval	sign of $f'(x)$ = $6(x + 2)(x - 3)$ (i)	Nature of function f
(-∞, -2)	Take $x = -3$ (say).	\therefore f is strictly increasing \uparrow
	Then from (i) ,	in $(-\infty, -2)$
	f'(x) = (+) (-) (-)	Ch.
	= (+) i.e., > 0	
(-2, 3)	Take $x = 2$ (say).	\therefore f is strictly decreasing \downarrow
	Then from (i),	in (- 2, 3)
	f'(x) = (+) (+) (-)	*
	= (-) i.e., < 0	
(3, ∞)	Take $x = 4$ (say).	\therefore f is strictly increasing \uparrow
	Then from (i),	in $(3, \infty)$
	f'(x) = (+) (+) (+)	
	= (+) i.e., > 0	

Thus, (a) f is strictly increasing in $(-\infty, -2)$ and $(3, \infty)$.

(b) f is strictly decreasing in (-2, 3).

6. Find the intervals in which the following functions are strictly increasing or decreasing.

(a)
$$x^2 + 2x - 5$$

(b)
$$10 - 6x - 2x^2$$

(a)
$$x + 2x - 5$$
 (b) $10 - 6x - 2$
(c) $-2x^3 - 9x^2 - 12x + 1$ (d) $6 - 9x - x^2$

(d)
$$6 - 9r - r^2$$

(e)
$$(x + 1)^3(x - 3)^3$$
.

Sol. (a) **Given:** $f(x) = x^2 + 2x - 5$

$$f'(x) = 2x + 2 = 2(x + 1) \qquad ...(i)$$

Step I. Put $f'(x) = 0 \implies 2(x + 1) = 0$

But $2 \neq 0$. Therefore, x + 1 = 0 *i.e.*, x = -1.

This turning point x = -1 divides the real line into two disjoint sub-intervals $(-\infty, -1)$ and $(-1, \infty)$.

Step II.

Interval	sign of f'(x) = 2(x + 1)(i)	Nature of function f
(-∞, -1)	Take $x = -2$ (say). Then from (i) , f'(x) = (-) i.e., < 0	\therefore f is strictly decreasing \downarrow
(- 1, ∞)	Take $x = 0$ (say). Then from (i) , f'(x) = (+) i.e., > 0	\therefore f is strictly increasing \uparrow

Thus, f is strictly increasing in $(-1, \infty)$ (i.e., x > -1) and strictly decreasing in $(-\infty, -1)$ (i.e., x < -1).

(b) Given:
$$f(x) = 10 - 6x - 2x^2$$

 $f'(x) = -6 - 4x = -2(3 + 2x)$...(i)
Step I. Put $f'(x) = 0 \implies -2(3 + 2x) = 0$
But $-2 \ne 0$. Therefore, $3 + 2x = 0$ i.e., $2x = -3$
i.e., $x = -\frac{3}{2}$.

This turning point $x=-\frac{3}{2}$ divides the real line into two disjoint sub-intervals $\left(-\infty,-\frac{3}{2}\right)$ and $\left(-\frac{3}{2},\infty\right)$.

Step III.

Interval	sign of $f'(x)$ = $-2(3 + 2x)$ (i)	Nature of function f
$\left(-\infty,-rac{3}{2} ight)$		\therefore f is strictly increasing \uparrow
	Then from (i), f'(x) = (-) (-) = (+) i.e., > 0	
$\left(-\frac{3}{2},\infty\right)$	Take $x = -1$ (say).	\therefore f is strictly decreasing \downarrow
	Then from (i), f'(x) = (-) (+) = (-) i.e., < 0	

Thus, f is strictly increasing in $\left(-\infty, -\frac{3}{2}\right)$ (i.e., for $x < -\frac{3}{2}$) and

strictly decreasing in
$$\left(-\frac{3}{2}, \infty\right)$$
 (*i.e.*, for $x > -\frac{3}{2}$).

(c) Let
$$f(x) = -2x^3 - 9x^2 - 12x + 1$$

 $\therefore f'(x) = -6x^2 - 18x - 12 = -6(x^2 + 3x + 2)$

Step I. Forming factors of f'(x)

$$= -6(x^{2} + x + 2x + 2) = -6[x(x + 1) + 2(x + 1)]$$

or $f'(x) = -6(x + 1)(x + 2)$...(i)

Step II. f'(x) = 0 gives x = -1 or x = -2

The points x=-2 and x=-1 (arranged in ascending order) divide the real line into 3 disjoint intervals, namely, $(-\infty, -2)$, (-2, -1) and $(-1, \infty)$.

Step III. Nature of f(x)

Interval	sign of $f'(x)$ = -6(x + 1)(x+2) (i)	Nature of function f
(-∞, -2)	Take $x = -3$ (say), Then from (i) , f'(x) = (-) (-) (-) = (-) i.e., < 0	∴ f is strictly decreasing in $(-\infty, -2)$ \downarrow
(-2, -1)	Take $x = -1.5$ (say), Then from (i) , f'(x) = (-) $(-)$ $(+) = +i.e.$, > 0	∴ f is strictly increasing in $(-2, -1)$ \uparrow
(−1, ∞)	Take $x = 0$ (say), then from (i) f'(x) = (-)(+)(+) = (-) i.e., < 0	∴ f is strictly decreasing in $(-1, \infty)$ ↓

: f is strictly increasing in (-2, -1) and strictly decreasing in $(-\infty, -2)$ and $(-1, \infty)$

(d) Let
$$f(x) = 6 - 9x - x^2$$
 : $f'(x) = -9 - 2x$.
 $f(x)$ is strictly **increasing** if $f'(x) > 0$, *i.e.*,
if $-9 - 2x > 0$

or
$$-2x > 9$$
 or $x < -\frac{9}{2}$

 \therefore f is strictly increasing \uparrow , in the interval $\left(-\infty, -\frac{9}{2}\right)$.

f(x) is strictly **decreasing** if f'(x) < 0, i.e., if -9 - 2x < 0

or
$$-2x < 9$$
 or $x > -\frac{9}{2}$

 \therefore f is strictly decreasing \downarrow in the interval $\left(-\frac{9}{2}, \infty\right)$.

(e) Let
$$f(x) = (x + 1)^3 (x - 3)^3$$

then $f'(x) = (x + 1)^3 \cdot 3(x - 3)^2 + (x - 3)^3 \cdot 3(x + 1)^2$
 $= 3(x + 1)^2 (x - 3)^2 (x + 1 + x - 3)$
 $= 3(x + 1)^2 (x - 3)^2 (2x - 2)$
 $= 6(x + 1)^2 (x - 3)^2 (x - 1)$

The factors $(x + 1)^2$ and $(x - 3)^2$ are non-negative for all x.

$$f(x)$$
 is strictly **increasing** if

$$f'(x) > 0$$
, *i.e.*, if $x - 1 > 0$ or $x > 1$
 $f(x)$ is strictly **decreasing** if $f'(x) < 0$, *i.e.*, if $x - 1 < 0$ or $x < 1$.

Thus, f is strictly increasing \uparrow in $(1, \infty)$ and strictly decreasing \downarrow in $(-\infty, 1)$.

7. Show that $y = \log (1 + x) - \frac{2x}{2 + x}$, x > -1 is an increasing function of x throughout its domain.

Sol. Given:
$$y = \log (1 + x) - \frac{2x}{2 + x}$$

$$\therefore \frac{dy}{dx} = \frac{1}{1+x} \frac{d}{dx} (1+x) - \left[\frac{(2+x)\frac{d}{dx}(2x) - 2x\frac{d}{dx}(2+x)}{(2+x)^2} \right]$$

$$= \frac{1}{1+x} - \left[\frac{(2+x)^2 - 2x}{(2+x)^2} \right] = \frac{1}{1+x} - \frac{(4+2x-2x)}{(2+x)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{1+x} - \frac{4}{(2+x)^2} = \frac{(2+x)^2 - 4(1+x)}{(1+x)(2+x)^2}$$

$$= \frac{4+x^2 + 4x - 4 - 4x}{(1+x)(2+x)^2} = \frac{x^2}{(1+x)(2+x)^2} \qquad \dots(i)$$

Domain of the given function is given to be x > -1 $\Rightarrow x + 1 > 0$. Also $(2 + x)^2 > 0$ and $x^2 \ge 0$

$$\therefore$$
 From (i), $\frac{dy}{dx} \ge 0$ for all x in the domain $(x > -1)$.

 \therefore The given function is an increasing function of x (in its domain namely x > -1).

Note 1. For an increasing function $\frac{dy}{dx} = f'(x) \ge 0$ and for a strictly increasing function $\frac{dy}{dx} = f'(x) > 0$.

Note 2. For a decreasing function $\frac{dy}{dx} = f'(x) \le 0$ and for a strictly decreasing function $\frac{dy}{dx} = f'(x) < 0$.

8. Find the value of x for which $y = (x(x-2))^2$ is an increasing function.

Sol. Given: $y = (x(x-2))^2$.

Step I. Find $\frac{dy}{dx}$ and form factors of R.H.S. of value of $\frac{dy}{dx}$.

$$\therefore \frac{dy}{dx} = 2x(x-2) \frac{d}{dx} [x(x-2)]$$

$$\left[\because \frac{d}{dx} (f(x))^n = n(f(x))^{n-1} \frac{d}{dx} f(x) \right]$$

$$\Rightarrow \frac{dy}{dx} = 2x(x-2)\left[x\frac{d}{dx}(x-2) + (x-2)\frac{d}{dx}x\right]$$
 (Product Rule)
= $2x(x-2)[x+x-2] = 2x(x-2)(2x-2)$

or
$$\frac{dy}{dx} = 4x(x-2)(x-1)$$
 ...(i)

Step II. Put $\frac{dy}{dx} = 0$.

.. From (i)
$$4x(x-2)(x-1) = 0$$

But $4 \neq 0$.. Either $x = 0$ or $x-2 = 0$ or $x-1 = 0$
 $\Rightarrow x = 0, x = 2, x = 1$

These three turning points x = 0, x = 1, x = 2 (arranged in their ascending order divide the real line into three sub-intervals $(-\infty, 0]$, [0, 1], [1, 2], $[2, \infty)$.

Step III

Interval	$ sign of \frac{dy}{dx} $ $ = 4x(x-2)(x-1)(i) $	Nature of $y = f(x)$
(-∞, 0]	Take $x = -1$ (say). Then from (i), $\frac{dy}{dx} = (-) (-) (-)$	$f(x)$ is decreasing \downarrow
	$= (-) (or = 0 at x = 0) i.e., \le 0$	
[0, 1]	Take $x = \frac{1}{2}$ (say). Then from (i) , $\frac{dy}{dx} = (+) (-) (-)$ $= (+) (or = 0 \text{ at})$	$f(x)$ is increasing \uparrow
	$i.e., \ge 0$ $x = 0, x = 1$	
[1, 2]	Take $x = 1.5$ (say). Then from (i) , $\frac{dy}{dx} = (+) (-) (+)$	\therefore $f(x)$ is decreasing \downarrow

	= (-) (or = 0 at x = 1, x = 2) <i>i.e.</i> , ≤ 0	
[2, ∞)	Take $x = 3$ (say). Then from (i) , $\frac{dy}{dx} = (+) (+) (+)$ $= (+) (or = 0 \text{ at}$ $x = 2)$ $i.e., \ge 0$	$f(x)$ is increasing \uparrow

Therefore, f(x) is an increasing function in the intervals [0, 1] (i.e., $0 \le x \le 1$) and $[2, \infty)$ (i.e., $x \ge 2$).

Remark. (We have included the turning points in the subintervals because we are to discuss for increasing function and not for strictly increasing function. See Notes 1 and 2 at the end of solution of Q. No. 7).

9. Prove that $y = \frac{4 \sin \theta}{(2 + \cos \theta)} - \theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.

Sol. Here
$$y = \frac{4 \sin \theta}{(2 + \cos \theta)} - \theta$$

$$\Rightarrow \frac{dy}{d\theta} = \frac{(2 + \cos \theta) \cdot 4 \cos \theta - 4 \sin \theta (-\sin \theta)}{(2 + \cos \theta)^2} - 1$$

$$= \frac{8 \cos \theta + 4 \cos^2 \theta + 4 \sin^2 \theta}{(2 + \cos \theta)^2} - 1$$

$$= \frac{8 \cos \theta + 4 (\cos^2 \theta + \sin^2 \theta) - (2 + \cos \theta)^2}{(2 + \cos \theta)^2} \qquad \text{(Taking L.C.M.)}$$

$$= \frac{8 \cos \theta + 4 - (2 + \cos \theta)^2}{(2 + \cos \theta)^2} = \frac{(8 \cos \theta + 4) - (4 + 4 \cos \theta + \cos^2 \theta)}{(2 + \cos \theta)^2}$$
or $\frac{dy}{d\theta} = \frac{4 \cos \theta - \cos^2 \theta}{(2 + \cos \theta)^2} = \frac{\cos \theta (4 - \cos \theta)}{(2 + \cos \theta)^2} \qquad \dots(i)$

Since $0 \le \theta \le \frac{\pi}{2}$,

we have $0 \le \cos \theta \le 1$ and, therefore, $4 - \cos \theta > 0$. Also $(2 + \cos \theta)^2 > 0$

$$\therefore \quad \text{From } (i), \ \frac{dy}{d\theta} \ge 0 \text{ for } 0 \le \theta \le \frac{\pi}{2}.$$

Hence, y is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.

- 10. Prove that the logarithmic function is strictly increasing on $(0, \infty)$.
- **Sol. Given:** $f(x) = \log x$
 - $\therefore f'(x) = \frac{1}{x} > 0 \text{ for all } x \text{ in } (0, \infty) \qquad [\because x \in (0, \infty) \implies x > 0]$
 - f(x) is strictly increasing on $(0, \infty)$.
- 11. Prove that the function f given by $f(x) = x^2 x + 1$ is neither strictly increasing nor strictly decreasing on (-1, 1).
- **Sol. Given:** $f(x) = x^2 x + 1$
 - f'(x) = 2x 1
 - f(x) is strictly increasing if f'(x) > 0 i.e., if 2x 1 > 0
 - *i.e.*, if 2x > 1 or $x > \frac{1}{2}$
 - f(x) is strictly decreasing if

$$f'(x) < 0$$
 i.e., if $2x - 1 < 0$ i.e., $x < \frac{1}{2}$

- f(x) is strictly increasing for $x > \frac{1}{2}$ *i.e.*, on the interval $\left(\frac{1}{2}, 1\right)$
- [: The given interval is (-1, 1)]
- and f(x) is strictly decreasing for $x < \frac{1}{2}$ i.e., on the interval
- $\left(-1,\frac{1}{2}\right)$. [: The given interval is (-1,1)]
- \therefore f(x) is neither strictly increasing nor strictly decreasing on the interval (-1, 1).
- 12. Which of the following functions are strictly decreasing on

$$\left(0,\frac{\pi}{2}\right)$$
?

- (A) $\cos x$ (B) $\cos 2x$ (C) $\cos 3x$ (D) $\tan x$.
- **Sol.** (A) Let $f(x) = \cos x$ then $f'(x) = -\sin x$
 - \therefore $0 < x < \frac{\pi}{2}$ in $\left(0, \frac{\pi}{2}\right)$, therefore $\sin x > 0$

[Because sin *x* is positive in both first and second quadrants]

- \Rightarrow $-\sin x < 0$: $f'(x) = -\sin x < 0$ on $\left(0, \frac{\pi}{2}\right)$
- \Rightarrow f(x) is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$.
- **(B)** Let $f(x) = \cos 2x$ then $f'(x) = -2 \sin 2x$
 - $0 < x < \frac{\pi}{2}, \quad 0 < 2x < \pi$
 - $\Rightarrow \qquad \sin 2x > 0 \quad \Rightarrow \quad -2 \sin 2x < 0$

$$\therefore f'(x) = -2 \sin 2x < 0 \text{ on } \left(0, \frac{\pi}{2}\right)$$

$$\Rightarrow f(x)$$
 is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$.

(C) Let
$$f(x) = \cos 3x$$
 then $f'(x) = -3 \sin 3x$

$$\therefore \quad 0 < x < \frac{\pi}{2}, \quad \therefore \quad 0 < 3x < \frac{3\pi}{2} = 270^{\circ}$$

**Now for 0 < 3x <
$$\pi$$
,** $\left(i.e., 0 < x < \frac{\pi}{3}\right)$ sin $3x > 0$

 $(:: \sin \theta \text{ is positive in first two quadrants})$

$$\Rightarrow f'(x) = -3 \sin 3x < 0 \Rightarrow \hat{f}'(x) < 0$$

$$\Rightarrow f(x)$$
 is strictly decreasing on $\left(0, \frac{\pi}{3}\right)$

and for
$$\pi < 3x < \frac{3\pi}{2}$$
, $\sin 3x < 0$

[Because $\sin \theta$ is negative in third quadrant]

$$\therefore f'(x) = -3 \sin 3x > 0 \Rightarrow f'(x) > 0$$

$$\Rightarrow f(x)$$
 is strictly increasing on $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$

- .. f(x) is neither strictly increasing nor strictly decreasing on $\left(0, \frac{\pi}{2}\right)$.

 (D) Let $f(x) = \tan x$ then $f'(x) = \sec^2 x > 0$
- **(D)** Let $f(x) = \tan x$ then $f'(x) = \sec^2 x > 0$ $\Rightarrow f(x)$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$.

Hence, only the functions in options (A) and (B) are strictly decreasing.

13. On which of the following intervals is the function f given by $f(x) = x^{100} + \sin x - 1$ is strictly decreasing?

(A) (0, 1) (B)
$$\left(\frac{\pi}{2}, \pi\right)$$
 (C) $\left(0, \frac{\pi}{2}\right)$ (D) None of these.

Sol. Given: $f(x) = x^{100} + \sin x - 1$

$$f'(x) = 100 x^{99} + \cos x \qquad ...(i)$$

Let us test option (A) (0, 1)

On (0, 1); x > 0 and hence $100 x^{99} > 0$

For $\cos x$; interval $(0, 1) \Rightarrow (0, 1 \text{ radian})$

$$\Rightarrow$$
 (0, 57° nearly) (:: π radians = 180°

$$\Rightarrow$$
 1 radian = $\frac{180^{\circ}}{\pi}$

$$= \frac{180^{\circ}}{\left(\frac{22}{7}\right)} = 180^{\circ} \times \frac{7}{22} = \frac{90^{\circ} \times 7}{11} = \frac{630^{\circ}}{11} = 57^{\circ} \text{ nearly})$$

- \Rightarrow x is in first quadrant and hence cos x is positive.
- From (i), $f'(x) = 100x^{99} + \cos x > 0$ and hence f(x) is strictly increasing on (0, 1).
- :. Option (A) is not the correct option.

Let us test option (B) $\left(\frac{\pi}{2}, \pi\right)$

For
$$100x^{99}$$
, $x \in \left(\frac{\pi}{2}, \pi\right)$

$$\Rightarrow x \in \left(\frac{\left(\frac{22}{7}\right)}{2}, \frac{22}{7}\right) = \left(\frac{11}{7}, \frac{22}{7}\right) = (1.5, 3.1)$$

 $\Rightarrow x > 1 \Rightarrow x^{99} > 1$ and hence $100x^{99} > 100$.

For cos x, $\left(\frac{\pi}{2}, \pi\right)$ \Rightarrow Second quadrant and hence cos x is negative and has value between - 1 and 0. $(\cdot,\cdot] - 1 \le \cos \theta \le 1)$

- \therefore From (i), $f'(x) = 100x^{99} + \cos x > 100 1 = 99 > 0$
- f(x) is strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$. $\therefore \text{ Option (B) is not the correct option.}$

Let us test option (C) $\left(0, \frac{\pi}{2}\right)$

On $\left(0, \frac{\pi}{2}\right)$ i.e., (0, 1.5) both terms $100x^{99}$ and $\cos x$ are positive and hence from (i), $f'(x) = 100x^{99} + \cos x$ is positive.

- f(x) is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ also.
- Option (C) is also not the correct option.
- Option (D) is the correct answer.

14. Find the least value of a such that the function f given by $f(x) = x^2 + ax + 1$ strictly increasing on (1, 2).

Sol. Here
$$f(x) = x^2 + ax + 1$$
 ...(*i*)

Differentiating (i) w.r.t.
$$x$$
, $f'(x) = 2x + a$...(ii)

Because f(x) is strictly increasing on (1, 2) (given),

$$\therefore f'(x) = 2x + a > 0 \text{ for all } x \text{ in } (1, 2)$$
 ...(iii)

Now on (1, 2), 1 < x < 2

Multiplying by 2, 2 < 2x < 4 for all x in (1, 2).

Adding a to all sides

$$2 + a < 2x + a < 4 + a$$
 for all x in (1, 2)

or
$$2 + a < f'(x) < 4 + a$$
 for all x in $(1, 2)$ [By (ii)]

 \therefore Minimum value of f'(x) is 2 + a and maximum value of

$$f'(x)$$
 is $4 + a$(iv)

But from (iii), f'(x) > 0 for all x in (1, 2)

$$\therefore 2 + a > 0 \text{ and } 4 + a > 0$$
 [By (*iv*)]

 $\therefore a > -2 \text{ and } a > -4$

$$\therefore a > -2$$
 [: $a > -2 \Rightarrow a > -4$ automatically]

 \therefore Least value of a is -2.

15. Let I be any interval disjoint from [-1, 1]. Prove that the function f given by $f(x) = x + \frac{1}{x}$ is strictly increasing on I.

Sol. Given:
$$f(x) = x + \frac{1}{x} = x + x^{-1}$$

$$f'(x) = 1 + (-1)x^{-2} = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2}$$

Forming factors,
$$f'(x) = \frac{(x-1(x+1))}{x^2}$$
 ...(i)

Given: I is an interval disjoint from [-1, 1].

i.e.,
$$I = (-\infty, \infty) - [-1, 1] = (-\infty, -1) \cup (1, \infty)$$

$$\therefore$$
 For every $x \in I$, either $x < -1$ or $x > 1$

i.e., I = (-∞, ∞) - [-1, 1] = (-∞, -1) ∪ (1, ∞)
∴ For every
$$x \in I$$
, either $x < -1$ or $x > 1$
For $x < -1$ (For example, $x = -2$ (say)),
from (i), $f'(x) = \frac{(-)(-)}{(+)} = (+)$ i.e., > 0
For $x > 1$ (For example, $x = 2$ (say)),

from (i),
$$f'(x) = \frac{(+)(+)}{(+)} = (+)$$
 i.e., > 0

- f'(x) > 0 for all $x \in I$ f(x) is strictly increasing on I. 16. Prove that the function f given by $f(x) = \log \sin x$ is strictly increasing on $\left(0,\frac{\pi}{2}\right)$ and strictly decreasing on $\left(\frac{\pi}{2},\pi\right)$.
- **Sol. Given:** $f(x) = \log \sin x$

$$f'(x) = \frac{1}{\sin x} \frac{d}{dx} \sin x = \frac{1}{\sin x} (\cos x) = \cot x \qquad ...(i)$$

On the interval $\left(0,\frac{\pi}{2}\right)$ *i.e.*, in first quadrant, from (i), $f'(x) = \cot x > 0$

 \therefore f(x) is strictly increasing on $\left(0, \frac{\pi}{2}\right)$.

On the interval $\left(\frac{\pi}{2}, \pi\right)$ *i.e.*, in second quadrant, from (i), f'(x) = $\cot x < 0$.

$$f(x)$$
 is strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$.

- 17. Prove that the function f given by $f(x) = \log \cos x$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ and strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$.
- **Sol.** Given: $f(x) = \log \cos x$

$$\therefore f'(x) = \frac{1}{\cos x} \frac{d}{dx} (\cos x) = \frac{1}{\cos x} (-\sin x) = -\tan x \qquad \dots (i)$$

We know that on the interval $\left(0, \frac{\pi}{2}\right)$ *i.e.*, in first quadrant, $\tan x$ is positive and hence from (i), $f'(x) = -\tan x$ is negative

f(x) is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$.

We know that on the interval $\left(\frac{\pi}{2}, \pi\right)$ *i.e.*, in second quadrant; $\tan x$ is negative and hence from (i),

$$f'(x) = -\tan x$$
 is positive *i.e.*, > 0 .

- f(x) is strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$.
- 18. Prove that the function given by $f(x) = x^3 3x^2 + 3x 100$ is increasing in P - 100 is increasing in R.
- $f(x) = x^3 3x^2 + 3x 100.$ Sol. Given: $f'(x) = 3x^2 - 6x + 3 = 3(x^2 - 2x + 1)$ $= 3(x - 1)^2 \ge 0$ for all x in R
 - f(x) is increasing on R.
- 19. The interval in which $y = x^2 e^{-x}$ is increasing is

(A)
$$(-\infty, \infty)$$
 (B) $(-2, 0)$ (C) $(2, \infty)$ (D) $(0, 2)$.

Sol. Given: $y = f(x) = x^2 e^{-x}$

$$\therefore \frac{dy}{dx} = x^2 \frac{d}{dx} e^{-x} + e^{-x} \frac{d}{dx} x^2 = x^2 e^{-x} (-1) + e^{-x} (2x)$$
$$= -x^2 e^{-x} + 2x e^{-x} = x e^{-x} (-x + 2)$$

or
$$\frac{dy}{dx} = \frac{x(2-x)}{e^x}$$

Out of the intervals mentioned in the options (A), (B), (C) and (D), $\frac{dy}{dx} > 0$ for all x in interval (0, 2) of option (D).

 \therefore y (= f(x)) is strictly increasing and hence increasing in interval (0, 2) of option D.

Note. For a subjective solution of this question, proceed as in solution of Q. No. 6 (a), (b), (c).

Remark. Increasing (decreasing) function or monotonically increasing (or monotonically decreasing) function have the same meaning.