NCERT Class 12 Maths

Solutions

Chapter - 5

Exercise 5.1

1. Prove that the function $f(x)=5 x-3$ is continuous at $x=0$, at $x=-3$ and at $x=5$.
Sol. Given: $f(x)=5 x-3$
Continuity at $\boldsymbol{x}=\mathbf{0}$

$$
\begin{align*}
& \lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}(5 x-3) \tag{i}\\
& \text { Putting } x=0,=5(0)-3=0-3=-3 \\
& \text { Putting } x=0 \text { in }(i), f(0)=5(0)-3=-3 \\
& \therefore \quad \lim _{x \rightarrow 0} f(x)=f(0)(=-3) \quad \therefore f(x) \text { is continuous at } x=0 .
\end{align*}
$$

Continuity at $\boldsymbol{x}=\mathbf{- 3}$
$\lim _{x \rightarrow-3} f(x)=\lim _{x \rightarrow-3}(5 x-3)$
Putting $x=-3,=5(-3)-3=-15-3=-18$
Putting $x=-3$ in $(i), f(-3)=5(-3)-3=-15-3=-18$
$\therefore \lim _{x \rightarrow-3} f(x)=f(-3)(=-18)$
$\therefore \quad f(x)$ is continuous at $x=-3$.
Continuity at $\boldsymbol{x}=5$

$$
\begin{equation*}
\lim _{x \rightarrow 5} f(x)=\lim _{x \rightarrow 5}(5 x-3) \tag{i}
\end{equation*}
$$

Putting $x=5,5(5)-3=25-3=22$
Putting $x=5$ in (i), $f(5)=5(5)-3=25-3=22$
$\therefore \quad \lim _{x \rightarrow 5}(5 x-3)=f(5)(=22) \quad \therefore \quad f(x)$ is continuous at $x=5$.

2. Examine the continuity of the function

$$
\begin{equation*}
f(x)=2 x^{2}-1 \text { at } x=3 \tag{i}
\end{equation*}
$$

Sol. Given: $f(x)=2 x^{2}-1$
Continuity at $\boldsymbol{x}=\mathbf{3}$

$$
\begin{align*}
& \lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3}\left(2 x^{2}-1\right) \tag{i}\\
& \text { Putting } x=3,=2.3^{2}-1=2(9)-1=18-1=17 \\
& \text { Putting } x=3 \text { in }(i), f(3)=2.3^{2}-1=18-1=17 \\
& \therefore \quad \lim _{x \rightarrow 3} f(x)=f(3)(=17) \quad \therefore \quad f(x) \text { is continuous at } x=3 .
\end{align*}
$$

3. Examine the following functions for continuity:

(a) $f(x)=x-5$
(b) $f(x)=\frac{1}{x-5}, x \neq 5$
(c) $f(x)=\frac{x^{2}-25}{x+5}, x \neq-5$
(d) $f(x)=|x-5|$.

Sol. (a) Given: $f(x)=x-5$
The domain of f is R
$(\because f(x)$ is real and finite for all $x \in \mathrm{R})$
Let c be any real number (i.e., $c \in$ domain of f).

$$
\begin{equation*}
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}(x-5) \tag{i}
\end{equation*}
$$

Putting $x=c,=c-5$
Putting $x=c$ in $(i), f(c)=c-5$
$\therefore \quad \lim _{x \rightarrow c} f(x)=f(c)(=c-5)$
$\therefore \quad f$ is continuous at every point c in its domain (here R).
Hence f is continuous.

Or

Here $f(x)=x-5$ is a polynomial function. We know that every polynomial function is continuous (see note below).
Hence $f(x)$ is continuous (in its domain R)
Very important Note. The following functions are continuous (for all x in their domain).

1. Constant function
2. Polynomial function.
3. Rational function $\frac{f(x)}{g(x)}$ where $f(x)$ and $g(x)$ are polynomial functions of x and $g(x) \neq 0$.
4. Sine function $(\Rightarrow \sin x)$.
5. $\cos x$.
6. e^{x}.
7. e^{-x}.
8. $\log x(x>0)$.
9. Modulus function.
(b) Given: $f(x)=\frac{1}{x-5}, x \neq 5$

Given: The domain f is $\mathrm{R}-(x \neq 5)$ i.e., $\mathrm{R}-\{5\}$
$\left(\because\right.$ For $x=5, f(x)=\frac{1}{x-5}=\frac{1}{5-5}=\frac{1}{0} \rightarrow \infty$
$\therefore \quad 5 \notin$ domain of f)
Let c be any real number such that $c \neq 5$

$$
\begin{aligned}
& \qquad \lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} \frac{1}{x-5} \\
& \text { Putting } x=c, \quad[B y(i)] \\
& \text { Putting } x=c \text { in }(i), f(c)=\frac{1}{c-5} \\
& \therefore \quad \lim _{x \rightarrow c} f(x)=f(c)\left(=\frac{1}{c-5}\right) \\
& \therefore \quad f(x) \text { is continuous at every point } c \text { in the domain of } f . \\
& \text { Hence } f \text { is continuous. }
\end{aligned}
$$

Or

Here $f(x)=\frac{1}{x-5}, x \neq 5$ is a rational function
$\left(=\frac{\text { Polynomial } 1 \text { of degree } 0}{\text { Polynomial }(x-5) \text { of degree } 1}\right)$ and its denominator
i.e., $(x-5) \neq 0(\because x \neq 5)$. We know that every rational function is continuous (By Note below Solution of Q. No. $3(a)$). Therefore f is continuous (in its domain $R-\{5\}$).
(c) $f(x)=\frac{x^{2}-25}{x+5}, x \neq-5$

Here $f(x)=\frac{x^{2}-25}{x+5}, x \neq-5$ is a rational function and denominator $x+5 \neq 0(\because x \neq-5)$.
(In fact $f(x)=\frac{x^{2}-25}{x+5},(x \neq-5)=\frac{(x+5)(x-5)}{x+5}$
$=x-5,(x \neq-5)$ is a polynomial function). We know that every rational function is continuous. Therefore f is continuous (in its domain $\mathrm{R}-\{-5\}$).

Or

Proceed as in Method I of Q. No. 3(b).
(d) Given: $f(x)=|x-5|$

Domain of $f(x)$ is $\mathrm{R}(\because f(x)$ is real and finite for all real x in $(-\infty, \infty)$)
Here $f(x)=|x-5|$ is a modulus function.
We know that every modulus function is continuous.
(By Note below Solution of Q. No. 3(a)). Therefore f is continuous in its domain R.
4. Prove that the function $f(x)=x^{n}$ is continuous at $x=n$ where n is a positive integer.
Sol. Given: $f(x)=x^{n}$ where n is a positive integer.
Domain of $f(x)$ is $\mathrm{R}(\because f(x)$ is real and finite for all real $x)$
Here $f(x)=x^{n}$, where n is a positive integer.
We know that every polynomial function of x is a continuous function. Therefore, f is continuous (in its whole domain R) and hence continuous at $x=n$ also.

Or

$$
\begin{equation*}
\lim _{x \rightarrow n} f(x)=\lim _{x \rightarrow n} x^{n} \tag{i}
\end{equation*}
$$

Putting $x=n,=n^{n}$
Again putting $x=n$ in $(i), f(n)=n^{n}$
$\therefore \lim _{x \rightarrow n} f(x)=f(n)\left(=n^{n}\right) \quad \therefore f(x)$ is continuous at $x=n$.
5. Is the function f defined by

$$
f(x)=\left\{\begin{array}{lll}
x, & \text { if } & x \leq 1 \\
5, & \text { if } & x>1
\end{array}\right.
$$

continuous at $x=0$?, At $x=1$?, At $x=2$?
Sol.

$$
\text { Given: } \quad f(x)=\left\{\begin{array}{lll}
x, & \text { if } & x \leq 1 \tag{i}\\
5, & \text { if } & x>1
\end{array}\right.
$$

(Read Note (on continuity) before the solution of Q. No. 1 of this exercise)
Continuity at $\boldsymbol{x}=\mathbf{0}$
Left Hand Limit $=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} x$
$\left(x \rightarrow 0^{-} \Rightarrow x<\right.$ slightly less than $\left.0 \Rightarrow x<1\right)$
Putting $x=0, \quad=0$
Right hand limit $=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x \quad[\mathrm{By}(i)]$
$\left(x \rightarrow 0^{+} \Rightarrow x\right.$ is slightly greater than 0 say $\left.x=0.001 \Rightarrow x<1\right)$
Putting $x=0, \lim _{x \rightarrow 0^{+}} f(x)=0 \quad \therefore \quad \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=0$
$\therefore \quad \lim _{x \rightarrow 0} f(x)$ exists and $=0=f(0)$
$(\because \quad$ Putting $x=0$ in $(i), f(0)=0)$
$\therefore f(x)$ is continuous at $x=0$.
Continuity at $\boldsymbol{x}=\mathbf{1}$
Left Hand Limit $=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x$
Putting $x=1, \quad=1$
Right Hand Limit $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 5$
Putting $x=1, \lim _{x \rightarrow 1^{+}} f(x)=5$
$\therefore \lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x) \quad \therefore \quad \lim _{x \rightarrow 1} f(x)$ does not exist.
$\therefore \quad f(x)$ is discontinuous at $x=1$.
Continuity at $\boldsymbol{x}=\mathbf{2}$
Left Hand Limit $=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} 5$
[By (ii)]
$(x \rightarrow 2-\Rightarrow x$ is slightly $<2 \Rightarrow x=1.98$ (say) $\Rightarrow x>1$)
Putting $x=2, \quad=5$
Right Hand Limit $=\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} 5$
[By (ii)]
$(x \rightarrow 2+\Rightarrow x$ is slightly >2 and hence $x>1$ also $)$
Putting $x=2, \quad=5$
$\therefore \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)(=5)$
$\therefore \quad \lim _{x \rightarrow 2} f(x)$ exists and $=5=f(2)$
(Putting $x=2>1$ in (ii), $f(2)=5$)
$\therefore f(x)$ is continuous at $x=2$
Answer. f is continuous at $x=0$ and $x=2$ but not continuous at $x=1$.
Find all points of discontinuity of f, where f is defined by (Exercises 6 to 12)
6. $f(x)=\left\{\begin{array}{ll}2 x+3, & x \leq 2 \\ 2 x-3, & x>2\end{array}\right.$.

Sol. Given: $f(x)=2 x+3, \quad x \leq 2$

$$
\begin{equation*}
=2 x-3 \quad x>2 \tag{i}
\end{equation*}
$$

To find points of discontinuity of f (in its domain)
Here $f(x)$ is defined for $x \leq 2$ i.e., on $(-\infty, 2]$
and also for $x>2$ i.e, on $(2, \infty)$
$\therefore \quad$ Domain of f is $(-\infty, 2] \cup(2, \infty)=(-\infty, \infty)=\mathrm{R}$
By (i), for all $x<2$ ($x=2$ being partitioning point can't be mentioned here) $f(x)=2 x+3$ is a polynomial and hence continuous.
By (ii), for all $x>2, f(x)=2 x-3$ is a polynomial and hence continuous. Therefore $f(x)$ is continuous on $\mathrm{R}-\{2\}$.
Let us examine continuity of f at partitioning point $x=2$

Left Hand Limit $=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(2 x+3)$
[By (i)]
Putting $x=2, \quad=2(2)+3=4+3=7$
Right Hand Limit $=\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(2 x-3)$
[By (ii)]
Putting $x=2, \quad=2(2)-3=4-3=1$
$\therefore \lim _{x \rightarrow 2^{-}} f(x) \neq \lim _{x \rightarrow 2^{+}} f(x)$
$\therefore \quad \lim _{x \rightarrow 2} f(x)$ does not exist and hence $f(x)$ is discontinuous at $x=2$ (only).
7. $f(x)=\left\{\begin{array}{ccc}|x|+3, & \text { if } & x \leq-3 \\ -2 x, & \text { if } & -3<x<3 . \\ 6 x+2, & \text { if } & x \geq 3\end{array}\right.$.

Sol. Given: $f(x)=\left\{\begin{array}{ccc}|x|+3, & \text { if } & x \leq-3 \\ -2 x, & \text { if } & -3<x<3 \\ 6 x+2, & \text { if } & x \geq 3\end{array}\right.$
Here $f(x)$ is defined for $x \leq-3$ i.e., $(-\infty,-3]$ and also for $-3<x<3$ and also for $x \geq 3$ i.e., on [3, ∞).
\therefore Domain of f is $(-\infty,-3] \cup(-3,3) \cup[3, \infty)=(-\infty, \infty)=\mathrm{R}$. By (i), for all $x<-3, f(x)=|x|+3=-x+3$
$(\because x<-3$ means x is negative and hence $|x|=-x)$ is a polynomial and hence continuous.
By (ii), for all $x(-3<x<3) f(x)=-2 x$ is a polynomial and hence continuous.
By (iii), for all $x>3, f(x)=6 x+2$ is a polynomial and hence continuous. Therefore, $f(x)$ is continuous on $\mathrm{R}-\{-3,3\}$.
From (i), (ii) and (iii) we can observe that $x=-3$ and $x=3$ are partitioning points of the domain R .
Let us examine continuity of f at partitioning point $\boldsymbol{x}=\mathbf{- 3}$
Left Hand Limit $=\lim _{x \rightarrow-3^{-}} f(x)=\lim _{x \rightarrow-3^{-}}(|x|+3)[\mathrm{By}(i)]$ $\left(\because x \rightarrow-3^{-} \Rightarrow x<-3\right)$

$$
=\lim _{x \rightarrow-3^{-}}(-x+3)
$$

$\left(\because x \rightarrow-3^{-} \Rightarrow x<-3\right.$ means x is negative and hence $|x|=-x)$
Put $x=-3,=3+3=6$
Right Hand Limit $=\lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{+}}(-2 x) \quad[\mathrm{By}(i i)]$

$$
\left(\because x \rightarrow-3^{+} \quad \Rightarrow \quad x>-3\right)
$$

Putting $x=-3, \quad=-2(-3)=6$
$\therefore \lim _{x \rightarrow-3^{+}} f(x)=\lim _{x \rightarrow-3^{+}} f(x)(=6)$
$\therefore \quad \lim _{x \rightarrow-3} f(x)$ exists and $=6$
Putting $x=-3$ in $(i), f(-3)=|-3|+3=3+3=6$
$\therefore \lim _{x \rightarrow-3} f(x)=f(-3)(=6)$
$\therefore f(x)$ is continuous at $x=-3$.

Now let us examine continuity of \boldsymbol{f} at partitioning point $x=3$

Left Hand Limit $=\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(-2 x) \quad[B y(i i)]$ $\left(\because x \rightarrow 3^{-} \Rightarrow x<3\right)$
Putting $x=3, \quad=-2(3)=-6$
Right Hand Limit $=\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(6 x+2) \quad[B y(i i i)]$

$$
\left(\because x \rightarrow 3^{+} \Rightarrow x>3\right)
$$

Putting $x=3, \quad=6(3)+2=18+2=20$
$\therefore \quad \lim _{x \rightarrow 3^{-}} f(x) \neq \lim _{x \rightarrow 3^{+}} f(x)$
$\therefore \quad \lim _{x \rightarrow 3} f(x)$ does not exist and hence $f(x)$ is discontinuous at $x=3$ (only).
8. $f(x)=\left\{\begin{array}{lll}\frac{|x|}{x}, & \text { if } & x \neq 0 \\ 0, & \text { if } & x=0\end{array}\right.$.

Sol. Given: $f(x)=\frac{|x|}{x}$ if $x \neq 0$

$$
\text { [i.e., }=\frac{x}{x}=1 \text { if } x>0(\because \text { For } x>0,|x|=x)
$$

$$
\begin{equation*}
\text { and }=-\frac{x}{x}=-1 \text { if } x<0(\because \text { For } x<0,|x|=-x) \tag{i}
\end{equation*}
$$

i.e., $\quad f(x)=1 \quad$ if $\quad x>0$

$$
\begin{equation*}
=-1 \quad \text { if } \quad x<0 \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
=0 \quad \text { if } \quad x=0 \tag{iii}
\end{equation*}
$$

Clearly domain of $f(x)$ is $\mathrm{R}(\because f(x)$ is defined for $x>0$, for $x<0$ and also for $x=0$)
By (i), for all $x>0, f(x)=1$ is a constant function and hence continuous.
By (ii), for all $x<0, f(x)=-1$ is a constant function and hence continuous.
Therefore $f(x)$ is continuous on $\mathrm{R}-\{0\}$.
Let us examine continuity of \boldsymbol{f} at the partitioning point $\boldsymbol{x}=\mathbf{0}$
Left Hand Limit $=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}-1$
[By (ii)]

$$
\left(\because x \rightarrow 0^{-} \Rightarrow x<0\right)
$$

Put $x=0, \quad=-1$
Right Hand Limit $=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 1 \quad[$ By $(i)]$ $\left(\because x \rightarrow 0^{+} \Rightarrow x>0\right)$
Put $x=0, \quad=1$
$\therefore \lim _{x \rightarrow 0^{-}} f(x) \neq \lim _{x \rightarrow 0^{+}} f(x)$
$\therefore \lim _{x \rightarrow 0} f(x)$ does not exist and hence $f(x)$ is discontinuous at $x=0$ (only).
Note. It may be noted that the function given in Q. No. 8 is called a signum function.
9. $f(x)=\left\{\begin{array}{lll}\frac{x}{|x|}, & \text { if } & x<0 \\ -1, & \text { if } & x \geq 0\end{array}\right.$.

Sol. Given:

$$
\begin{align*}
f(x)=\left\{\begin{aligned}
\frac{x}{|x|}, \text { if } x<0=\frac{x}{-x}=-1 & \text { if } x<0 \\
& (\because \text { For } x<0,|x|=-x) \\
\ldots & \text { if } x \geq 0
\end{aligned}\right. & \ldots(\text { ii) } \tag{i}
\end{align*}
$$

Here $f(x)$ is defined for $x<0$ i.e., on $(-\infty, 0)$ and also for $x \geq 0$ i.e., on $[0, \infty)$.
$\therefore \quad$ Domain of f is $(-\infty, 0) \cup[0, \infty)=(-\infty, \infty)=R$.
From (i) and (ii), we find that

$$
f(x)=-1 \text { for all real } x(<0 \text { as well as } \geq 0)
$$

Here $f(x)=-1$ is a constant function.
We know that every constant function is continuous.
$\therefore \quad f$ is continuous (for all real x in its domain R)
Hence no point of discontinuity.
10. $f(x)=\left\{\begin{array}{lll}x+1, & \text { if } & x \geq 1 \\ x^{2}+1, & \text { if } & x<1\end{array}\right.$.

Sol. Given: $\quad\left\{\begin{array}{cl}x+1, & \text { if } x \geq 1 \\ x^{2}+1, & \text { if } x<1\end{array}\right.$
Here $f(x)$ is defined for $x \geq 1$ i.e., on $[1, \infty)$ and also for $x<1$ i.e., on $(-\infty, 1)$.
Domain of f is $(-\infty, 1) \cup[1, \infty)=(-\infty, \infty)=\mathrm{R}$
By (i), for all $x>1, f(x)=x+1$ is a polynomial and hence continuous.
By (ii), for all $x<1, f(x)=x^{2}+1$ is a polynomial and hence continuous. Therefore f is continuous on $\mathrm{R}-\{1\}$.
Let us examine continuity of \boldsymbol{f} at the partitioning point $x=1$.
Left Hand Limit $=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}+1\right) \quad[\mathrm{By}(i i)]$

$$
\left(\because x \rightarrow 1^{-} \Rightarrow x<1\right)
$$

Putting $x=1, \quad=1^{2}+1=1+1=2$

Right Hand Limit $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(x+1) \quad[\mathrm{By}(i)]$

$$
\left(\because x \rightarrow 1^{+} \Rightarrow x>1\right)
$$

Putting $x=1,=1+1=2$
$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)(=2)$
$\therefore \quad \lim _{x \rightarrow 1} f(x)$ exists and $=2$
Putting $x=1$ in $(i), f(1)=1+1=2$
$\therefore \quad \lim _{x \rightarrow 1} f(x)=f(1)(=2)$
$\therefore f(x)$ is continuous at $x=1$ also.
$\therefore \quad f$ is be continuous on its whole domain (R here).
Hence no point of discontinuity.
11. $f(x)=\left\{\begin{array}{lll}x^{3}-3, & \text { if } & x \leq 2 \\ x^{2}+1, & \text { if } & x>2\end{array}\right.$.

Sol. Given: $\quad f(x)=\left\{\begin{array}{lll}x^{3}-3, & \text { if } x \leq 2 \\ x^{2}+1, & \text { if } x>2\end{array}\right.$
Here $f(x)$ is defined for $x \leq 2$ i.e., on
$(-\infty, 2]$ and also for $x>2$ i.e., on ($2, \infty$).
$\therefore \quad$ Domain of f is $(-\infty, 2] \cup(2, \infty)=(-\infty, \infty)=\mathrm{R}$
By (i), for all $x<2, f(x)=x^{3}-3$ is a polynomial and hence continuous.
By (ii), for all $x>2, f(x)=x^{2}+1$ is a polynomial and hence continuous.
$\therefore \quad f$ is continuous on $\mathrm{R}-\{2\}$.
Let us examine continuity of \boldsymbol{f} at the partitioning point $\boldsymbol{x}=\mathbf{2}$.
Left Hand Limit $=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(x^{3}-3\right) \quad[\mathrm{By}(i)]$ $\left(\because x \rightarrow 2^{-} \Rightarrow x<2\right)$
Putting $x=2, \quad=2^{3}-3=8-3=5$
Right Hand Limit $=\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(x^{2}+1\right) \quad[B y(i i)]$ $\left(\because x \rightarrow 2^{+} \Rightarrow x>2\right)$
Putting $x=2, \quad=2^{2}+1=4+1=5$
$\therefore \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)(=5)$
$\therefore \quad \lim _{x \rightarrow 2} f(x)$ exists and $=5$
Putting $x=2$ in $(i), f(2)=2^{3}-3=8-3=5$
$\therefore \quad \lim _{x \rightarrow 2} f(x)=f(2)(=5)$
$\therefore f(x)$ is continuous at $x=2$ (also).
Hence no point of discontinuity.
12. $f(x)=\left\{\begin{array}{ccc}x^{10}-1, & \text { if } & x \leq 1 \\ x^{2}, & \text { if } & x>1\end{array}\right.$.

Sol. Given: $\quad f(x)=\left\{\begin{array}{cll}x^{10}-1, & \text { if } & x \leq 1 \\ x^{2}, & \text { if } & x>1\end{array}\right.$
Here $f(x)$ is defined for $x \leq 1$ i.e., on $(-\infty, 1]$ and also for $x>1$ i.e., on $(1, \infty)$.
$\therefore \quad$ Domain of f is $(-\infty, 1] \cup(1, \infty)=(-\infty, \infty)=\mathrm{R}$
By (i), for all $x<1, f(x)=x^{10}-1$ is a polynomial and hence continuous.
By (ii), for all $x>1, f(x)=x^{2}$ is a polynomial and hence continuous.
$\therefore f(x)$ is continuous on $\mathrm{R}-\{1\}$.
Let us examine continuity of \boldsymbol{f} at the partitioning point $\boldsymbol{x}=1$.
Left Hand Limit $=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{10}-1\right) \quad[\mathrm{By}(i)]$

$$
\left(\because x \rightarrow 1^{-} \quad \Rightarrow \quad x<1\right)
$$

Putting $x=1, \quad=(1)^{10}-1=1-1=0$
Right Hand Limit $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x^{2} \quad[\mathrm{By}(i i)]$
Putting $x=1,=1^{2}=1$
$\therefore \lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$
$\therefore \quad \lim _{x \rightarrow 1} f(x)$ does not exist.
Hence the point of discontinuity is $x=1$ (only).
13. Is the function defined by

$$
f(x)=\left\{\begin{array}{lll}
x+5 & \text { if } & x \leq 1 \\
x-5 & \text { if } & x>1
\end{array}\right.
$$

a continuous function?
Sol. Given: $\quad f(x)=\left\{\begin{array}{lll}x+5, & \text { if } & x \leq 1 \\ x-5, & \text { if } & x>1\end{array}\right.$
Here $f(x)$ is defined for $x \leq 1$ i.e., on $(-\infty, 1]$ and also for $x>1$ i.e., on ($1, \infty$)
$\therefore \quad$ Domain of f is $(-\infty, 1] \cup(1, \infty]=(-\infty, \infty)=\mathrm{R}$.
By (i), for all $x<1, f(x)=x+5$ is a polynomial and hence continuous.
By (ii), for all $x>1, f(x)=x-5$ is a polynomial and hence continuous.
$\therefore \quad f$ is continuous on $\mathrm{R}-\{1\}$.
Let us examine continuity at the partitioning point $\boldsymbol{x}=1$.
Left Hand Limit $=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(x+5)$
[By (i)]
Putting $x=1, \quad=1+5=6$
Right Hand Limit $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(x-5) \quad[$ By $(i i)]$
Putting $x=1, \quad=1-5=-4$
$\therefore \lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$
$\therefore \lim _{x \rightarrow 1} f(x)$ does not exist.
Hence $f(x)$ is discontinuous at $x=1$.
$\therefore \quad x=1$ is the only point of discontinuity.
Discuss the continuity of the function, f, where f is defined by
14. $f(x)=\left\{\begin{array}{llc}3, & \text { if } & 0 \leq x \leq 1 \\ 4, & \text { if } & 1<x<3 \\ 5, & \text { if } & 3 \leq x \leq 10\end{array}\right.$.

Sol. Given:

$$
f(x)=\left\{\begin{array}{llc}
3, & \text { if } & 0 \leq x \leq 1 \tag{i}\\
4, & \text { if } & 1<x<3 \\
5, & \text { if } & 3 \leq x \leq 10
\end{array}\right.
$$

From (i), (ii) and (iii), we can see that $f(x)$ is defined in [0, 1] $\cup(1,3) \cup[3,10]$ i.e., $f(x)$ is defined in $[0,10]$.
\therefore Domain of $f(x)$ is $[0,10]$.
From (i), for $0 \leq x<1, f(x)=3$ is a constant function and hence is continuous for $0 \leq x<1$.
From (ii), for $1<x<3, f(x)=4$ is a constant function and hence is continuous for $1<x<3$.
From (iii), for $3<x \leq 10, f(x)=5$ is a constant function and hence is continuous for $3<x \leq 10$.
Therefore, $f(x)$ is continuous in the domain $[0,10]-\{1,3\}$.
Let us examine continuity of \boldsymbol{f} at the partitioning point $x=1$.

Left Hand Limit $=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 3$
[By (i)]

$$
\left(\because x \rightarrow 1^{-} \Rightarrow x<1\right)
$$

Putting $x=1 ; \quad=3$
$\begin{array}{lll}\text { Right Hand Limit }=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} & 4 & {[\text { By }(i i)]} \\ & \left(\because x \rightarrow 1^{+} \quad \Rightarrow \quad x>1\right)\end{array}$
Putting $x=1, \quad=4$
$\therefore \lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$
$\therefore \lim _{x \rightarrow 1} f(x)$ does not exist and hence $f(x)$ is discontinuous at $x=1$.
Let us examine continuity of \boldsymbol{f} at the partitioning point $\boldsymbol{x}=3$.
Left Hand Limit $=\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} 4$
[By (ii)]

$$
\left(\because x \rightarrow 3^{-} \Rightarrow x<3\right)
$$

Putting $x=3, \quad=4$
Right Hand Limit $=\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} 5 \quad[$ By (iii)] $\left(\because x \rightarrow 3^{+} \quad \Rightarrow \quad x>3\right)$
Putting $x=3 ; \quad=5$
$\therefore \lim _{x \rightarrow 3^{-}} f(x) \neq \lim _{x \rightarrow 3^{+}} f(x)$
$\therefore \quad \lim _{x \rightarrow 3} f(x)$ does not exist and hence $f(x)$ is discontinuous at $x=3$ also.
$\therefore \quad x=1$ and $x=3$ are the two points of discontinuity of the function f in its domain [0, 10].
15. $f(x)=\left\{\begin{array}{ccc}2 x, & \text { if } & x<0 \\ 0, & \text { if } & 0 \leq x \leq 1 . \\ 4 x, & \text { if } & x>1\end{array}\right.$.

Sol. The domain of f is $\{x \in \mathrm{R}: x<0\} \cup\{x \in \mathrm{R}: 0 \leq x \leq 1\}$ $\cup\{x \in \mathrm{R}: x>1\}=\mathrm{R}$
$x=0$ and $x=1$ are partitioning points for the domain of this function.
For all $\boldsymbol{x}<\mathbf{0}, f(x)=2 x$ is a polynomial and hence continuous.
For $0<\boldsymbol{x}<1, f(x)=0$ is a constant function and hence continuous.
For all $\boldsymbol{x}>\mathbf{1}, f(x)=4 x$ is a polynomial and hence continuous.
Let us discuss continuity at partitioning point $\boldsymbol{x}=0$.
At $\boldsymbol{x}=\mathbf{0}, f(0)=0 \quad[\because f(x)=0$ if $0 \leq x \leq 1]$
$\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} 2 x\left[\because x \rightarrow 0^{-} \Rightarrow x<0\right.$ and $f(x)=2 x$ for $\left.x<0\right]$ $=2 \times 0=0$
$\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} 0\left[\because x \rightarrow 0^{+} \Rightarrow x>0\right.$ and $f(x)=0$ if $\left.0 \leq x \leq 1\right]$ $=0$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=0$
Thus $\lim _{x \rightarrow 0} f(x)=0=f(0)$ and hence f is continuous at 0 .
Let us discuss continuity at partitioning point $\boldsymbol{x}=1$.
At $\boldsymbol{x}=\mathbf{1}, f(1)=0 \quad[\because f(x)=0$ if $0 \leq x \leq 1]$

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}} 0 \quad[x \rightarrow 1-\Rightarrow x<1 \text { and } f(x)=0 \text { if } 0 \leq x \leq 1] \\
& =0
\end{aligned}
$$

$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 4 x \quad[x \rightarrow 1+\Rightarrow x>1$ and $f(x)=4 x$ for $x>1]$

$$
=4 \times 1=4
$$

The left and right hand limits of f at $x=1$ do not coincide i.e., are not equal.
$\therefore \lim _{x \rightarrow 1} f(x)$ does not exist and hence $f(x)$ is discontinuous at $x=1$.
Thus f is continuous at every point in the domain except $x=1$. Hence, f is not a continuous function and $x=1$ is the only point of discontinuity.
16. $f(x)=\left\{\begin{array}{ccc}-2, & \text { if } & x \leq-1 \\ 2 x, & \text { if } & -1<x \leq 1 \\ 2, & \text { if } & x>1\end{array}\right.$.

Sol. Given: $\quad f(x)=\left\{\begin{array}{clc}-2, & \text { if } & x \leq-1 \\ 2 x, & \text { if } & -1<x \leq 1 \\ 2, & \text { if } & x>1\end{array}\right.$
From (i), (ii) and (iii) we can see that $f(x)$ is defined for $\{x: x \leq-1\} \cup\{x:-1<x \leq 1\} \cup\{x: x>1\}$
i.e., for $(-\infty,-1] \cup(-1,1] \cup(1, \infty)=(-\infty, \infty)=R$
\therefore Domain of $f(x)$ is R .
From (i), for $x<-1, f(x)=-2$ is a constant function and hence is continuous for $x<-1$.
From (ii), for $-1<x<1, f(x)=2 x$ is a polynomial function and hence is continuous for $-1<x<1$.
From (iii), for $x>1, f(x)=2$ is a constant function and hence is continuous for $x>1$.
Therefore $f(x)$ is continuous in $\mathrm{R}-\{-1,1\}$.
Let us examine continuity of f at the partitioning point $\boldsymbol{x}=\mathbf{- 1}$.

Left Hand Limit $=\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}(-2) \quad[\mathrm{By}(i)]$

$$
\left(\because x \rightarrow-1^{-} \Rightarrow x<-1\right)
$$

Putting $x=-1, \quad=-2$
Right Hand Limit $=\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} 2 x \quad$ (By (ii)]

$$
\left(\because x \rightarrow-1^{+} \Rightarrow x>-1\right)
$$

Putting $x=-1, \quad=2(-1)=-2$
$\therefore \lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)(=-2) \therefore \lim _{x \rightarrow-1} f(x)$ exists and $=-2$.
Putting $x=-1$ in $(i), f(-1)=-2$
$\therefore \lim _{x \rightarrow-1} f(x)=f(-1)(=-2) \therefore f(x)$ is continuous at $x=-1$.
Let us examine continuity of \boldsymbol{f} at the partitioning point $\boldsymbol{x}=1$
Left Hand Limit $=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(2 x) \quad[\mathrm{By}(i i)]$

$$
\left(\because x \rightarrow 1^{-} \Rightarrow x<1\right)
$$

Putting $x=1, \quad=2(1)=2$
Right Hand Limit $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} 2 \quad[$ By (iii)]

$$
\left(\because x \rightarrow 1^{+} \Rightarrow x>1\right)
$$

Putting $x=1,=2$
$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)(=2) \quad \therefore \quad \lim _{x \rightarrow 1} f(x)$ exists and $=2$.
Putting $x=1$ in (ii), $f(1)=2(1)=2$
$\therefore \quad \lim _{x \rightarrow 1} f(x)=f(1)(=2) \quad \therefore f(x)$ is continuous at $x=1$ also.
Therefore f is continuous for all x in its domain R .
17. Find the relationship between a and b so that the function f defined by

$$
f(x)=\left\{\begin{array}{lll}
a x+1, & \text { if } & x \leq 3 \\
b x+3, & \text { if } & x>3
\end{array}\right.
$$

is continuous at $\boldsymbol{x}=3$.
Sol. Given:

$$
f(x)=\left\{\begin{array}{lll}
a x+1 & \text { if } & x \leq 3 \tag{i}\\
b x+3 & \text { if } & x>3
\end{array}\right.
$$

and $f(x)$ is continuous at $x=3$.
Left Hand Limit $=\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}}(a x+1) \quad[\mathrm{By}(i)]$ $\left(x \rightarrow 3^{-} \Rightarrow x<3\right)$
Putting $x=3, \quad=3 a+1$
Right Hand Limit $=\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}}(b x+3) \quad[$ By (ii)]

$$
\begin{equation*}
\left(\because x \rightarrow 3^{+} \quad \Rightarrow \quad x>3\right) \tag{iv}
\end{equation*}
$$

Putting $x=3,=3 b+3$
Putting $x=3$ in (i), $f(3)=3 a+1$
Because $f(x)$ is continuous at $x=3$ (given)
$\therefore \lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{+}} f(x)=f(3)$
Putting values from (iii), (iv) and (v) we have

$$
3 a+1=3 b+3 \quad(=3 a+1)
$$

$\therefore \quad 3 a+1=3 b+3 \quad[\because$ First and third members are equal $]$
$\Rightarrow \quad 3 a=3 b+2$
Dividing by $3, a=b+\frac{2}{3}$.
18. For what value of λ is the function defined by

$$
f(x)=\left\{\begin{array}{cll}
\lambda\left(x^{2}-2 x\right), & \text { if } & x \leq 0 \\
4 x+1, & \text { if } & x>0
\end{array}\right.
$$

continuous at $x=0$? What about continuity at $x=1$?
Sol. Given: $\quad f(x)=\left\{\begin{array}{cll}\lambda\left(x^{2}-2 x\right), & \text { if } & x \leq 0 \\ 4 x+1, & \text { if } & x>0\end{array}\right.$
Given: $f(x)$ is continuous at $x=0$. To find λ.
Left Hand Limit $=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \lambda\left(x^{2}-2 x\right) \quad[\mathrm{By}(i)]$

$$
\left(\because x \rightarrow 0^{-} \Rightarrow x<0\right)
$$

Putting $x=0, \quad=\lambda(0-0)=0$
Right Hand Limit $=\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(4 x+1) \quad[\mathrm{By}(i i)]$

$$
\left(\because x \rightarrow 0^{+} \Rightarrow x>0\right)
$$

Putting $x=0, \quad=4(0)+1=1$
$\therefore \lim _{x \rightarrow 0^{-}} f(x)(=0) \neq \lim _{x \rightarrow 0^{+}} f(x)(=1)$
$\therefore \quad \lim _{x \rightarrow 0} f(x)$ does not exist whatever λ may be

$$
(\because \text { Neither left limit nor right limit involves } \lambda)
$$

\therefore For no value of λ, f is continuous at $x=0$.
To examine continuity of \boldsymbol{f} at $\boldsymbol{x}=1$
Left Hand Limit $=\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}(4 x+1) \quad[\mathrm{By}(i i)]$

$$
\left(x \rightarrow 1^{-} \Rightarrow x \text { is slightly }<1 \text { say } x=0.99>0\right)
$$

Put $\boldsymbol{x}=\mathbf{1}, \quad=4+1=5$
Right Hand Limit $=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(4 x+1) \quad[\mathrm{By}(i i)]$

$$
\left(x \rightarrow 1^{+} \Rightarrow x \text { is slightly }>1 \text { say } x=1.1>0\right)
$$

Put $x=1, \quad=4+1=5$
$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{+}} f(x)(=5)$
$\therefore \quad \lim _{x \rightarrow 1} f(x)$ exists and $=5$
Putting $x=1$ in (ii) $(\because 1>0), f(1)=4+1=5)$
$\therefore \quad \lim _{x \rightarrow 1} f(x)=f(1)(=5)$
$\therefore f(x)$ is continuous at $x=1$ (for all real values of λ).
19. Show that the function defined by $g(x)=x-[x]$ is discontinuous at all integral points. Here $[x]$ denotes the greatest integer less than or equal to x.
Sol. Given: $g(x)=x-[x]$
Let $x=c$ be any integer (i.e., $c \in \mathrm{Z}(=\mathrm{I})$)
Left Hand Limit $=\lim _{x \rightarrow c^{-}} g(x)=\lim _{x \rightarrow c^{-}}(x-[x])$
Put $\quad x=c-h, h \rightarrow 0^{+}$

$$
=\lim _{h \rightarrow 0^{+}}(c-h-[c-h])
$$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0^{+}}(c-h-(c-1)) \\
& \quad\left[\because \text { If } c \in \mathrm{Z} \text { and } h \rightarrow 0^{+}, \text {then }[c-h]=c-1\right] \\
& =\lim _{h \rightarrow 0^{+}}(c-h-c+1)=\lim _{h \rightarrow 0^{+}}(1-h)
\end{aligned}
$$

Put $h=0,=1-0=1$
Right Hand Limit $=\lim _{x \rightarrow c^{+}} g(x)=\lim _{x \rightarrow c^{+}}(x-[x])$
Put $x=c+h, h \rightarrow 0^{+}$

$$
\begin{aligned}
& =\lim _{h \rightarrow 0^{+}}(c+h-[c+h]) \quad=\lim _{h \rightarrow 0^{+}}(c+h-c) \\
& \quad\left(\because \text { If } c \in \mathrm{Z} \text { and } h \rightarrow 0^{+}, \text {then }[c+h]=c\right)
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0^{+}} h
$$

Put $h=0 ; \quad=0$
$\therefore \lim _{x \rightarrow c^{-}} g(x) \neq \lim _{x \rightarrow c^{+}} g(x)$

$\therefore \lim _{x \rightarrow c} g(x)$ does not exist and hence $g(x)$ is discontinuous at $x=c$ (any integer).
$\therefore g(x)=x-[x]$ is discontinuous at all integral points.
Very Important Note. If two functions f and g are continuous in a common domain D , then $(i) f+g$ (ii) $f-g$ (iii) $f g$ are continuous in the same domain D .
(iv) $\frac{f}{g}$ is also continuous at all points of D except those where $g(x)=0$.
20. Is the function $f(x)=x^{2}-\sin x+5$ continuous at $x=\pi$?

Sol. Given: $f(x)=x^{2}-\sin x+5=\left(x^{2}+5\right)-\sin x$

$$
\begin{equation*}
=g(x)-h(x) \tag{i}
\end{equation*}
$$

where $g(x)=x^{2}+5$ and $h(x)=\sin x$
We know that $g(x)=x^{2}+5$ is a polynomial function and hence is continuous (for all real x)
Again $h(x)=\sin x$ being a sine function is continuous (for all real x)
$\therefore \quad \operatorname{By}(i) f(x)=x^{2}-\sin x+5=g(x)-h(x)$
being the difference of two continuous functions is also continuous for all real x (see Note above) and hence continuous at $x=\pi(\in \mathrm{R})$ also.

Or

Given: $f(x)=x^{2}-\sin x+5$
To examine continuity at $\boldsymbol{x}=\boldsymbol{\pi}$

$$
\begin{equation*}
\lim _{x \rightarrow \pi} f(x)=\lim _{x \rightarrow \pi}\left(x^{2}-\sin x+5\right) \tag{i}
\end{equation*}
$$

Putting $x=\pi, \quad=\pi^{2}-\sin \pi+5$

$$
\begin{array}{ll}
\quad & =\pi^{2}+5 \\
\because & \left.\sin \pi=\sin 180^{\circ}=\sin \left(180^{\circ}-0^{\circ}\right)=\sin 0^{\circ}=0\right]
\end{array}
$$

Again putting $x=\pi$ in $(i), f(\pi)=\pi^{2}-\sin \pi+5$

$$
=\pi^{2}-0+5=\pi^{2}+5
$$

$\therefore \lim _{x \rightarrow \pi} f(x)=f(\pi)$
$\therefore \quad f(x)$ is continuous at $x=\pi$.
21. Discuss the continuity of the following functions:
(a) $f(x)=\sin x+\cos x$
(b) $f(x)=\sin x-\cos x$
(c) $f(x)=\sin x \cdot \cos x$.

Sol. We know that $\sin x$ is a continuous function for all real x
Also we know that $\cos x$ is a continuous function for all real x (see solution of Q. No. 22(i) below)
\therefore By Note at the end of solution of Q. No. 19,
(i) their sum function $f(x)=\sin x+\cos x$ is also continuous for all real x.
(ii) their difference function $f(x)=\sin x-\cos x$ is also continuous for all real x.
(iii) their product function $f(x)=\sin x \cdot \cos x$ is also continuous for all real x.

Note. To find $\lim _{x \rightarrow c} f(x)$, we can also start with putting $x=c+h$ where $h \rightarrow 0$ (and not only $h \rightarrow 0^{+}$)
$\therefore \lim _{x \rightarrow c} f(x)=\lim _{h \rightarrow 0} f(c+h)$.
(Please note that this method of finding the limits makes us find both $\lim _{x \rightarrow c^{-}} f(x)$ and $\lim _{x \rightarrow c^{+}} f(x)$ simultaneously).
22. Discuss the continuity of the cosine, cosecant, secant and cotangent functions.
Sol. (i) Let $f(x)$ be the cosine function
i.e., $\quad f(x)=\cos x$

Clearly, $f(x)$ is real and finite for all real values of x i.e., $f(x)$ is defined for all real x. Therefore domain of $f(x)$ is R .
Let $\quad x=c \in \mathrm{R}$.

$$
\begin{aligned}
& \lim _{x \rightarrow c} \quad f(x)=\lim _{x \rightarrow c} \cos x \\
& \text { Put } x=c+h \text { where } h \rightarrow 0 \\
& =\lim _{h \rightarrow 0} \cos (c+h) \\
& \text { Putting } h=0, \quad \begin{array}{ll}
h \rightarrow 0 \\
& =\cos c \cos 0-\sin c \sin 0 \\
& =\cos c(1)-\sin c(0) \\
& =\cos c \\
\therefore \quad \lim _{x \rightarrow c} f(x) & =\cos c
\end{array}
\end{aligned}
$$

Putting $x=c$ in $(i), f(c)=\cos c$
$\therefore \lim _{x \rightarrow c} f(x)=f(c)(=\cos c)$
$\therefore f(x)$ is continuous at (every) $x=c \in \mathrm{R}$
$\therefore f(x)=\cos x$ is continuous on R .
(ii) Let $f(x)$ be cosecant function
i.e., $f(x)=\operatorname{cosec} x=\frac{1}{\sin x}$
$f(x)$ is not finite i.e., $\rightarrow \infty$
when $\sin x=0 \quad$ i.e., when $x=n \pi, n \in \mathrm{Z}$.
$\therefore \quad$ Domain of $f(x)=\operatorname{cosec} x$ is $\mathrm{D}=\mathrm{R}-\{x=n \pi ; n \in \mathrm{Z}\}$.
$(\because f(x)$ is real and finite $\forall x \in \mathrm{D})$.
Now $f(x)=\operatorname{cosec} x=\frac{1}{\sin x}=\frac{g(x)}{h(x)}$
Now $g(x)=1$ being constant function is continuous on domain D and $h(x)=\sin x$ is non-zero and continuous on Domain D.

Therefore by $(i), f(x)=\operatorname{cosec} x\left(=\frac{1}{\sin x}=\frac{g(x)}{h(x)}\right)$ is continuous on domain $\mathrm{D}=\mathrm{R}-\{x=n \pi, n \in \mathrm{Z}\}$
(Also read Note at the end of solution of Q. No. 19).
(iii) Let $f(x)$ be the secant function i.e., $f(x)=\sec x=\frac{1}{\cos x} f(x)$ is not finite i.e., $\rightarrow \infty$

When $\cos x=0$ i.e., when $x=(2 n+1) \frac{\pi}{2}, n \in \mathrm{Z}$.
$\therefore \quad$ Domain of $f(x)=\sec x$ is

$$
\begin{equation*}
\mathrm{D}=\mathrm{R}-\left\{x=(2 n+1) \frac{\pi}{2} ; n \in \mathrm{Z}\right\} \tag{i}
\end{equation*}
$$

Now $f(x)=\sec x=\frac{1}{\cos x}=\frac{g(x)}{h(x)}$
Now $g(x)=1$ being constant function is continuous on domain D and $h(x)=\cos x$ is non-zero and continuous on domain D .
Therefore by $(i), f(x)=\sec x\left(=\frac{1}{\cos x}=\frac{g(x)}{h(x)}\right)$ is continuous on domain $\mathrm{D}=\mathrm{R}-\left\{x: x=(2 n+1) \frac{\pi}{2} ; n \in \mathrm{Z}\right\}$.
(iv) Let $f(x)$ be the cotangent function i.e., $f(x)=\cot x=\frac{\cos x}{\sin x}$. $f(x)$ is not finite i.e., $\rightarrow \infty$

When $\sin x=0 \quad$ i.e., when $x=n \pi, n \in \mathrm{Z}$.
$\therefore \quad$ Domain of $f(x)=\cot x$ is

$$
\begin{equation*}
\mathrm{D}=\mathrm{R}-\{x=n \pi ; n \in \mathrm{Z}\} \tag{i}
\end{equation*}
$$

Now $f(x)=\cot x=\frac{\cos x}{\sin x}=\frac{g(x)}{h(x)}$
Now $g(x)=\cos x$ being cosine function is continuous on D and is non-zero on D .
Therefore by (i), $f(x)=\cot x\left(=\frac{\cos x}{\sin x}=\frac{g(x)}{h(x)}\right)$ is continuous on domain $\mathrm{D}=\mathrm{R}-\{x: x=n \pi, n \in \mathrm{Z}\}$.
23. Find all points of discontinuity of \boldsymbol{f}, where

$$
f(x)=\left\{\begin{array}{lll}
\frac{\sin x}{x}, & \text { if } & x<0 \\
x+1, & \text { if } & x \geq 0
\end{array}\right.
$$

Sol. The domain of $f=\{x \in \mathrm{R}: x<0\} \cup\{x \in \mathrm{R}: x \geq 0\}=\mathrm{R}$
$x=0$ is the partitioning point of the domain of the given function.
For all $\boldsymbol{x}<\mathbf{0}, f(x)=\frac{\sin x}{x}$ (given)
Since $\sin x$ and x are continuous for $x<0$ (in fact, they are continuous for all x) and $x \neq 0$
$\therefore f$ is continuous when $x<0$
For all $\boldsymbol{x}>\mathbf{0}, f(x)=x+1$ is a polynomial and hence continuous. $\therefore f$ is continuous when $x>0$.
Let us discuss the continuity of $f(x)$ at the partitioning point $\boldsymbol{x}=\mathbf{0}$.

$$
\text { At } \boldsymbol{x}=0, f(0)=0+1=1 \quad[\because f(x)=x+1 \text { for } x \geq 0]
$$

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x}
$$

$$
\left[\because x \rightarrow 0^{-} \Rightarrow x<0 \text { and } f(x)=\frac{\sin x}{x} \text { for } x<0\right]
$$

$$
=1
$$

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(x+1)
$$

$$
\left[\because x \rightarrow 0^{+} \Rightarrow x>0 \text { and } f(x)=x+1 \text { for } x>0\right]
$$

$$
=0+1=1
$$

Since $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=1 \quad \therefore \lim _{x \rightarrow 0} f(x)=1$
Thus $\lim _{x \rightarrow 0} f(x)=f(0)$ and hence f is continuous at $x=1$.
Now f is continuous at every point in its domain and hence f is a continuous function.

24. Determine if \boldsymbol{f} defined by

$$
f(x)=\left\{\begin{array}{ccc}
x^{2} \sin \frac{1}{x}, & \text { if } & x \neq 0 \\
0, & \text { if } & x=0
\end{array}\right.
$$

is a continuous function?
Sol. For all $x \neq 0, f(x)=x^{2} \sin \frac{1}{x}$ being the product function of two continuous functions x^{2} (polynomial function) and $\sin \frac{1}{x}$ (a sine function) is continuous for all real $x \neq 0$.
Now let us examine continuity at $\boldsymbol{x}=0$.
$\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}$
Putting $x=0 \quad=0 \times \mathrm{A}$ finite quantity between -1 and $1=0$ $\left[\because \sin \frac{1}{x}(=\sin \theta)\right.$ always lies between -1 and 1$]$
Also

$$
f(x)=0 \text { at } x=0 \text { i.e., } f(0)=0
$$

$\therefore \lim _{x \rightarrow 0} f(x)=f(0)$, therefore function f is continuous at

$$
x=0 \text { (also). }
$$

Hence $f(x)$ continuous on domain R of f.
25. Examine the continuity of f, where f is defined by

$$
f(x)=\left\{\begin{array}{ccc}
\sin x-\cos x, & \text { if } & x \neq 0 \\
-1, & \text { if } & x=0
\end{array} .\right.
$$

Sol. Given:

$$
f(x)=\left\{\begin{array}{ccc}
\sin x-\cos x & \text { if } & x \neq 0 \tag{i}\\
-1 & \text { if } & x=0
\end{array}\right.
$$

From (i), $f(x)$ is defined for $x \neq 0$ and from (ii) $f(x)$ is defined for $x=0$.
\therefore Domain of $f(x)$ is $\{x: x \neq 0\} \cup\{0\}=\mathrm{R}$.
From (i), for $x \neq 0, f(x)=\sin x-\cos x$ being the difference of two continuous functions $\sin x$ and $\cos x$ is continuous for all $x \neq 0$.
Hence $f(x)$ is continuous on $\mathrm{R}-\{0\}$.
Now let us examine continuity at $\boldsymbol{x}=0$.

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0}(\sin x-\cos x)
$$

[By (i) as $x \rightarrow 0$ means $x \neq 0$]
Putting $x=0, \quad=\sin 0-\cos 0=0-1=-1$
From (ii) $\quad f(x)=-1$ when $x=0$
i.e., $\quad f(0)=-1$
$\therefore \quad \lim _{x \rightarrow 0} f(x)=f(0)(=-1)$
$\therefore f(x)$ is continuous at $x=0$ (also).

Hence $f(x)$ is continuous on domain R of f.
Find the values of \boldsymbol{k} so that the function \boldsymbol{f} is continuous at the indicated point in Exercises 26 to 29.
26. $f(x)=\left\{\begin{array}{ccc}\frac{k \cos x}{\pi-2 x}, & \text { if } & x \neq \frac{\pi}{2} \\ 3, & \text { if } & x=\frac{\pi}{2}\end{array}\right.$ at $x=\frac{\pi}{2}$.

Sol. Left Hand Limit $=\lim _{x \rightarrow \frac{\pi}{2}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}} \frac{k \cos x}{\pi-2 x}$

$$
\begin{align*}
& \text { Put } x=\frac{\pi}{2}-h \text { where } h \rightarrow 0^{+} \\
& =\lim _{h \rightarrow 0^{+}} \frac{k \cos \left(\frac{\pi}{2}-h\right)}{\pi-2\left(\frac{\pi}{2}-h\right)}=\lim _{h \rightarrow 0^{+}} \frac{k \sin h}{\pi-\pi+2 h} \\
& =\lim _{h \rightarrow 0^{+}} \frac{k \sin h}{2 h}=\frac{k}{2} \times \lim _{h \rightarrow 0^{+}} \frac{\sin h}{h}=\frac{k}{2} \times 1=\frac{k}{2} \tag{i}
\end{align*}
$$

Right Hand Limit $=\lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)=\lim _{x \rightarrow \frac{\pi^{+}}{2}} \frac{k \cos x}{\pi-2 x}$
Put $x=\frac{\pi}{2}+h$ where $h \rightarrow 0^{+}$
$=\lim _{h \rightarrow 0^{+}} \frac{k \cos \left(\frac{\pi}{2}+h\right)}{\pi-2\left(\frac{\pi}{2}+h\right)}=\lim _{h \rightarrow 0^{+}} \frac{-k \sin h}{\pi-\pi-2 h}=\lim _{h \rightarrow 0^{+}} \frac{-k \sin h}{-2 h}$
$=\frac{k}{2} \times \lim _{h \rightarrow 0^{+}} \frac{\sin h}{h}=\frac{k}{2} \times 1=\frac{k}{2}$
Also $f\left(\frac{\pi}{2}\right)=3 \quad \ldots($ iii $) \quad \because f(x)=3$ when $x=\frac{\pi}{2}$ (given)
Because $f(x)$ is continuous at $x=\frac{\pi}{2}$ (given)
$\therefore \lim _{x \rightarrow \frac{\pi^{-}}{2}} f(x)=\lim _{x \rightarrow \frac{\pi^{+}}{2}} f(x)=f\left(\frac{\pi}{2}\right)$
Putting values from (i), (ii), and (iii), $\frac{k}{2}=3$ or $k=6$.
27. $f(x)=\left\{\begin{array}{cll}k x^{2}, & \text { if } & x \leq 2 \\ 3, & \text { if } & x>2\end{array} \quad\right.$ at $x=2$.

Sol. Given:

$$
f(x)=\left\{\begin{array}{cll}
k x^{2}, & \text { if } & x \leq 2 \tag{i}\\
3, & \text { if } & x>2
\end{array}\right.
$$

Given: $f(x)$ is continuous at $x=2$.
Left Hand Limit $=\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} k x^{2}$
[By (i)]

Put $x=2, \quad=k(2)^{2}=4 k$
Right Hand Limit $=\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} 3 \quad[\mathrm{By}($ ii $)]$ $\left(\because x \rightarrow 2^{+} \quad \Rightarrow \quad x>2\right)$
Putting $x=2, \quad=3$
Putting $x=2$ in (i) $f(2)=k(2)^{2}=4 k$.
Because $f(x)$ is continuous at $x=2$ (given),
therefore $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)$
Putting values, $4 k=3=3 \Rightarrow k=\frac{3}{4}$
28. $f(x)=\left\{\begin{array}{lll}k x+1, & \text { if } & x \leq \pi \\ \cos x, & \text { if } & x>\pi\end{array}\right.$ at $x=\pi$.

Sol. Given: $\quad f(x)=\left\{\begin{array}{lll}k x+1, & \text { if } x \leq \pi \\ \cos x, & \text { if } x>\pi\end{array}\right.$
Given: $f(x)$ is continuous at $x=\pi$.
Left Hand Limit $=\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi^{-}}(k x+1) \quad[\mathrm{By}(i)]$

$$
\left(\because x \rightarrow \pi^{-} \Rightarrow x<\pi\right)
$$

Putting $x=\pi, \quad=k \pi+1$
Right Hand Limit $=\lim _{x \rightarrow \pi^{+}} f(x)=\lim _{x \rightarrow \pi^{+}} \cos x \quad[\mathrm{By}(i i)]$

$$
\left(\because x \rightarrow \pi^{+} \Rightarrow x>\pi\right)
$$

Putting $x=\pi, \quad=\cos \pi=\cos 180^{\circ}=\cos \left(180^{\circ}-0\right)$
$=-\cos 0=-1$
Putting $x=\pi$ in $(i), f(\pi)=k \pi+1$
But $f(x)$ is continuous at $x=\pi$ (given), therefore

$$
\lim _{x \rightarrow \pi^{-}} f(x)=\lim _{x \rightarrow \pi^{+}} f(x)=f(\pi)
$$

Putting values $k \pi+1=-1=k \pi+1$
$\Rightarrow k \pi+1=-1[\because$ First and third members are same $]$
$\Rightarrow \quad k \pi=-2 \Rightarrow k=-\frac{2}{\pi}$.
29. $f(x)=\left\{\begin{array}{lll}k x+1, & \text { if } & x \leq 5 \\ 3 x-5, & \text { if } & x>5\end{array}\right.$ at $x=5$.

Sol. Given:

$$
f(x)=\left\{\begin{array}{lll}
k x+1 & \text { if } & x \leq 5 \tag{i}\\
3 x-5 & \text { if } & x>5
\end{array}\right.
$$

Given: $f(x)$ is continuous at $x=5$.
Left Hand Limit $=\lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{-}}(k x+1)$
Putting $x=5, \quad=k(5)+1=5 k+1$
Right Hand Limit $=\lim _{x \rightarrow 5^{+}} f(x)=\lim _{x \rightarrow 5^{+}}(3 x-5) \quad[B y(i i)]$
Putting $x=5, \quad=3(5)-5 \quad=15-5=10$
Putting $x=5$ in $(i), f(5)=5 k+1$
But $f(x)$ is continuous at $x=5$ (given)
$\therefore \lim _{x \rightarrow 5^{-}} f(x)=\lim _{x \rightarrow 5^{+}} f(x) \quad=f(5)$
Putting values $5 k+1=10=5 k+1$
$\Rightarrow 5 k+1=10 \Rightarrow 5 k=9 \Rightarrow k=\frac{9}{5}$.
30. Find the values of a and b such that the function defined by

$$
f(x)=\left\{\begin{array}{ccc}
5, & \text { if } & x \leq 2 \\
a x+b, & \text { if } & 2<x<10 \\
21, & \text { if } & x \geq 10
\end{array}\right.
$$

is a continuous function.
Sol. Given: $\quad f(x)=\left\{\begin{array}{clc}5 & \text { if } & x \leq 2 \\ a x+b & \text { if } & 2<x<10 \\ 21 & \text { if } & x \geq 10\end{array}\right.$
From (i), (ii) and (iii), $f(x)$ is defined for $\{x \leq 2\} \cup\{2<x<10\}$ $\cup\{x \geq 10\}$ i.e., for $(-\infty, 2] \cup(2,10) \cup[10, \infty)$ i.e., for $(-\infty, \infty)$ i.e., on R . $\quad \therefore$ Domain of $f(x)$ is R .
Given: $f(x)$ is a continuous function (of course on its domain here R), therefore $f(x)$ is also continuous at partitioning points $x=2$ and $x=10$ of the domain.
Because $f(x)$ is continuous at partitioning point $x=2$, therefore

$$
\begin{equation*}
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2) \tag{iv}
\end{equation*}
$$

Now $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} 5$

$$
\begin{equation*}
\left(\because \quad x \rightarrow 2^{-} \Rightarrow x<2\right) \tag{i}
\end{equation*}
$$

Putting $x=2, \quad=5$
Again $\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(a x+b) \quad[B y(i i)]$ $\left(\because x \rightarrow 2^{+} \Rightarrow x>2\right)$
Putting $x=2, \quad=2 a+b$
Putting $x=2$ in (i), $f(2)=5$.
Putting these values in eqn. (iv), we have

$$
\begin{equation*}
5=2 a+b=5 \Rightarrow 2 a+b=5 \tag{v}
\end{equation*}
$$

Again because $f(x)$ is continuous at partitioning point $x=10$, therefore $\lim _{x \rightarrow 10^{-}} f(x)=\lim _{x \rightarrow 10^{+}} f(x)=f(10)$

Now $\lim _{x \rightarrow 10^{-}} f(x)=\lim _{x \rightarrow 10^{-}}(a x+b)$

$$
\left(x \rightarrow 10^{-} \quad \Rightarrow \quad x<10\right)
$$

Putting $x=10, \quad=10 a+b$
Again $\lim _{x \rightarrow 10^{+}} f(x)=\lim _{x \rightarrow 10^{+}} 21 \quad[$ By (iii)]

$$
\left(\because x \rightarrow 10^{+} \Rightarrow x>10\right)
$$

Putting $x=10 ; \quad=21$
Putting $x=10$ in Eqn. (iii), $f(10)=21$
Putting these values in eqn. (vi), we have

$$
\Rightarrow \quad \begin{align*}
10 a+b & =21=21 \\
\Rightarrow \quad 10 a+b & =21 \tag{vii}
\end{align*}
$$

Let us solve eqns. (v) and (vii) for a and b.
Eqn. (vii) - eqn. (v) gives $8 a=16 \Rightarrow a=\frac{16}{8}=2$
Putting $a=2$ in (v), $4+b=5 \quad \therefore b=1$.
$\therefore \quad a=2, b=1$.
Very Important Result: Composite function of two continuous functions is continuous.

We know by definition that $(f \circ g) x=f(g(x))$ and $(g o f) x=g(f(x))$
31. Show that the function defined by $f(x)=\cos \left(x^{2}\right)$ is a continuous function.
Sol. Given: $f(x)=\cos \left(x^{2}\right)$
$f(x)$ has a real and finite value for all $x \in \mathrm{R}$.
\therefore Domain of $f(x)$ is R .
Let us take $g(x)=\cos x$ and $h(x)=x^{2}$.
Now $g(x)=\cos x$ is a cosine function and hence is continuous.
Again $h(x)=x^{2}$ is a polynomial function and hence is continuous.

$$
\begin{aligned}
\therefore \quad(g o h) x= & g(h(x))=g\left(x^{2}\right) \quad\left[\because \quad h(x)=x^{2}\right] \\
= & \left.\cos \left(x^{2}\right) \quad \text { (Changing } x \text { to } x^{2} \text { in } g(x)=\cos x\right) \\
= & f(x)(\text { By (i)) being the composite function of two } \\
& \text { continuous functions is continuous for all } x \text { in } \\
& \text { domain R. Or }
\end{aligned}
$$

Take $g(x)=x^{2}$ and $h(x)=\cos x$.
Then $(h o g) x=h(g(x))=h\left(x^{2}\right)$

$$
=\cos \left(x^{2}\right)=f(x)
$$

32. Show that the function defined by $f(x)=|\cos x|$ is a continuous function.
Sol. $f(x)=|\cos x|$
$f(x)$ has a real and finite value for all $x \in \mathrm{R}$.
$\therefore \quad$ Domain of $f(x)$ is R .

Let us take $g(x)=\cos x$ and $h(x)=|x|$
We know that $g(x)$ and $h(x)$ being cosine function and modulus function are continuous for all real x.
Now (goh)x $=g(h(x))=g(|x|)=\cos |x|$ being the composite function of two continuous functions is continuous (but $\neq f(x)$)
Again $(h o g) x=h(g(x))=h(\cos x)$

$$
\begin{equation*}
=|\cos x|=f(x) \tag{i}
\end{equation*}
$$

[Changing x to $\cos x$ in $h(x)=|x|$, we have $h(\cos x)=|\cos x|]$ Therefore $f(x)=|\cos x| \quad(=(h o g) x)$ being the composite function of two continuous functions is continuous.
33. Examine that $\sin |\boldsymbol{x}|$ is a continuous function.

Sol. Let $f(x)=\sin x$ and $g(x)=|x|$
We know that $\sin x$ and $|x|$ are continuous functions.
$\therefore f$ and g are continuous.
Now $\quad(f o g)(x)=f\{g(x)\}=\sin \{g(x)\}=\sin |x|$
We know that composite function of two continuous functions is continuous.
$\therefore f o g$ is continuous.
Hence, $\sin |x|$ is continuous.

34. Find all points of discontinuity of f defined by

$$
\begin{equation*}
f(x)=|x|-|x+1| . \tag{i}
\end{equation*}
$$

Sol. Given: $\quad f(x)=|x|-|x+1|$
This $f(x)$ is real and finite for every $x \in \mathrm{R}$.
$\therefore \quad f$ is defined for all $x \in \mathrm{R}$ i.e., domain of f is R .
Putting each expression within modulus equal to 0
i.e., $x=0$ and $x+1=0$ i.e., $x=0$ and $x=-1$.

Marking these values of x namely -1 and 0 (in proper ascending order) on the number line, domain R of f is divided into three sub-intervals $(-\infty,-1],[-1,0]$ and $[0, \infty)$.
On the sub-interval $(-\infty,-1]$ i.e., for $x \leq-1$, (say for $x=-2$ etc.) $x<0$ and $(x+1)$ is also <0 and therefore
$|x|=-x$ and $|x+1|=-(x+1)$
Hence (i) becomes $f(x)=|x|-|x+1|$

$$
\begin{equation*}
=-x-(-(x+1))=-x+x+1 \tag{ii}
\end{equation*}
$$

i.e., $f(x)=1$ for $x \leq-1$

On the sub-interval $[-1,0]$ i.e.,for $-1 \leq x \leq 0\left(\right.$ say for $\left.x=\frac{-1}{2}\right)$
$x<0$ and $(x+1)>0$ and therefore $|x|-x$ and $|x+1|$ $=x+1$.

Hence (i) becomes $f(x)=|x|-|x+1|$ $=-x-(x+1)=-x-x-1$

$$
\begin{equation*}
=-2 x-1 \tag{iiii}
\end{equation*}
$$

i.e., $f(x)=-2 x-1$ for $-1 \leq x \leq 0$

On the sub-interval $[0, \infty)$ i.e., for $x \geq 0$,
$x \geq 0$ and also $x+1>0$ and therefore

$$
|x|=x \text { and }|x+1|=x+1
$$

Hence (i) becomes $f(x)=|x|-|x+1|=x-(x+1)$

$$
\begin{equation*}
=x-x-1=-1 \tag{iv}
\end{equation*}
$$

i.e., $\quad f(x)=-1$ for $x \geq 0$

From (ii), for $x<-1, f(x)=1$ is a constant function and hence is continuous for $x<-1$.
From (iii), for $-1<x<0, f(x)=-2 x-1$ is a polynomial function and hence is continuous for $-1<x<0$.
From (iv), for $x>0, f(x)=-1$ is a constant function and hence is continuous for $x>0$.
$\therefore f$ is continuous in $\mathrm{R}-\{-1,0\}$.
Let us examine continuity of f at partitioning point $\boldsymbol{x}=\mathbf{- 1}$.

$$
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}} 1 \quad[\mathrm{By}(i i)]
$$

$$
\left(\because x \rightarrow-1^{-} \Rightarrow x<-1\right)
$$

Putting $x=-1,=1$

$$
\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}}(-2 x-1) \quad(\text { By }(i i i))
$$

Putting

$$
x=-1,=-2(-1)-1=2-1=1
$$

$\therefore \quad \lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{+}} f(x)(=1)$
$\therefore \lim _{x \rightarrow-1} f(x)$ exists and $=1$.
Putting $\quad x=-1$ in (ii) or (iii), $f(-1)=1$
$\therefore \quad \lim _{x \rightarrow-1} f(x)=f(-1)(=1)$
$\therefore \quad f$ is continuous at $x=-1$ also.
Let us examine continuity of \boldsymbol{f} at partitioning point $\boldsymbol{x}=0$.

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(-2 x-1) \quad(\text { By }(\text { iii })) \\
\quad\left(\because x \rightarrow 0^{-} \Rightarrow x<0\right) \\
x=0,=-2(0)-1=-1
\end{gathered}
$$

Putting

$$
\begin{array}{r}
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(-1) \quad[\mathrm{By}(\text { iv })] \\
\left(\ldots \rightarrow 0^{+} \Rightarrow x>0\right)
\end{array}
$$

Putting $\quad x=0,=-1 \quad \therefore \lim _{x \rightarrow 0^{-}} f(x)=\operatorname{Lt}_{x \rightarrow 0^{+}} f(x)(=-1)$
$\therefore \quad \lim _{x \rightarrow 0} f(x)$ exists and $=-1$
Putting

$$
x=0 \text { in (iii) or (iv), } f(0)=-1
$$

$\therefore \quad \lim _{x \rightarrow 0} f(x)=f(0)(=-1)$
$\therefore \quad f$ is continuous at $x=0$ also.
$\therefore f$ is continuous on the domain R .
\therefore There is no point of discontinuity.

Second Solution

We know that every modulus function is continuous for all real x. Therefore $|x|$ and $|x+1|$ are continuous for all real x.
Also, we know that difference of two continuous functions is continuous.
$\therefore \quad f(x)=|x|-|x+1|$ is also continuous for all real x.
\therefore There is no point of discontinuity.

