
Exercise 4.6 
Examine the consistency of the system of equations in  
Exercises 1 to 3.

1. x + 2y = 2
2x + 3y = 3.

Sol. Given linear equations are
x + 2y = 2

2x + 3y = 3

Their matrix form is 
1 2
2 3

 
 
 

x
y

 
 
 

 = 
2
3

 
 
 

(⇒ AX = B)

Comparing A = 
1 2
2 3

 
 
 

 and B = 
2
3

 
 
 

| A | =
1 2
2 3

 
 
 

 = 3 – 4 = – 1 ≠ 0

∴ (Unique) solution and hence equations are consistent.
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2. 2x – y = 5
x + y = 4.

Sol. Given linear equations are
2x – y = 5

x + y = 4

Their matrix form is 
2 1
1 1

− 
 
 

x
y

 
 
 

= 
5
4

 
 
 

(⇒ AX = B)

Comparing A = 
2 1
1 1

− 
 
 

 and B = 
5
4

 
 
 

| A | =
2 1
1 1

− 
 
 

 = 2 – (– 1) = 3 ≠ 0

∴ (Unique) solution and hence equations are consistent.
3. x + 3y = 5

2x + 6y = 8.
Sol. Given linear equations are

x + 3y = 5
2x + 6y = 8

Their matrix form is 
1 3
2 6

 
 
 

x
y

 
 
 

 = 
5
8

 
 
 

(⇒ AX = B)

Comparing A = 
1 3
2 6

 
 
 

 and B = 
5
8

 
 
 

| A | = 
1 3
2 6

 
 
 

 = 6 – 6 =0

So we are to find (adj. A) B

      adj. A = 
6 3
2 1

− 
 − 

adj.
a b d b
c d c a

 −   
=    −    

∵

∴ (adj. A)  B =
6 3
2 1

− 
 − 

5
8

 
 
 

 = 
30 24

10 8
− 

 − + 
 = 

6
2

 
 − 

≠ O

6
The matrix has non-zero entries

2
  

  −  
∵

∴ Given Equations are Inconsistent i.e., have no common solution.
Examine the consistency of the system of equations in
Exercises 4 to 6.

4. x + y + z = 1
2x + 3y + 2z = 2

ax + ay + 2az = 4
Sol. The given equations are

x + y + z = 1 ...(i)
2x + 3y + 2z = 2 ...(ii)

ax + ay + 2az = 4 ...(iii)

Their matrix form is 

1 1 1
2 3 2

2a a a

 
 
 
  

x
y
z

 
 
 
  

=
1
2
4

 
 
 
  

 (⇒ AX = B)



∴ Matrix A =

1 1 1
2 3 2

2a a a

 
 
 
  

∴ | A | =

1 1 1
2 3 2

2a a a
Expanding along first row,

| A | = 1(6a – 2a) – 1(4a – 2a) + 1(2a – 3a)
= 4a – 2a – a = a

Case I. a ≠≠≠≠≠ 0 ∴ | A | = a ≠ 0
∴ (Unique) solution and hence equations are consistent.
Case II. a = 0 ∴ | A | = a = 0.
Putting a = 0 in given equation (iii), we have 0 = 4 which is
impossible.
∴ Given equations are inconsistent if a = 0.

5. 3x – y – 2z = 2
2y – z = – 1

3x – 5y = 3
Sol. The given equations are

3x – y – 2z = 2
2y – z = – 1 i.e., 0x + 2y – z = – 1

and 3x – 5y = 3 i.e., 3x – 5y + 0z = 3

Their matrix form is 
3 1 2
0 2 1
3 5 0

− − 
 − 
 − 

x
y
z

 
 
 
  

 = 

2
1
3

 
 − 
  

(⇒ AX = B)

Comparing A =
3 1 2
0 2 1
3 5 0

− − 
 − 
 − 

and B = 
2
1
3

 
 − 
  

∴ | A | =
3 1 2
0 2 1
3 5 0

− −
−

−
Expanding along first row,

| A | = 3(0 – 5) – (– 1) (0 + 3) + (– 2) (0 – 6)
= 3(– 5) + 3 + 12 = – 15 + 15 = 0

So now we are to find (adj. A) B

To find adj. A for | A | = 
3 1 2
0 2 1
3 5 0

− −
−

−

A11 = + 
2 1
5 0

−
−

 = (0 – 5) = – 5,

A12 = – 
0 1
3 0

−
 = – (0 + 3) = – 3,



   A13 = + 
0 2
3 5−

 = (0 – 6) = – 6,

   A21 = – 
1 2
5 0

− −
−

 = – (0 – 10) = 10,

A22 = + 
3 2
3 0

−
 = (0 + 6) = 6,

A23 = – 
3 1
3 5

−
−

 = – (– 15 + 3) = 12,

A31 = + 
1 2
2 1

− −
−

 = (1 + 4) = 5,

A32 = – 
3 2
0 1

−
−

 = – (– 3 – 0) = 3,

   A33 = + 
3 1
0 2

−
 = + (6 – 0) = 6.

∴ adj. A =
5 3 6

10 6 12
5 3 6

′− − − 
 
 
  

 = 
5 10 5
3 6 3
6 12 6

− 
 − 
 − 

∴ (adj. A) B =
5 10 5
3 6 3
6 12 6

− 
 − 
 − 

2
1
3

 
 − 
  

=
10 10 15

6 6 9
12 12 18

− − + 
 − − + 
 − − + 

= 

5
3
6

− 
 − 
 − 

 ≠ O

5
The matrix 3 has non-zero entries

6

 − 
  −  
  −  

∵

∴ Given equations are inconsistent.
6. 5x – y + 4z = 5

2x + 3y + 5z = 2
5x – 2y + 6z = – 1

Sol. The given equations are
5x – y + 4z = 5

2x + 3y + 5z = 2
5x – 2y + 6z = – 1

Their matrix form is 
5 1 4
2 3 5
5 2 6

− 
 
 
 − 

x
y
z

 
 
 
  

=
5
2
1

 
 
 
 − 

(⇒ AX = B)

∴ A =
5 1 4
2 3 5
5 2 6

− 
 
 
 − 

and B = 
5
2
1

 
 
 
 − 

| A | =
5 1 4
2 3 5
5 2 6

−

−



Expanding along first row
= 5(18 + 10) – (– 1) (12 – 25) + 4(– 4 – 15)
= 5(28) + (– 13) + 4(– 19)
= 140 – 13 – 76 = 140 – 89 = 51 ≠ 0

∴ Given system of equations has a (unique) solution and hence
equations are consistent.

Solve the system of linear equations, using matrix method, in
Exercises 7 to 10.

7. 5x + 2y = 4
7x + 3y = 5.

Sol. The given equations are
5x + 2y = 4
7x + 3y = 5

Their matrix form is 
5 2
7 3

 
 
 

x
y

 
 
 

 = 
4
5

 
 
 

(⇒ AX = B)

Comparing A = 
5 2
7 3

 
 
 

, X = 
x
y

 
 
 

and B = 
4
5

 
 
 

| A | =
5 2
7 3

 = 15 – 14 = 1 ≠ 0

∴ Solution is unique and X = A–1B

⇒ X =
1

|A|
 (adj. A) . B

⇒
x
y

 
 
 

 = 
3 2 41

– 7 5 51
−   

   
   

adj.
a b d b
c d c a

 −   
=    −    

∵

⇒
x
y

 
 
 

 = 
12 10
28 25

− 
 − + 

 = 
2
3

 
 − 

Equating corresponding entries, we have x = 2 and y = –3.
8. 2x – y = – 2

3x + 4y = 3.
Sol. The given equations are

  2x – y = – 2
3x + 4y = 3

Their matrix form is 
2 1
3 4

− 
 
 

x
y

 
 
 

 = 
2
3

− 
 
 

 (⇒ AX = B)

Comparing A = 
2 1
3 4

− 
 
 

, X = 
x
y

 
 
 

and B = 
2
3

− 
 
 

| A | =
2 1
3 4

−
 = 8 – (– 3) = 8 + 3 = 11 ≠ 0

∴ Solution is unique and X = A–1B



⇒ X =
1

|A|
 (adj. A) . B   ⇒ 

x
y

 
 
 

 =  
4 1 21

– 3 2 311
−   

   
   

⇒ =
8 31
6 611

− + 
 + 

 = 
51

1211
− 

 
 

 = 

5
11
12
11

 − 
 
 
  

Equating corresponding entries, we have x = – 5
11

 and y = 
12
11

.

9. 4x – 3y = 3
3x – 5y = 7.

Sol. The given equations are
4x – 3y = 3
3x – 5y = 7

Their matrix form is 
4 3
3 5

− 
 − 

x
y

 
 
 

 = 
3
7

 
 
 

(⇒ AX = B)

Comparing A = 
4 3
3 5

− 
 − 

, X = 
x
y

 
 
 

and B = 
3
7

 
 
 

| A | =
4 3
3 5

−
−

 = – 20 – (– 9) = – 20 + 9 = – 11 ≠ 0

∴ Solution is unique and X = A–1B

⇒ X =
1

|A| (adj. A) B

⇒
x
y

 
 
 

 = 
1
11−

– 5 3
– 3 4

 
 
 

3
7

 
 
 

 = 
1
11−

15 21
9 28

− + 
 − + 

⇒
x
y

 
 
 

 = 
1
11−

6
19

 
 
 

 = 

6
11
19
11

 − 
 
 −  

Equating corresponding entries, we have x = – 
6

11
 and  y = –

19
11

.

10. 5x + 2y = 3
3x + 2y = 5.

Sol. The given equations are
5x + 2y = 3
3x + 2y = 5

Their matrix form is 
5 2
3 2

 
 
 

x
y

 
 
 

 = 
3
5

 
 
 

(⇒ AX = B)

Comparing A = 
5 2
3 2

 
 
 

, X = 
x
y

 
 
 

and B = 
3
5

 
 
 



| A | =
5 2
3 2

 = 10 – 6 = 4 ≠ 0

∴ Solution is unique and X = A–1B

⇒ X =
1

|A|
 (adj. A) B

⇒
x
y

 
 
 

 = 
1
4

2 2
– 3 5

− 
 
 

3
5

 
 
 

adj.
a b d b
c d c a

 −   
=    −    

∵

⇒
x
y

 
 
 

 = 
1
4

6 10
9 25

− 
 − + 

 = 
1
4

4
16

− 
 
 

 = 
1
4

− 
 
 

Equating corresponding entries, we have x = – 1 and y = 4.
Solve the system of linear equations, using matrix method, in
Exercises 11 to 14.

11. 2x + y + z = 1

x – 2y – z = 
3
2

3y – 5z = 9.
Sol. The given equations are

2x + y + z = 1

x – 2y – z = 
3
2

 3y – 5z = 9 or 0.x + 3y – 5z = 9

Their matrix form is 

2 1 1
1 2 1
0 3 5

 
 − − 
 − 

x
y
z

 
 
 
  

=

1
3
2
9

 
 
 
 
 
 

(⇒ AX = B)

Comparing A = 

2 1 1
1 2 1
0 3 5

 
 − − 
 − 

, X = 

x
y
z

 
 
 
  

 and B = 

1
3
2
9

 
 
 
 
 
 

| A | =

2 1 1
1 2 1
0 3 5

− −
−

Expanding along first row, = 2(10 + 3) – 1(– 5 – 0) + 1(3 – 0)
or | A | = 2(13) + 5 + 3 = 26 + 5 + 3 = 34 ≠ 0

∴ Solution is unique and X = A–1B = 
1

|A|
 (adj. A) B ...(i)

Let us find adj. A

A11 = + 
2 1
3 5

− −
−

 = 10 + 3 = 13,



A12 = – 
1 1
0 5

−
−

 = – (– 5 – 0) = 5,

A13 = + 
1 2
0 3

−
 = (3 – 0) = 3,

A21 = – 
1 1
3 5−

 = – (– 5 – 3) = 8,

A22 = + 
2 1
0 5−

 = (– 10 – 0) = – 10,

A23 = – 
2 1
0 3

 = – (6 – 0) = – 6,

A31 = + 
1 1
2 1− −

 = (– 1 + 2) = 1,

A32 = – 
2 1
1 1−

 = – (– 2 – 1) = 3,

A33 = + 
2 1
1 2−

 = – 4 – 1 = – 5.

∴ Adj. A =
13 5 3
8 10 6
1 3 5

′ 
 − − 
 − 

 = 
13 8 1

5 10 3
3 6 5

 
 − 
 − − 

Putting values in eqn. (i), 
x
y
z

 
 
 
  

=
1

34

13 8 1
5 10 3
3 6 5

 
 − 
 − − 

1
3
2
9

 
 
 
 
 
 

= 1
34

13 12 9
5 15 27
3 9 45

+ + 
 − + 
 − − 

 = 1
34

34
17
51

 
 
 
 − 

 = 

1
1
2
3

2

 
 
 
 
 

− 
 
  

Equating corresponding entries, we have x = 1,

 y = 
1
2

, z = – 
3
2

.

12. x – y + z = 4
 2x + y – 3z = 0

x + y + z = 2.
Sol. The given equations are

  x – y + z = 4
  2x + y – 3z = 0

  x + y + z = 2



Their matrix form is 
1 1 1
2 1 3
1 1 1

− 
 − 
  

x
y
z

 
 
 
  

=
4
0
2

 
 
 
  

  (⇒ AX = B)

Comparing A = 
1 1 1
2 1 3
1 1 1

− 
 − 
  

, X = 
x
y
z

 
 
 
  

 and B = 
4
0
2

 
 
 
  

 | A | =
1 1 1
2 1 3
1 1 1

−
−

Expanding along first row, 
  = 1(1 + 3) – (– 1) (2 + 3) + 1(2 – 1)

or | A | = 4 + 5 + 1 = 10 ≠ 0

∴ Solution is unique and X = A–1B =
1

|A|
 (adj. A) B ...(i)

To find adj. A

  A11 = + 
1 3
1 1

−
 = (1 + 3) = 4,

A12 = – 
2 3
1 1

−
 = – (2 + 3) = – 5,

A13 = + 
2 1
1 1

 = (2 – 1) = 1,

A21 = – 
1 1
1 1

−
 = – (– 1 – 1) = 2,

A22 = + 
1 1
1 1

 = (1 – 1) = 0,

A23 = – 
1 1
1 1

−
 = – (1 + 1) = – 2,

A31 = + 
1 1
1 3

−
−

 = (3 – 1) = 2,

A32 = – 
1 1
2 3−

 = – (– 3 – 2) = 5,

A33 = + 
1 1
2 1

−
 = 1 + 2 = 3.

∴ adj. A =

4 5 1
2 0 2
2 5 3

′− 
 − 
  

 = 
4 2 2
5 0 5
1 2 3

 
 − 
 − 



Putting these values in eqn. (i), we have

x
y
z

 
 
 
  

 = 
1
10

4 2 2
5 0 5
1 2 3

 
 − 
 − 

4
0
2

 
 
 
  

= 
1

10

16 0 4
20 0 10

4 0 6

+ + 
 − + + 
 − + 

 = 
1

10

20
10
10

 
 − 
  

   ⇒
x
y
z

 
 
 
  

 = 
2
1
1

 
 − 
  

Equating corresponding entries, we have
      x = 2,  y = – 1, z = 1.

13. 2x + 3y + 3z = 5
x – 2y + z = – 4

3x – y – 2z = 3.
Sol. The given equations are

2x + 3y + 3z = 5
x – 2y + z = – 4

3y – y – 2z = 3

Their matrix form is 
2 3 3
1 2 1
3 1 2

 
 − 
 − − 

 
x
y
z

 
 
 
  

 = 

5
4
3

 
 − 
  

 (⇒ AX = B)

Comparing A = 
2 3 3
1 2 1
3 1 2

 
 − 
 − − 

, X = 
x
y
z

 
 
 
  

 and B = 
5
4
3

 
 − 
  

| A | =
2 3 3
1 2 1
3 1 2

−
− −

Expanding along first row, | A | = 2(4 + 1) – 3(– 2 – 3) +
3 (– 1 + 6)

= 2(5) – 3(– 5) + 3(5) = 10 + 15 + 15 = 40 ≠ 0

∴ Solution is unique and X = A–1B = 
1

|A|
 (adj. A) B         ...(i)

Let us find adj. A

A11 = + 
2 1
1 2

−
− −

= 4 + 1 = 5,

A12 = – 
1 1
3 2−

 = – (– 2 – 3) = 5,

A13 = + 
1 2
3 1

−
−

 = – 1 + 6 = 5,

A21 = – 
3 3
1 2− −

 = – (– 6 + 3) = 3,



A22 = + 
2 3
3 2−

 = – 4 – 9 = – 13,

A23 = – 
2 3
3 1−

 = – (– 2 – 9) = 11,

A31 = + 
3 3
2 1−

 = 3 + 6 = 9,

A32 = – 
2 3
1 1

 = – (2 – 3) = 1,

A33 = + 
2 3
1 2−

 = – 4 – 3 = – 7.

∴ adj. A =
5 5 5
3 13 11
9 1 7

′ 
 − 
 − 

 = 
5 3 9
5 13 1
5 11 7

 
 − 
 − 

Putting these values in eqn. (i), 

x
y
z

 
 
 
  

= 1
40

5 3 9
5 13 1
5 11 7

 
 − 
 − 

5
4
3

 
 − 
  

= 1
40

25 12 27
25 52 3

25 44 21

− + 
 + + 
 − − 

⇒
x
y
z

 
 
 
  

 = 
1
40

40
80
40

 
 
 
 − 

 = 
1
2
1

 
 
 
 − 

Equating corresponding entries, we have x = 1,   y = 2, z = – 1.
14. x – y + 2z = 7

3x + 4y – 5z = – 5
2x – y + 3z = 12.

Sol. The given equations are
x – y + 2z = 7

3x + 4y – 5z = – 5
2x – y + 3z = 12

Their matrix form is
1 1 2
3 4 5
2 1 3

x
y
z

−   
   −   
   −   

=
7
5

12

 
 − 
  

 (⇒ AX = B)

Comparing, A = 
1 1 2
3 4 5
2 1 3

− 
 − 
 − 

, X = 
x
y
z

 
 
 
  

 and B = 
7
5

12

 
 − 
  



  | A | = 
1 1 2
3 4 5
2 1 3

−
−

−
Expanding along first row,

| A | = 1(12 – 5) – (– 1) (9 + 10) + 2(– 3 – 8)
  = 7 + 19 – 22 = 4 ≠ 0

∴ Solution is unique and X = A–1B = 1
|A|

 (adj. A) B ...(i)

Let us find adj. A

A11 = + 
4 5
1 3

−
−

 = 12 – 5 = 7,

A12 = – 
3 5
2 3

−
 = – (9 + 10) = – 19,

A13 = + 
3 4
2 1−

 = – 3 – 8 = – 11,

A21 = – 
1 2
1 3

−
−

 = – (– 3 + 2) = 1,

A22 = + 
1 2
2 3

 = 3 – 4 = – 1,

A23 = – 
1 1
2 1

−
−

 = – (– 1 + 2) = – 1,

A31 = + 
1 2
4 5

−
−

 = 5 – 8 = – 3,

A32 = – 
1 2
3 5−

 = – (– 5 – 6) = 11,

A33 = + 
1 1
3 4

−
 = 4 + 3 = 7.

∴ adj. A = 
7 19 11
1 1 1
3 11 7

′− − 
 − − 
 − 

 = 
7 1 3

19 1 11
11 1 7

− 
 − − 
 − − 

Putting values in eqn. (i),

x
y
z

 
 
 
  

 = 
1
4

7 1 3
19 1 11
11 1 7

− 
 − − 
 − − 

7
5

12

 
 − 
  

= 
1
4

49 5 36
133 5 132

77 5 84

− − 
 − + + 
 − + + 

 = 
1
4

8
4

12

 
 
 
  

 = 

2
1
3

 
 
 
  

Equating corresponding entries, we have x = 2, y = 1, z = 3.



15. If A = 
 
 
 
  

2 – 3 5
3 2 – 4
1 1 – 2

, find A–1. Using A–1, solve the system of

equations
 2x – 3y + 5z = 11
3x + 2y – 4z = – 5

 x + y – 2z = – 3.

Sol. Given: Matrix A = 
2 – 3 5
3 2 – 4
1 1 – 2

 
 
 
  

To find A–1 | A | = 
2 – 3 5
3 2 – 4
1 1 – 2

Expanding along first row,
| A | = 2(– 4 + 4) – (– 3) (– 6 + 4) + 5(3 – 2)

 = 0 + 3(– 2) + 5 = – 6 + 5 = – 1 ≠ 0

∴ A–1 exists and A–1 =
1

|A|
 (adj. A) ...(i)

To find adj. A from | A | = 
2 – 3 5
3 2 – 4
1 1 – 2

A11 = + 
2 4
1 2

−
−

 = (– 4 + 4) = 0,

A12 = – 
3 4
1 2

−
−

 = – (– 6 + 4) = 2,

A13 = + 
3 2
1 1

 = 3 – 2 = 1,

A21 = – 
3 5
1 2

−
−

 = – (6 – 5) = – 1,

A22 = + 
2 5
1 2−

 = – 4 – 5 = – 9,

A23 = – 
2 3
1 1

−
 = – (2 + 3) = – 5,

A31 = + 
3 5
2 4

−
−

 = (12 – 10) = 2,

A32 = – 
2 5
3 4−

 = – (– 8 – 15) = 23,



A33 = + 
2 3
3 2

−
 = (4 + 9) = 13.

∴ adj. A =
0 2 1
1 9 5
2 23 13

′ 
 − − − 
  

 = 
0 1 2
2 9 23
1 5 13

− 
 − 
 − 

Putting this value of adj. A in (i),

      A–1 = 
1
1−

0 1 2
2 9 23
1 5 13

− 
 − 
 − 

=
0 1 2
2 9 – 23
1 5 – 13

− 
 − 
 − 

...(ii)
1

1
1

 
= − − 

∵

Now using (this) A–1, we are to solve the equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5

x + y – 2z = – 3

Their matrix form is
2 – 3 5
3 2 – 4
1 1 – 2

 
 
 
  

x
y
z

 
 
 
  

=
11
5
3

 
 − 
 − 

 (⇒ AX = B)

Comparing A = 
2 – 3 5
3 2 – 4
1 1 – 2

 
 
 
  

, X = 
x
y
z

 
 
 
  

 and B = 
11
5
3

 
 − 
 − 

Solution is unique and X = A–1B (... A–1 exists by (ii))

Putting values,
x
y
z

 
 
 
  

 = 
0 1 2
2 9 – 23
1 5 – 13

− 
 − 
 − 

11
5
3

 
 − 
 − 

⇒
x
y
z

 
 
 
  

 = 

0 5 6
22 45 69
11 25 39

− + 
 − − + 
 − − + 

 = 

1
2
3

 
 
 
  

Equating corresponding entries, we have x = 1, y = 2, z = 3.
16. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is `̀̀̀̀ 60.

The cost of 2 kg onion, 4 kg wheat and 6 kg rice is `̀̀̀̀ 90.
The cost of 6 kg onion, 2 kg wheat and 3 kg rice is `̀̀̀̀ 70.
Find cost of each item per kg by matrix method.

Sol. Let ` x, ` y, ` z per kg be the prices of onion, wheat and rice
respectively.
∴ According to the given data, we have the following three
equations

4x + 3y + 2z = 60,
2x + 4y + 6z = 90,

and  6x + 2y + 3z = 70.



We know that these equations can be expressed in the matrix
form as

4 3 2
2 4 6
6 2 3

 
 
 
  

x
y
z

 
 
 
  

 = 

60
90
70

 
 
 
  

or AX = B,

where A =

4 3 2
2 4 6
6 2 3

 
 
 
  

, X = 

x
y
z

 
 
 
  

 and B = 

60
90
70

 
 
 
  

 | A | =
4 3 2
2 4 6
6 2 3

Expanding along first row,
 | A | = 4(12 – 12) – 3(6 – 36) + 2(4 – 24)

= 0 – 3(– 30) + 2(– 20) = 90 – 40 = 50 ≠ 0
Hence A is non-singular
∴ A– 1 exists.
∴ Unique solution is X = A– 1 B ...(i)

A11 = + (12 – 12) = 0, A12 = – (6 – 36) = 30,
A13 = + (4 – 24) = – 20
A21 = – (9 – 4)  = – 5,     A22 = + (12 – 12) = 0,
A23 = – (8 – 18) = 10 A31 = + (18 – 8) = 10,
A32 = – (24 – 4) = – 20, A33 = + (16 – 6) = 10

∴ adj. A =

0 30 – 20
– 5 0 10
10 – 20 10

′ 
 
 
  

 = 

0 – 5 10
30 0 – 20

– 20 10 10

 
 
 
  

∴ A– 1 =
adj. A
|A|

 = 
1
50

0 5 10
30 0 20

– 20 10 10

− 
 − 
  

Putting values of X, A– 1 and B in (i), we have

x
y
z

 
 
 
  

 = 
1
50

0 5 10
30 0 20

– 20 10 10

− 
 − 
  

60
90
70

 
 
 
  

 = 
1
50

450 700
1800 1400

1200 900 700

− + 
 − 
 − + + 

 = 
1
50

250
400
400

 
 
 
  

or  
x
y
z

 
 
 
  

 = 
5
8
8

 
 
 
  



⇒ x = 5, y = 8, z = 8.
∴ The cost of onion, wheat and rice are respectively ` 5, ` 8
and ` 8 per kg.




