Kopykitab

 Same textbooks, klibck away

 Same textbooks, klibck away}

NCERT Class 12 Maths
 Solutions

Exercise 6.2

1. Show that the function given by $f(x)=3 x+17$ is strictly increasing on \mathbf{R}.
Sol. Given: $f(x)=3 x+17$
$\therefore \quad f^{\prime}(x)=3(1)+0=3>0$ i.e., + ve for all $x \in \mathrm{R}$.
$\therefore f(x)$ is strictly increasing on R .
2. Show that the function given by $f(x)=e^{2 x}$ is strictly increasing on R.
Sol. Given: $f(x)=e^{2 x}$
$\therefore \quad f^{\prime}(x)=e^{2 x} \frac{d}{d x} 2 x=e^{2 x}(2)=2 e^{2 x}>0$ i.e., + ve for all $x \in \mathrm{R}$.
$[\because$ We know that e is approximately equal to 2.718 and is always positive]
$\therefore f(x)$ is strictly increasing on R .
Remark. $e^{-2}=\frac{1}{\left(e^{2}\right)}>0$ and $e^{0}=1>0$.
3. Show that the function given by $f(x)=\sin x$ is (a) strictly increasing in $\left(0, \frac{\pi}{2}\right)$ (b) strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$ (c) neither increasing nor decreasing in ($0, \pi$).

Sol. Given: $f(x)=\sin x$
$\therefore \quad f^{\prime}(x)=\cos x$
(a) We know that $f^{\prime}(x)=\cos x>0$ i.e., + ve in first quadrant i.e., in $\left(0, \frac{\pi}{2}\right)$.
$\therefore f(x)$ is strictly increasing in $\left(0, \frac{\pi}{2}\right)$.
(b) We know that $f^{\prime}(x)=\cos x<0$ i.e., - ve in second quadrant i.e., in $\left(\frac{\pi}{2}, \pi\right)$.
$\therefore f(x)$ is strictly decreasing in $\left(\frac{\pi}{2}, \pi\right)$.
(c) Because $f^{\prime}(x)=\cos x>0$ i.e., + ve in $\left(0, \frac{\pi}{2}\right)$ and $f^{\prime}(x)=\cos x<0$
i.e., -ve in $\left(\frac{\pi}{2}, \pi\right)$ and $f^{\prime}\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2}=0$
$\therefore f^{\prime}(x)$ does not keep the same sign in the interval $(0, \pi)$.
Hence $f(x)$ is neither increasing nor decreasing in $(0, \pi)$.
4. Find the intervals in which the function f given by

$$
f(x)=2 x^{2}-3 x \text { is }
$$

(a) strictly increasing (b) strictly decreasing.

Sol. Given: $\quad f(x)=2 x^{2}-3 x$
$\therefore \quad f^{\prime}(x)=4 x-3$
Step I. Let us put $f^{\prime}(x)=0$ to find turning points i.e., points on the given curve where tangent is parallel to x-axis.
\therefore From (i), $4 x-3=0$ i.e., $4 x=3$
or $\quad x=\frac{3}{4}(=0.75)$.

This turning point divides the real line in two disjoint subintervals $\left(-\infty, \frac{3}{4}\right)$ and $\left(\frac{3}{4}, \infty\right)$
Step II.

Interval	sign of $\boldsymbol{f}^{\prime}(\boldsymbol{x})=\mathbf{4} \boldsymbol{x}-\mathbf{3}$ $\ldots(\boldsymbol{i})$	Nature of function \boldsymbol{f}
$\left(-\infty, \frac{3}{4}\right)$	Take $x=0.5$ (say) then from $(i) f^{\prime}(x)<0$	$\therefore f$ is strictly decreasing \downarrow
$\left(\frac{3}{4}, \infty\right)$	Take $x=1$ (say) then from $(i), f^{\prime}(x)>0$	$\therefore f$ is strictly increasing \uparrow

Thus, (a) f is strictly increasing in $\left(\frac{3}{4}, \infty\right)$.
(b) f is strictly decreasing in $\left(-\infty, \frac{3}{4}\right)$.
5. Find the intervals in which the function f given by

$$
f(x)=2 x^{3}-3 x^{2}-36 x+7 \text { is }
$$

(a) strictly increasing (b) strictly decreasing.

Sol. Given: $f(x)=2 x^{3}-3 x^{2}-36 x+7$
$\therefore \quad f^{\prime}(x)=6 x^{2}-6 x-36$
Step I. Form factors of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$

$$
f^{\prime}(x)=6\left(x^{2}-x-6\right)
$$

(Caution: Don't omit 6. It can't be cancelled only from R.H.S.)
or $\quad f^{\prime}(x)=6\left(x^{2}-3 x+2 x-6\right)=6[x(x-3)+2(x-3)]$

$$
\begin{equation*}
=6(x+2)(x-3) \tag{i}
\end{equation*}
$$

Step II. Put $f^{\prime}(x)=0 \Rightarrow 6(x+2)(x-3)=0$
But $6 \neq 0 \quad \therefore$ Either $x+2=0$ or $x-3=0$
i.e., $\quad x=-2, x=3$.

These turning points $x=-2$ and $x=3$ divide the real line into three disjoint sub-intervals $(-\infty,-2),(-2,3)$ and $(3, \infty)$.
Step III.

Interval	$\begin{aligned} & \text { sign of } f^{\prime}(x) \\ & =6(x+2)(x-3) \ldots(i) \end{aligned}$	Nature of function f
$(-\infty,-2)$	Take $x=-3$ (say). Then from (i), $\begin{aligned} f^{\prime}(x) & =(+)(-)(-) \\ & =(+) \text { i.e. },>0 \end{aligned}$	$\begin{aligned} & \therefore f \text { is strictly increasing } \uparrow \\ & \text { in }(-\infty,-2) \end{aligned}$
$(-2,3)$	Take $x=2$ (say). Then from (i), $\begin{aligned} f^{\prime}(x) & =(+)(+)(-) \\ & =(-) \text { i.e. },<0 \end{aligned}$	$\therefore \quad f$ is strictly decreasing \downarrow in $(-2,3)$
$(3, \infty)$	Take $x=4$ (say). Then from (i), $\begin{aligned} f^{\prime}(x) & =(+)(+)(+) \\ & =(+) \text { i.e. },>0 \end{aligned}$	$\begin{aligned} & \therefore \quad f \text { is strictly increasing } \uparrow \\ & \text { in }(3, \infty) \end{aligned}$

Thus, (a) f is strictly increasing in $(-\infty,-2)$ and $(3, \infty)$.
(b) f is strictly decreasing in $(-2,3)$.
6. Find the intervals in which the following functions are strictly increasing or decreasing.
(a) $x^{2}+2 x-5$
(b) $10-6 x-2 x^{2}$
(c) $-2 x^{3}-9 x^{2}-12 x+1$
(d) $6-9 x-x^{2}$
(e) $(x+1)^{3}(x-3)^{3}$.

Sol. (a) Given: $f(x)=x^{2}+2 x-5$

$$
\begin{equation*}
\therefore \quad f^{\prime}(x)=2 x+2=2(x+1) \tag{i}
\end{equation*}
$$

Step I. Put $f^{\prime}(x)=0 \Rightarrow 2(x+1)=0$
But $2 \neq 0$. Therefore, $x+1=0$ i.e., $x=-1$.

This turning point $x=-1$
divides the real line into two

disjoint sub-intervals $(-\infty,-1)$
and $(-1, \infty)$.
Step II.

Interval	sign of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ $=\mathbf{2 (x + 1)} \ldots(\boldsymbol{i})$	Nature of function \boldsymbol{f}
$(-\infty,-1)$	Take $x=-2$ (say). Then from (i), $f^{\prime}(x)=(-)$ i.e., <0	$\therefore f$ is strictly decreasing \downarrow
$(-1, \infty)$	Take $x=0$ (say). Then from (i), $f^{\prime}(x)=(+)$ i.e., >0	$\therefore f$ is strictly increasing \uparrow

Thus, f is strictly increasing in $(-1, \infty)$ (i.e., $x>-1$) and strictly decreasing in $(-\infty,-1)$ (i.e., $x<-1$).
(b) Given: $f(x)=10-6 x-2 x^{2}$
$\therefore \quad f^{\prime}(x)=-6-4 x=-2(3+2 x)$
Step I. Put $f^{\prime}(x)=0 \Rightarrow-2(3+2 x)=0$
But $-2 \neq 0$. Therefore, $3+2 x=0$ i.e., $2 x=-3$
i.e., $\quad x=-\frac{3}{2}$.

This turning point $x=-\frac{3}{2}$ divides the real line into two disjoint sub-intervals $\left(-\infty,-\frac{3}{2}\right)$ and $\left(-\frac{3}{2}, \infty\right)$.
Step III.

Interval	sign of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ $=-\mathbf{2 (3 + 2 x)} \quad \ldots .(\boldsymbol{i})$	Nature of function \boldsymbol{f}
$\left(-\infty,-\frac{3}{2}\right)$	Take $x=-2$ (say). Then from (i), $f^{\prime}(x)=(-)(-)$ $=(+)$ i.e., >	$\therefore \quad f$ is strictly increasing \uparrow
$\left(-\frac{3}{2}, \infty\right)$	Take $x=-1$ (say). Then from (i), $f^{\prime}(x)=(-)(+)$ $=(-)$ i.e., <0	$\therefore \quad f$ is strictly decreasing \downarrow

Thus, f is strictly increasing in $\left(-\infty,-\frac{3}{2}\right)$ (i.e., for $x<-\frac{3}{2}$) and
strictly decreasing in $\left(-\frac{3}{2}, \infty\right)$ (i.e., for $x>-\frac{3}{2}$).
(c) Let $f(x)=-2 x^{3}-9 x^{2}-12 x+1$
$\therefore \quad f^{\prime}(x)=-6 x^{2}-18 x-12=-6\left(x^{2}+3 x+2\right)$
Step I. Forming factors of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$

$$
\begin{align*}
& =-6\left(x^{2}+x+2 x+2\right)=-6[x(x+1)+2(x+1)] \\
\text { or } \quad f^{\prime}(x) & =-6(x+1)(x+2) \tag{i}
\end{align*}
$$

Step II. $f^{\prime}(x)=0$ gives $x=-1$ or $x=-2$
The points $x=-2$ and $x=-1$ (arranged in ascending order) divide the real line into 3 disjoint intervals, namely, $(-\infty,-2)$, $(-2,-1)$ and $(-1, \infty)$.
Step III. Nature of $\boldsymbol{f}(\boldsymbol{x})$

Interval	$\begin{aligned} & \text { sign of } f^{\prime}(x) \\ & \quad=-6(x+1)(x+2)(i) \end{aligned}$	Nature of function f
(-m, - 2)	Take $x=-3$ (say), Then from (i), $\begin{aligned} f^{\prime}(x) & =(-)(-)(-) \\ & =(-) \text { i.e. },<0 \end{aligned}$	$\therefore \quad f$ is strictly decreasing in $(-\infty,-2) \downarrow$
(-2, -1)	Take $x=-1.5$ (say), Then from (i), $\begin{aligned} f^{\prime}(x)= & (-)(-)(+)=+ \\ & \text { i.e., }>0 \end{aligned}$	$\therefore f$ is strictly increasing in $(-2,-1) \uparrow$
(-1, ∞)	Take $x=0$ (say), then from (i) $\begin{gathered} f^{\prime}(x)=(-)(+)(+)=(-) \\ \text { i.e. },<0 \end{gathered}$	$\therefore f$ is strictly decreasing in $(-1, \infty) \downarrow$

$\therefore f$ is strictly increasing in $(-2,-1)$ and strictly decreasing in $(-\infty,-2)$ and $(-1, \infty)$
(d) Let $f(x)=6-9 x-x^{2} \quad \therefore \quad f^{\prime}(x)=-9-2 x$.
$f(x)$ is strictly increasing if $f^{\prime}(x)>0$, i.e., if $-9-2 x>0$
or $\quad-2 x>9 \quad$ or $\quad x<-\frac{9}{2}$
$\therefore f$ is strictly increasing \uparrow, in the interval $\left(-\infty,-\frac{9}{2}\right)$.
$f(x)$ is strictly decreasing if $f^{\prime}(x)<0$, i.e., if $-9-2 x<0$
or $\quad-2 x<9 \quad$ or $\quad x>-\frac{9}{2}$
$\therefore f$ is strictly decreasing \downarrow in the interval $\left(-\frac{9}{2}, \infty\right)$.
(e) Let $f(x)=(x+1)^{3}(x-3)^{3}$

$$
\text { then } \begin{aligned}
f^{\prime}(x) & =(x+1)^{3} \cdot 3(x-3)^{2}+(x-3)^{3} \cdot 3(x+1)^{2} \\
& =3(x+1)^{2}(x-3)^{2}(x+1+x-3) \\
& =3(x+1)^{2}(x-3)^{2}(2 x-2) \\
& =6(x+1)^{2}(x-3)^{2}(x-1)
\end{aligned}
$$

The factors $(x+1)^{2}$ and $(x-3)^{2}$ are non-negative for all x.
$\therefore f(x)$ is strictly increasing if

$$
f^{\prime}(x)>0, \quad \text { i.e., } \quad \text { if } x-1>0 \quad \text { or } \quad x>1
$$

$f(x)$ is strictly decreasing if $f^{\prime}(x)<0$, i.e., if $x-1<0$ or $x<1$.
Thus, f is strictly increasing \uparrow in $(1, \infty)$ and strictly decreasing \downarrow in $(-\infty, 1)$.
7. Show that $y=\log (1+x)-\frac{2 x}{2+x}, x>-1$ is an increasing function of \boldsymbol{x} throughout its domain.
Sol. Given: $y=\log (1+x)-\frac{2 x}{2+x}$

$$
\begin{align*}
\therefore \quad \frac{d y}{d x} & =\frac{1}{1+x} \frac{d}{d x}(1+x)-\left[\frac{(2+x) \frac{d}{d x}(2 x)-2 x \frac{d}{d x}(2+x)}{(2+x)^{2}}\right] \\
& =\frac{1}{1+x}-\left[\frac{(2+x) 2-2 x}{(2+x)^{2}}\right]=\frac{1}{1+x}-\frac{(4+2 x-2 x)}{(2+x)^{2}} \\
\Rightarrow \quad \frac{d y}{d x} & =\frac{1}{1+x}-\frac{4}{(2+x)^{2}}=\frac{(2+x)^{2}-4(1+x)}{(1+x)(2+x)^{2}} \\
& =\frac{4+x^{2}+4 x-4-4 x}{(1+x)(2+x)^{2}}=\frac{x^{2}}{(1+x)(2+x)^{2}} \tag{i}
\end{align*}
$$

Domain of the given function is given to be $x>-1$
$\Rightarrow x+1>0$. Also $(2+x)^{2}>0$ and $x^{2} \geq 0$
\therefore From (i), $\frac{d y}{d x} \geq 0$ for all x in the domain $(x>-1)$.
\therefore The given function is an increasing function of x (in its domain namely $x>-1$).
Note 1. For an increasing function $\frac{d y}{d x}=f^{\prime}(x) \geq 0$ and for a strictly increasing function $\frac{d y}{d x}=f^{\prime}(x)>0$.
Note 2. For a decreasing function $\frac{d y}{d x}=f^{\prime}(x) \leq 0$ and for a strictly decreasing function $\frac{d y}{d x}=f^{\prime}(x)<0$.
8. Find the value of x for which $y=(x(x-2))^{2}$ is an increasing function.
Sol. Given: $y(=f(x))=(x(x-2))^{2}$.
Step I. Find $\frac{d y}{d x}$ and form factors of R.H.S. of value of $\frac{d y}{d x}$.

$$
\therefore \quad \frac{d y}{d x}=2 x(x-2) \frac{d}{d x}[x(x-2)]
$$

$$
\left[\because \frac{d}{d x}(f(x))^{n}=n(f(x))^{n-1} \frac{d}{d x} f(x)\right]
$$

$\Rightarrow \quad \frac{d y}{d x}=2 x(x-2)\left[x \frac{d}{d x}(x-2)+(x-2) \frac{d}{d x} x\right] \quad$ (Product Rule)

$$
\begin{equation*}
=2 x(x-2)[x+x-2]=2 x(x-2)(2 x-2) \tag{i}
\end{equation*}
$$

or $\frac{d y}{d x}=4 x(x-2)(x-1)$
Step II. Put $\frac{d y}{d x}=0$.
\therefore From (i) $4 x(x-2)(x-1)=0$
But $4 \neq 0 \quad \therefore$ Either $x=0$ or $x-2=0$ or $x-1=0$
$\Rightarrow \quad x=0, \quad x=2, x=1$

These three turning points $x=0, x=1, x=2$ (arranged in their ascending order divide the real line into three sub-intervals $(-\infty$, $0],[0,1],[1,2],[2, \infty)$.
Step III

Interval	$\begin{aligned} & \text { sign of } \frac{d y}{d x} \\ & =4 x(x-2)(x-1) \ldots(i) \end{aligned}$	Nature of $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$
(- ∞, 0]	Take $x=-1$ (say). Then from (i), $\begin{aligned} \frac{d y}{d x} & =(-)(-)(-) \\ & =(-)(\text { or }=0 \\ \text { at } x & =0) \text { i.e., } \leq 0 \end{aligned}$	$\therefore f(x)$ is decreasing \downarrow
$[0,1]$	Take $x=\frac{1}{2}$ (say). Then from (i), $\begin{aligned} & \frac{d y}{d x}=(+)(-)(-) \\ &=(+)(\text { or }=0 \text { at } \\ &x=0, x=1) \end{aligned},$	$\therefore f(x)$ is increasing \uparrow
[1, 2]	Take $x=1.5$ (say). Then from (i), $\frac{d y}{d x}=(+)(-)(+)$	$\therefore f(x)$ is decreasing \downarrow

	$\begin{aligned} & =(-)(\mathrm{or}=0 \mathrm{at} \\ & x=1, x=2) \\ & \text { i.e., } \leq 0 \end{aligned}$	
$[2, \infty)$	Take $x=3$ (say). Then from (i), $\begin{aligned} \frac{d y}{d x} & =(+)(+)(+) \\ & =(+)(\text { or }=0 \text { at } \\ & x=2) \end{aligned}$	$\therefore f(x)$ is increasing \uparrow

Therefore, $f(x)$ is an increasing function in the intervals [0, 1] (i.e., $0 \leq x \leq 1$) and $[2, \infty$ (i.e., $x \geq 2$).

Remark. (We have included the turning points in the subintervals because we are to discuss for increasing function and not for strictly increasing function. See Notes 1 and 2 at the end of solution of Q. No. 7).
9. Prove that $y=\frac{4 \sin \theta}{(2+\cos \theta)}-\theta$ is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.
Sol. Here $y=\frac{4 \sin \theta}{(2+\cos \theta)}-\theta$

$$
\begin{align*}
& \Rightarrow \frac{d y}{d \theta}=\frac{(2+\cos \theta) \cdot 4 \cos \theta-4 \sin \theta(-\sin \theta)}{(2+\cos \theta)^{2}}-1 \\
&=\frac{8 \cos \theta+4 \cos ^{2} \theta+4 \sin ^{2} \theta}{(2+\cos \theta)^{2}}-1 \\
& \quad=\frac{8 \cos \theta+4\left(\cos ^{2} \theta+\sin ^{2} \theta\right)-(2+\cos \theta)^{2}}{(2+\cos \theta)^{2}} \quad \text { (Taking L.C.M.) } \\
& \quad=\frac{8 \cos \theta+4-(2+\cos \theta)^{2}}{(2+\cos \theta)^{2}}=\frac{(8 \cos \theta+4)-\left(4+4 \cos \theta+\cos ^{2} \theta\right)}{(2+\cos \theta)^{2}} \tag{i}
\end{align*}
$$

or $\frac{d y}{d \theta}=\frac{4 \cos \theta-\cos ^{2} \theta}{(2+\cos \theta)^{2}}=\frac{\cos \theta(4-\cos \theta)}{(2+\cos \theta)^{2}}$
Since $0 \leq \theta \leq \frac{\pi}{2}$,
we have $0 \leq \cos \theta \leq 1$ and, therefore, $4-\cos \theta>0$. Also $(2+\cos \theta)^{2}>0$
$\therefore \quad$ From (i), $\frac{d y}{d \theta} \geq 0$ for $0 \leq \theta \leq \frac{\pi}{2}$.
Hence, y is an increasing function of θ in $\left[0, \frac{\pi}{2}\right]$.
10. Prove that the logarithmic function is strictly increasing on ($0, \infty$).
Sol. Given: $f(x)=\log x$
$\therefore f^{\prime}(x)=\frac{1}{x}>0$ for all x in $(0, \infty) \quad[\because x \in(0, \infty) \Rightarrow x>0]$
$\therefore f(x)$ is strictly increasing on $(0, \infty)$.
11. Prove that the function f given by $f(x)=x^{2}-x+1$ is neither strictly increasing nor strictly decreasing on (-1, 1).
Sol. Given: $f(x)=x^{2}-x+1$
$\therefore \quad f^{\prime}(x)=2 x-1$
$f(x)$ is strictly increasing if $f^{\prime}(x)>0$ i.e., \quad if $2 x-1>0$
i.e., if $2 x>1$ or $\quad x>\frac{1}{2}$
$f(x)$ is strictly decreasing if

$$
f^{\prime}(x)<0 \text { i.e., if } 2 x-1<0 \text { i.e., } x<\frac{1}{2}
$$

$\therefore f(x)$ is strictly increasing for $x>\frac{1}{2}$ i.e., on the interval $\left(\frac{1}{2}, 1\right)$
$[\because$ The given interval is $(-1,1)]$
and $f(x)$ is strictly decreasing for $x<\frac{1}{2}$ i.e., on the interval $\left(-1, \frac{1}{2}\right)$.
$[\because$ The given interval is $(-1,1)]$
$\therefore f(x)$ is neither strictly increasing nor strictly decreasing on the interval (-1, 1).
12. Which of the following functions are strictly decreasing on $\left(0, \frac{\pi}{2}\right)$?
(A) $\cos x$
(B) $\cos 2 x$
(C) $\cos 3 x$
(D) $\tan x$.

Sol. (A) Let $f(x)=\cos x$ then $f^{\prime}(x)=-\sin x$ $\because 0<x<\frac{\pi}{2}$ in $\left(0, \frac{\pi}{2}\right)$, therefore $\sin x>0$
[Because $\sin x$ is positive in both first and second quadrants]

$$
\begin{aligned}
& \Rightarrow-\sin x<0 \quad \therefore f^{\prime}(x)=-\sin x<0 \quad \text { on } \quad\left(0, \frac{\pi}{2}\right) \\
& \Rightarrow f(x) \text { is strictly decreasing on }\left(0, \frac{\pi}{2}\right) .
\end{aligned}
$$

(B) Let $f(x)=\cos 2 x$ then $f^{\prime}(x)=-2 \sin 2 x$

$$
\begin{array}{llc}
\because & 0<x<\frac{\pi}{2}, \therefore & 0<2 x<\pi \\
\Rightarrow & \sin 2 x>0 \Rightarrow & -2 \sin 2 x<0
\end{array}
$$

$\therefore f^{\prime}(x)=-2 \sin 2 x<0$ on $\left(0, \frac{\pi}{2}\right)$
$\Rightarrow f(x)$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$.
(C) Let $f(x)=\cos 3 x$ then $f^{\prime}(x)=-3 \sin 3 x$
$\because \quad 0<x<\frac{\pi}{2}, \quad \therefore \quad 0<3 x<\frac{3 \pi}{2}=270^{\circ}$
Now for $0<3 \boldsymbol{x}<\boldsymbol{\pi}, \quad\left(\right.$ i.e., $\left.0<x<\frac{\pi}{3}\right) \quad \sin 3 x>0$
$(\because \sin \theta$ is positive in first two quadrants)
$\Rightarrow f^{\prime}(x)=-3 \sin 3 x<0 \Rightarrow f^{\prime}(x)<0$
$\Rightarrow f(x)$ is strictly decreasing on $\left(0, \frac{\pi}{3}\right)$
and for $\quad \pi<3 x<\frac{3 \pi}{2}, \quad \sin 3 x<0$
[Because $\sin \theta$ is negative in third quadrant]
$\therefore f^{\prime}(x)=-3 \sin 3 x>0 \Rightarrow f^{\prime}(x)>0$
$\Rightarrow f(x)$ is strictly increasing on $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
$\therefore f(x)$ is neither strictly increasing nor strictly decreasing on $\left(0, \frac{\pi}{2}\right)$.
(D) Let $f(x)=\tan x$ then $f^{\prime}(x)=\sec ^{2} x>0$
$\Rightarrow f(x)$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$.
Hence, only the functions in options (A) and (B) are strictly decreasing.
13. On which of the following intervals is the function f given by $f(x)=x^{100}+\sin x-1$ is strictly decreasing?
(A) $(0,1)$
(B) $\left(\frac{\pi}{2}, \pi\right)$
(C) $\left(0, \frac{\pi}{2}\right)$
(D) None of these.

Sol. Given: $f(x)=x^{100}+\sin x-1$
$\therefore f^{\prime}(x)=100 x^{99}+\cos x$
Let us test option (A) (0, 1)
On $(0,1) ; \quad x>0$ and hence $100 x^{99}>0$
For $\cos x$; interval $(0,1) \Rightarrow(0,1$ radian $)$
$\Rightarrow \quad\left(0,57^{\circ}\right.$ nearly) $\left(\because \pi\right.$ radians $=180^{\circ}$
$\Rightarrow \quad 1$ radian $=\frac{180^{\circ}}{\pi}$
$=\frac{180^{\circ}}{\left(\frac{22}{7}\right)}=180^{\circ} \times \frac{7}{22}=\frac{90^{\circ} \times 7}{11}=\frac{630^{\circ}}{11}=57^{\circ}$ nearly $)$
$\Rightarrow \quad x$ is in first quadrant and hence $\cos x$ is positive.
\therefore From $(i), f^{\prime}(x)=100 x^{99}+\cos x>0$ and hence $f(x)$ is strictly increasing on $(0,1)$.
\therefore Option (A) is not the correct option.
Let us test option (B) $\quad\left(\frac{\pi}{2}, \pi\right)$
For $100 x^{99}, x \in\left(\frac{\pi}{2}, \pi\right)$
$\Rightarrow x \in\left(\frac{\left(\frac{22}{7}\right)}{2}, \frac{22}{7}\right)=\left(\frac{11}{7}, \frac{22}{7}\right)=(1.5,3.1)$
$\Rightarrow x>1 \Rightarrow x^{99}>1$ and hence $100 x^{99}>100$.
For $\cos x,\left(\frac{\pi}{2}, \pi\right) \Rightarrow$ Second quadrant and hence $\cos x$ is negative and has value between -1 and 0 .
$(\because-1 \leq \cos \theta \leq 1)$
\therefore From $(i), f^{\prime}(x)=100 x^{99}+\cos x>100-1=99>0$
$\therefore f(x)$ is strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$
\therefore Option (B) is not the correct option.
Let us test option (C) $\left(0, \frac{\pi}{2}\right)$
On $\left(0, \frac{\pi}{2}\right)$ i.e., $(0,1.5)$ both terms $100 x^{99}$ and $\cos x$ are positive and hence from $(i), f^{\prime}(x)=100 x^{99}+\cos x$ is positive.
$\therefore f(x)$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ also.
\therefore Option (C) is also not the correct option.
\therefore Option (D) is the correct answer.
14. Find the least value of a such that the function f given by $f(x)=x^{2}+a x+1$ strictly increasing on (1,2).
Sol. Here $f(x)=x^{2}+a x+1$
Differentiating (i) w.r.t. $x, f^{\prime}(x)=2 x+a$
Because $f(x)$ is strictly increasing on (1,2) (given),
$\therefore f^{\prime}(x)=2 x+a>0$ for all x in $(1,2)$
Now on (1, 2), $1<x<2$
Multiplying by $2,2<2 x<4$ for all x in (1, 2).
Adding a to all sides

$$
2+a<2 x+a<4+a \text { for all } x \text { in }(1,2)
$$

or $\quad 2+a<f^{\prime}(x)<4+a$ for all x in (1,2) [By (ii)]
\therefore Minimum value of $f^{\prime}(x)$ is $2+a$ and maximum value of
$f^{\prime}(x)$ is $4+a$.
But from (iii), $f^{\prime}(x)>0$ for all x in $(1,2)$
$\therefore 2+a>0$ and $4+a>0$
[By (iv)]
$\therefore a>-2$ and $a>-4$
$\therefore a>-2 \quad[\because a>-2 \Rightarrow a>-4$ automatically $]$
\therefore Least value of a is -2 .
15. Let I be any interval disjoint from [-1, 1]. Prove that the function f given by $f(x)=x+\frac{1}{x}$ is strictly increasing on I.
Sol. Given: $f(x)=x+\frac{1}{x}=x+x^{-1}$

$\therefore \quad f^{\prime}(x)=1+(-1) x^{-2}=1-\frac{1}{x^{2}}=\frac{x^{2}-1}{x^{2}}$
Forming factors, $f^{\prime}(x)=\frac{(x-1(x+1)}{x^{2}}$
Given: I is an interval disjoint from [-1, 1].
i.e., $\quad \mathrm{I}=(-\infty, \infty)-[-1,1]=(-\infty,-1) \cup(1, \infty)$
\therefore For every $x \in \mathrm{I}$, either $x<-1$ or $x>1$
For $x<-1$ (For example, $x=-2$ (say)),
from $(i), f^{\prime}(x)=\frac{(-)(-)}{(+)}=(+)$ i.e., >0
For $x>1$ (For example, $x=2$ (say),
from $(i), f^{\prime}(x)=\frac{(+)(+)}{(+)}=(+)$ i.e., >0
$\therefore f^{\prime}(x)>0$ for all $x \in \mathrm{I}, \therefore f(x)$ is strictly increasing on I .
16. Prove that the function f given by $f(x)=\log \sin x$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$ and strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$.
Sol. Given: $f(x)=\log \sin x$
$\therefore \quad f^{\prime}(x)=\frac{1}{\sin x} \frac{d}{d x} \sin x=\frac{1}{\sin x}(\cos x)=\cot x$
On the interval $\left(0, \frac{\pi}{2}\right)$ i.e., in first quadrant, from (i), $f^{\prime}(x)=\cot x>0$
$\therefore f(x)$ is strictly increasing on $\left(0, \frac{\pi}{2}\right)$.
On the interval $\left(\frac{\pi}{2}, \pi\right)$ i.e., in second quadrant, from $(i), f^{\prime}(x)=$ $\cot x<0$.
$\therefore f(x)$ is strictly decreasing on $\left(\frac{\pi}{2}, \pi\right)$.
17. Prove that the function f given by $f(x)=\log \cos x$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ and strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$.
Sol. Given: $f(x)=\log \cos x$
$\therefore f^{\prime}(x)=\frac{1}{\cos x} \frac{d}{d x}(\cos x)=\frac{1}{\cos x}(-\sin x)=-\tan x$
We know that on the interval $\left(0, \frac{\pi}{2}\right)$ i.e., in first quadrant, $\tan x$ is positive and hence from $(i), f^{\prime}(x)=-\tan x$ is negative i.e., < 0 .
$\therefore f(x)$ is strictly decreasing on $\left(0, \frac{\pi}{2}\right)$.
We know that on the interval $\left(\frac{\pi}{2}, \pi\right)$ i.e., in second quadrant; $\tan x$ is negative and hence from (i),

$$
f^{\prime}(x)=-\tan x \text { is positive i.e., }>0
$$

$\therefore \quad f(x)$ is strictly increasing on $\left(\frac{\pi}{2}, \pi\right)$.
18. Prove that the function given by $f(x)=x^{3}-3 x^{2}+3 x$ - $\mathbf{1 0 0}$ is increasing in R.

Sol. Given: $f(x)=x^{3}-3 x^{2}+3 x-100$.
Then $\quad f^{\prime}(x)=3 x^{2}-6 x+3=3\left(x^{2}-2 x+1\right)$

$$
=3(x-1)^{2} \geq 0 \text { for all } x \text { in } \mathrm{R}
$$

$\therefore f(x)$ is increasing on R .
19. The interval in which $y=x^{2} e^{-x}$ is increasing is
(A) $(-\infty, \infty)$
(B) $(-2,0)$
(C) $(2, \infty)$
(D) $(0,2)$.

Sol. Given: $y(=f(x))=x^{2} e^{-x}$

$$
\begin{aligned}
\therefore \quad \frac{d y}{d x} & =x^{2} \frac{d}{d x} e^{-x}+e^{-x} \frac{d}{d x} x^{2}=x^{2} e^{-x}(-1)+e^{-x}(2 x) \\
& =-x^{2} e^{-x}+2 x e^{-x}=x e^{-x}(-x+2) \\
\text { or } \quad \frac{d y}{d x} & =\frac{x(2-x)}{e^{x}}
\end{aligned}
$$

Out of the intervals mentioned in the options (A), (B), (C) and (D), $\frac{d y}{d x}>0$ for all x in interval $(0,2)$ of option (D).
$\therefore \quad y(=f(x))$ is strictly increasing and hence increasing in interval $(0,2)$ of option D.
Note. For a subjective solution of this question, proceed as in solution of Q. No. 6 (a), (b), (c).
Remark. Increasing (decreasing) function or monotonically increasing (or monotonically decreasing) function have the same meaning.

