

NCERT Class 12 Maths

Solutions Chapter - 4

Exercise 4.6

Examine the consistency of the system of equations in Exercises 1 to 3.

1. x + 2y = 22x + 3y = 3.**Sol.** Given linear equations are

$$x + 2y = 2$$
$$2x + 3y = 3$$

Their matrix form is $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $(\Rightarrow AX = B)$ Comparing A = $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$ and B = $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $|A| = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} = 3 - 4 = -1 \neq 0$

(Unique) solution and hence equations are consistent. *.*..

2. 2x - y = 5x + y = 4. **Sol.** Given linear equations are 2x - y = 5x + y = 4Their matrix form is $\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ $(\Rightarrow AX = B)$ Comparing A = $\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$ and B = $\begin{bmatrix} 5 \\ 4 \end{bmatrix}$ $|A| = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} = 2 - (-1) = 3 \neq 0$:. (Unique) solution and hence equations are consistent. 3. x + 3y = 52x + 6y = 8.**Sol.** Given linear equations are x + 3y = 52x + 6y = 8Their matrix form is $\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$ (\Rightarrow AX = B) Comparing A = $\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$ and B = $\begin{bmatrix} 5 \\ 8 \end{bmatrix}$ A I = $\begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix}$ = 6 - 6 = 0 So we are to find (adj. A) B adj. A = $\begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix}$ \therefore adj. $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ $\therefore \text{ (adj. A) } B = \begin{bmatrix} 6 & -3 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 8 \end{bmatrix} = \begin{bmatrix} 30 - 24 \\ -10 + 8 \end{bmatrix} = \begin{bmatrix} 6 \\ -2 \end{bmatrix} \neq O$ $\left(\because \text{ The matrix} \begin{bmatrix} 6 \\ -2 \end{bmatrix} \right)$ has non-zero entries

.: Given Equations are Inconsistent *i.e.*, have no common solution. **Examine the consistency of the system of equations in Exercises 4 to 6.**

4. x + y + z = 1 2x + 3y + 2z = 2 ax + ay + 2az = 4Sol. The given equations are x + y + z = 1 2x + 3y + 2z = 2 ax + ay + 2az = 4Their matrix form is $\begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2a \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} (\Rightarrow AX = B)$

 $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2a \end{bmatrix} \qquad \therefore |A| = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ a & a & 2a \end{vmatrix}$ Matrix *.*.. Expanding along first row, |A| = 1(6a - 2a) - 1(4a - 2a) + 1(2a - 3a)= 4a - 2a - a = a**Case I.** $a \neq 0$ \therefore $|A| = a \neq 0$:. (Unique) solution and hence equations are consistent. **Case II.** a = 0 : |A| = a = 0. Putting a = 0 in given equation (*iii*), we have 0 = 4 which is impossible. \therefore Given equations are inconsistent if a = 0. $5. \quad 3x - y - 2z = 2$ 2y - z = -13x - 5y = 3**Sol.** The given equations are 3x - y - 2z = 2 $2y - z = -1 \quad i.e., \quad 0x + 2y - z = -1$ and $3x - 5y = 3 \quad i.e., \quad 3x - 5y + 0z = 3$ Their matrix form is $\begin{bmatrix} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} \implies AX = B$ Comparing $A = \begin{bmatrix} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix}$ $\therefore \qquad |A| = \begin{bmatrix} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{bmatrix}$ 3x - y - 2z = 2Expanding along first row, |A| = 3(0 - 5) - (-1)(0 + 3) + (-2)(0 - 6)= 3(-5) + 3 + 12 = -15 + 15 = 0So now we are to find (adj. A) B To find adj. A for $|A| = \begin{vmatrix} 3 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{vmatrix}$ $A_{11} = + \begin{vmatrix} 2 & -1 \\ -5 & 0 \end{vmatrix} = (0 - 5) = -5,$ $A_{12} = - \begin{vmatrix} 0 & -1 \\ 3 & 0 \end{vmatrix} = - (0 + 3) = -3,$

 $A_{13} = + \begin{vmatrix} 0 & 2 \\ 3 & -5 \end{vmatrix} = (0 - 6) = -6,$ $A_{21} = - \begin{vmatrix} -1 & -2 \\ -5 & 0 \end{vmatrix} = - (0 - 10) = 10,$ $\mathbf{A}_{22} = + \begin{array}{|c|c|} 3 & -2 \\ 3 & 0 \end{array} = (0 + 6) = 6,$ $A_{23} = -\begin{vmatrix} 3 & -1 \\ 3 & -5 \end{vmatrix} = -(-15+3) = 12,$ $A_{31} = + \begin{vmatrix} -1 & -2 \\ 2 & -1 \end{vmatrix} = (1 + 4) = 5,$ $A_{32} = - \begin{vmatrix} 3 & -2 \\ 0 & -1 \end{vmatrix} = -(-3 - 0) = 3,$ $A_{33} = + \begin{vmatrix} 3 & -1 \\ 0 & 2 \end{vmatrix} = + (6 - 0) = 6.$ $\therefore \quad \text{adj. A} = \begin{bmatrix} -5 & -3 & -6 \\ 10 & 6 & 12 \\ 5 & 3 & 6 \end{bmatrix}^{\prime} = \begin{bmatrix} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{bmatrix}$ $\therefore \text{ (adj. A) } B = \begin{bmatrix} -5 & 10 & 5 \\ -3 & 6 & 3 \\ -6 & 12 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ 3 \end{bmatrix} = \begin{bmatrix} -10 - 10 + 15 \\ -6 - 6 + 9 \\ -12 - 12 + 18 \end{bmatrix}$ $\therefore \text{ The matrix} \begin{bmatrix} -5\\ -3\\ -6 \end{bmatrix} \text{ has non-zero entries}$ $=\begin{bmatrix} -5\\ -3\\ -6\end{bmatrix} \neq 0$ Given equations are inconsistent. *.*.. 6. 5x - y + 4z = 52x + 3y + 5z = 25x - 2y + 6z = -1Sol. The given equations are 5x - y + 4z = 52x + 3y + 5z = 25x - 2y + 6z = -1Their matrix form is $\begin{vmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{vmatrix} \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \begin{vmatrix} 5 \\ 2 \\ -1 \end{vmatrix}$ (\Rightarrow AX = B) $\therefore A = \begin{bmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix} |A| = \begin{vmatrix} 5 & -1 & 4 \\ 2 & 3 & 5 \\ 5 & -2 & 6 \end{vmatrix}$ Expanding along first row

$$\begin{array}{l} = 5(18 + 10) - (-1) \ (12 - 25) + 4(-4 - 15) \\ = 5(28) + (-13) + 4(-19) \\ = 140 - 13 - 76 = 140 - 89 = 51 \neq 0 \end{array}$$

 \therefore Given system of equations has a (unique) solution and hence equations are consistent.

Solve the system of linear equations, using matrix method, in Exercises 7 to 10.

- 7. 5x + 2y = 47x + 3y = 5.
- Sol. The given equations are
 - 5x + 2y = 47x + 3y = 5

Their matrix form is
$$\begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$
 ($\Rightarrow AX = B$)
Comparing A = $\begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix}$, X = $\begin{bmatrix} x \\ y \end{bmatrix}$ and B = $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$
 $|A| = \begin{bmatrix} 5 & 2 \\ 7 & 3 \end{bmatrix} = 15 - 14 = 1 \neq 0$
 \therefore Solution is unique and X = A⁻¹B

$$\Rightarrow \qquad \mathbf{X} = \frac{1}{|\mathbf{A}|} (\operatorname{adj.} \mathbf{A}) \cdot \mathbf{B}$$

$$\Rightarrow \qquad \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{1} \begin{bmatrix} 3 & -2 \\ -7 & 5 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} \left(\because \operatorname{adj.} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \right)$$

$$\Rightarrow \qquad \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 12 - 10 \\ -28 + 25 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

Equating corresponding entries, we have x = 2 and y = -3.

8.
$$2x - y = -2$$

 $3x + 4y = 3$.

Sol. The given equations are 2x - y = -2

$$3x + 4y = 3$$

Their matrix form is $\begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix} \iff AX = B)$ Comparing A = $\begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$, X = $\begin{bmatrix} x \\ y \end{bmatrix}$ and B = $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$ $|A| = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} = 8 - (-3) = 8 + 3 = 11 \neq 0$

 \therefore Solution is unique and **X** = **A**⁻¹**B**

$$\Rightarrow X = \frac{1}{|A|} (adj, A) \cdot B \Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{11} \begin{bmatrix} \frac{4}{3} \\ -\frac{3}{2} \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$

$$\Rightarrow = \frac{1}{11} \begin{bmatrix} -8+3 \\ 6+6 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} -5 \\ 12 \end{bmatrix} = \begin{bmatrix} -\frac{5}{11} \\ \frac{12}{11} \end{bmatrix}$$
Equating corresponding entries, we have $x = -\frac{5}{11}$ and $y = \frac{12}{11}$.
9. $4x - 3y = 3$
 $3x - 5y = 7$.
Sol. The given equations are
 $4x - 3y = 3$
 $3x - 5y = 7$.
Their matrix form is $\begin{bmatrix} 4 & -3 \\ 3 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix} \implies AX = B$.
Comparing $A = \begin{bmatrix} 4 & -3 \\ 3 & -5 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix}$ and $B = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$
 $|A| = \begin{vmatrix} 4 & -3 \\ 3 & -5 \end{vmatrix} = -20 - (-9) = -20 + 9 = -11 \neq 0$
 \therefore Solution is unique and $X = A^{-1}B$
 $\Rightarrow X = \frac{1}{|A|} (adj, A) B$
 $\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-11} \begin{bmatrix} -5 & 3 \\ -3 & 4 \end{bmatrix} \begin{bmatrix} 3 \\ 7 \end{bmatrix} = \frac{1}{-11} \begin{bmatrix} -15+21 \\ -9+28 \end{bmatrix}$
 $\Rightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{-11} \begin{bmatrix} 6 \\ 19 \end{bmatrix} = \begin{bmatrix} -\frac{6}{11} \\ -\frac{19}{11} \end{bmatrix}$
Equating corresponding entries, we have $x = -\frac{6}{11}$ and $y = -\frac{19}{11}$.
10. $5x + 2y = 3$
 $3x + 2y = 5$.

Sol. The given equations are 5x + 2y = 3 3x + 2y = 5Their matrix form is $\begin{bmatrix} 5 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix} \implies AX = B)$ Comparing $A = \begin{bmatrix} 5 & 2 \\ 3 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix}$ and $B = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$

$$|A| = \begin{vmatrix} 5 & 2 \\ 3 & 2 \end{vmatrix} = 10 - 6 = 4 \neq 0$$

:. Solution is unique and $X = A^{-1}B$

$$\Rightarrow \qquad X = \frac{1}{|A|} (adj. A) B$$

$$\Rightarrow \qquad \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 2 & -2 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} \left(\because adj. \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \right)$$

$$\Rightarrow \qquad \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 6-10 \\ -9+25 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -4 \\ 16 \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}$$

Equating corresponding entries, we have x = -1 and y = 4. Solve the system of linear equations, using matrix method, in Exercises 11 to 14.

11.
$$2x + y + z = 1$$

 $x - 2y - z = \frac{3}{2}$
 $3y - 5z = 9$.
Sol. The given equations are
 $2x + y + z = 1$
 $x - 2y - z = \frac{3}{2}$
 $3y - 5z = 9$ or $0.x + 3y - 5z = 9$
Their matrix form is $\begin{bmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$
(\Rightarrow AX = B)
Comparing A = $\begin{bmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5 \end{bmatrix}$, X = $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and B = $\begin{bmatrix} 1 \\ 3 \\ 2 \\ 9 \end{bmatrix}$
 $|A| = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -2 & -1 \\ 0 & 3 & -5 \end{bmatrix}$
Expanding along first row = $2(10 + 3) - 1(-5 - 0) + 1(3 - 1)$

Expanding along first row, = 2(10+3) - 1(-5-0) + 1(3-0)or $|A| = 2(13) + 5 + 3 = 26 + 5 + 3 = 34 \neq 0$

:. Solution is unique and $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B} = \frac{1}{|\mathbf{A}|}$ (adj. A) B ...(*i*)

Let us find adj. A

$$A_{11} = + \begin{vmatrix} -2 & -1 \\ 3 & -5 \end{vmatrix} = 10 + 3 = 13,$$

$$A_{12} = -\begin{vmatrix} 1 & -1 \\ 0 & -5 \end{vmatrix} = -(-5 - 0) = 5,$$

$$A_{13} = +\begin{vmatrix} 1 & -2 \\ 0 & 3 \end{vmatrix} = (3 - 0) = 3,$$

$$A_{21} = -\begin{vmatrix} 1 & 1 \\ 3 & -5 \end{vmatrix} = -(-5 - 3) = 8,$$

$$A_{22} = +\begin{vmatrix} 2 & 1 \\ 0 & -5 \end{vmatrix} = (-10 - 0) = -10,$$

$$A_{23} = -\begin{vmatrix} 2 & 1 \\ 0 & 3 \end{vmatrix} = -(6 - 0) = -6,$$

$$A_{31} = +\begin{vmatrix} 1 & 1 \\ -2 & -1 \end{vmatrix} = (-1 + 2) = 1,$$

$$A_{32} = -\begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = -(-2 - 1) = 3,$$

$$A_{33} = +\begin{vmatrix} 2 & 1 \\ 1 & -2 \end{vmatrix} = -4 - 1 = -5.$$

$$\therefore Adj. A = \begin{bmatrix} 13 & 5 & 3 \\ 8 & -10 & -6 \\ 1 & 3 & -5 \end{vmatrix} = \begin{bmatrix} 13 & 8 & 1 \\ 5 & -10 & 3 \\ 3 & -6 & -5 \end{bmatrix}$$
Putting values in eqn. (i), $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{34} \begin{bmatrix} \frac{13 & 8 & 1}{5 - 10 & 3} \\ \frac{5 - 10 & 3}{3 - 6 - 5} \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{-3}{2} \end{bmatrix}$
Equating corresponding entries, we have $x = 1$,

$$y = \frac{1}{2}, z = -\frac{3}{2}.$$

$$x - y + z = 4$$

2x + y - 3z = 0x + y + z = 2. Sol. The given equations are

12.

$$x - y + z = 4$$

$$2x + y - 3z = 0$$

$$x + y + z = 2$$

Their matrix form is $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$ (\Rightarrow AX = B) Comparing A = $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$, X = $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and B = $\begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$ | A | = $\begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{vmatrix}$

Expanding along first row,

$$= 1(1 + 3) - (-1) (2 + 3) + 1(2 - 1)$$
$$|A| = 4 + 5 + 1 = 10 \neq 0$$

Solution is unique and $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B} = \frac{1}{|\mathbf{A}|}$ (adj. A) B ...(*i*) find adj. A *.*..

To find adj. A

or

$$\begin{aligned} A_{11} &= + \begin{vmatrix} 1 & -3 \\ 1 & 1 \end{vmatrix} = (1+3) = 4, \\ A_{12} &= - \begin{vmatrix} 2 & -3 \\ 1 & 1 \end{vmatrix} = -(2+3) = -5, \\ A_{13} &= + \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = (2-1) = 1, \\ A_{21} &= - \begin{vmatrix} -1 & 1 \\ 1 & 1 \end{vmatrix} = -(-1-1) = 2, \\ A_{22} &= + \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = (1-1) = 0, \\ A_{23} &= - \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = -(1+1) = -2, \\ A_{31} &= + \begin{vmatrix} -1 & 1 \\ 1 & -3 \end{vmatrix} = (3-1) = 2, \\ A_{32} &= - \begin{vmatrix} 1 & 1 \\ 2 & -3 \end{vmatrix} = -(-3-2) = 5, \\ A_{33} &= + \begin{vmatrix} 1 & -1 \\ 2 & -3 \end{vmatrix} = -(-3-2) = 5, \\ A_{33} &= + \begin{vmatrix} 1 & -1 \\ 2 & -3 \end{vmatrix} = 1 + 2 = 3. \end{aligned}$$

adj. A =
$$\begin{bmatrix} 4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3 \end{bmatrix}' = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$$

...

Putting these values in eqn. (i), we have

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 2 \end{bmatrix}$$
$$= \frac{1}{10} \begin{bmatrix} 16+0+4 \\ -20+0+10 \\ 4-0+6 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 20 \\ -10 \\ 10 \end{bmatrix} \implies \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

Equating corresponding entries, we have

Equating corresponding entries, we have x = 2, y = -1, z = 1.13. 2x + 3y + 3z = 5 x - 2y + z = -4 3x - y - 2z = 3.Sol. The given equations are 2x + 3y + 3z = 5 x - 2y + z = -4 3y - y - 2z = 3Their matrix form is $\begin{bmatrix} 2 & 3 & 3\\ 1 & -2 & 1\\ 3 & -1 & -2 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} -5\\ -4\\ 3 \end{bmatrix} \implies AX = B)$ Comparing $A = \begin{bmatrix} 2 & 3 & 3\\ 1 & -2 & 1\\ 3 & -1 & -2 \end{bmatrix}, X = \begin{bmatrix} x\\ y\\ z \end{bmatrix}$ and $B = \begin{bmatrix} 5\\ -4\\ 3 \end{bmatrix}$ $|A| = \begin{bmatrix} 2 & 3 & 3\\ 1 & -2 & 1\\ 3 & -1 & -2 \end{bmatrix}$ Expanding place for the set of t

Expanding along first row, |A| = 2(4 + 1) - 3(-2 - 3) + 3(-1 + 6)

$$= 2(5) - 3(-5) + 3(5) = 10 + 15 + 15 = 40 \neq 0$$

:. Solution is unique and $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B} = \frac{1}{|\mathbf{A}|}$ (adj. A) B(*i*)

Let us find adj. A

$$\begin{split} \mathbf{A}_{11} &= + \begin{vmatrix} -2 & 1 \\ -1 & -2 \end{vmatrix} = 4 + 1 = 5, \\ \mathbf{A}_{12} &= - \begin{vmatrix} 1 & 1 \\ 3 & -2 \end{vmatrix} = - (-2 - 3) = 5, \\ \mathbf{A}_{13} &= + \begin{vmatrix} 1 & -2 \\ 3 & -1 \end{vmatrix} = - 1 + 6 = 5, \\ \mathbf{A}_{21} &= - \begin{vmatrix} 3 & 3 \\ -1 & -2 \end{vmatrix} = - (-6 + 3) = 3, \end{split}$$

 $A_{22} = + \begin{vmatrix} 2 & 3 \\ 3 & -2 \end{vmatrix} = -4 - 9 = -13,$ $A_{23} = - \begin{vmatrix} 2 & 3 \\ 3 & -1 \end{vmatrix} = -(-2 - 9) = 11,$ $A_{31} = + \begin{vmatrix} 3 & 3 \\ -2 & 1 \end{vmatrix} = 3 + 6 = 9,$ $A_{32} = - \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = -(2 - 3) = 1,$ $A_{33} = + \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = -4 - 3 = -7.$ $\therefore \text{ adj. A} = \begin{bmatrix} 5 & 5 & 5 \\ 3 & -13 & 11 \\ 9 & 1 & -7 \end{bmatrix}' = \begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix}$ Putting these values in eqn. (i), $\begin{vmatrix} x \\ y \end{vmatrix}$ hese values in eqn. (i), $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ = $\frac{1}{40}\begin{bmatrix} 5 & 3 & 9 \\ 5 & -13 & 1 \\ 5 & 11 & -7 \end{bmatrix} \begin{bmatrix} 5 \\ -4 \\ 3 \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 25 - 12 + 27 \\ 25 + 52 + 3 \\ 25 - 44 - 21 \end{bmatrix}$ $\Rightarrow \begin{vmatrix} x \\ y \\ z \end{vmatrix} = \frac{1}{40} \begin{vmatrix} 40 \\ 80 \\ z \end{vmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Equating corresponding entries, we have x = 1, y = 2, z = -1. x - y + 2z = 714. 3x + 4y - 5z = -52x - y + 3z = 12. Sol. The given equations are x - y + 2z = 73x + 4y - 5z = -52x - y + 3z = 12Their matrix form is $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix} (\Rightarrow AX = B)$ Comparing, A = $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{bmatrix}$, X = $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and B = $\begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$

$$|A| = \begin{vmatrix} 1 & -1 & 2 \\ 3 & 4 & -5 \\ 2 & -1 & 3 \end{vmatrix}$$

Expanding along first row,

$$\mid A \mid = 1(12 - 5) - (-1) (9 + 10) + 2(-3 - 8)$$

= 7 + 19 - 22 = 4 \neq 0

:. Solution is unique and $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B} = \frac{1}{|\mathbf{A}|}$ (adj. A) B ...(i)

Let us find adj. A

...

$$A_{11} = + \begin{vmatrix} 4 & -5 \\ -1 & 3 \end{vmatrix} = 12 - 5 = 7,$$

$$A_{12} = -\begin{vmatrix} 3 & -5 \\ 2 & 3 \end{vmatrix} = -(9 + 10) = -19,$$

$$A_{13} = +\begin{vmatrix} 3 & 4 \\ 2 & -1 \end{vmatrix} = -3 - 8 = -11,$$

$$A_{21} = -\begin{vmatrix} -1 & 2 \\ -1 & 3 \end{vmatrix} = -(-3 + 2) = 1,$$

$$A_{22} = +\begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = 3 - 4 = -1,$$

$$A_{23} = -\begin{vmatrix} 1 & -1 \\ 2 & -1 \end{vmatrix} = -(-1 + 2) = -1,$$

$$A_{31} = +\begin{vmatrix} -1 & 2 \\ 4 & -5 \end{vmatrix} = 5 - 8 = -3,$$

$$A_{32} = -\begin{vmatrix} 1 & 2 \\ 3 & -5 \end{vmatrix} = -(-5 - 6) = 11,$$

$$A_{33} = +\begin{vmatrix} 1 & -1 \\ 3 & 4 \end{vmatrix} = 4 + 3 = 7.$$

$$\therefore \text{ adj. } A = \begin{bmatrix} 7 & -19 & -11 \\ 1 & -1 & -1 \\ -3 & 11 & 7 \end{bmatrix}' = \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix}$$
Putting values in eqn. (i),
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 7 & 1 & -3 \\ -19 & -1 & 11 \\ -11 & -1 & 7 \end{bmatrix} \begin{bmatrix} 7 \\ -5 \\ 12 \end{bmatrix}$$

$$= \frac{1}{4} \begin{bmatrix} -133+5+132\\ -77+5+84 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 4\\ 12 \end{bmatrix} = \begin{bmatrix} 1\\ 3 \end{bmatrix}$$

Equating corresponding entries, we have x = 2, y = 1, z = 3.

15. If A = $\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \end{bmatrix}$, find A⁻¹. Using A⁻¹, solve the system of 1 - 2 1 equations 2x - 3y + 5z = 113x + 2y - 4z = -5x + y - 2z = -3.**Sol. Given:** Matrix A = $\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$ **To find A⁻¹** $|A| = \begin{vmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{vmatrix}$ Expanding along first row, |A| = 2(-4 + 4) - (-3)(-6 + 4) + 5(3 - 2) $= \frac{1}{|A|} (adj. A)$ To find adj. A from $|A| = \begin{vmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{vmatrix}$ $A_{11} = + \begin{vmatrix} 2 & -4 \\ 1 & -4 \end{vmatrix}$ $= 0 + 3(-2) + 5 = -6 + 5 = -1 \neq$...(i) $A_{12} = -\begin{vmatrix} 3 & -4 \\ 1 & -2 \end{vmatrix} = -(-6+4) = 2,$ $A_{13} = + \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} = 3 - 2 = 1,$ $A_{21} = -\begin{vmatrix} -3 & 5\\ 1 & -2 \end{vmatrix} = -(6-5) = -1,$ $A_{22}= + \ \left| \begin{array}{cc} 2 & 5 \\ 1 & -2 \end{array} \right| \ = - \ 4 \ - \ 5 \ = - \ 9,$ $A_{23} = - \begin{vmatrix} 2 & -3 \\ 1 & 1 \end{vmatrix} = - (2 + 3) = -5,$ $A_{31} = + \begin{vmatrix} -3 & 5\\ 2 & -4 \end{vmatrix} = (12 - 10) = 2,$ $A_{32} = -\begin{vmatrix} 2 & 5 \\ 3 & -4 \end{vmatrix} = -(-8 - 15) = 23,$

$$\begin{aligned} A_{33} &= + \begin{vmatrix} 2 & -3 \\ 3 & 2 \end{vmatrix} = (4+9) = 13. \\ \therefore \quad \text{adj. A} &= \begin{bmatrix} 0 & 2 & 1 \\ -1 & -9 & -5 \\ 2 & 23 & 13 \end{bmatrix}' = \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} \\ \text{Putting this value of adj. A in (i),} \\ A^{-1} &= \frac{1}{-1} \begin{bmatrix} 0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \dots (ii) \left(\because \frac{1}{-1} = 1 \right) \\ \text{Now using (this) A^{-1}, we are to solve the equations} \\ 2x - 3y + 5z = 11 \\ 3x + 2y - 4z = -5 \\ x + y - 2z = -3 \end{aligned}$$

Their matrix form is
$$\begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix} (\Rightarrow AX = B) \\ \text{Comparing A} &= \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}$$

Solution is unique and $X = A^{-1}B$ ($\because A^{-1}$ exists by (ii)) \\ \text{Putting values,} \qquad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13 \end{bmatrix} \begin{bmatrix} 11 \\ -5 \\ -3 \end{bmatrix}

-1

Equating corresponding entries, we have x = 1, y = 2, z = 3.

- 16. The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹ 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is ₹ 90. The cost of 6 kg onion, 2 kg wheat and 3 kg rice is ₹ 70. Find cost of each item per kg by matrix method.
- **Sol.** Let $\overline{\ast} x, \overline{\ast} y, \overline{\ast} z$ per kg be the prices of onion, wheat and rice respectively.

 \therefore According to the given data, we have the following three equations

4x + 3y + 2z = 60,2x + 4y + 6z = 90,6x + 2y + 3z = 70.

and

We know that these equations can be expressed in the matrix form as

$$\begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}$$

or AX = B,
where A =
$$\begin{bmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{bmatrix}$$
, X =
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 and B =
$$\begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix} | A | = \begin{vmatrix} 4 & 3 & 2 \\ 2 & 4 & 6 \\ 6 & 2 & 3 \end{vmatrix}$$

Expanding along first row,
| A | = 4(12 - 12) - 3(6 - 36) + 2(4 - 24)
= 0 - 3(- 30) + 2(-20) = 90 - 40 = 50 \neq 0
Hence A is non-singular
 $\therefore A^{-1}$ exists.
 \therefore Unique solution is X = A^{-1} B
A₁₁ = + (12 - 12) = 0,
A₁₃ = + (4 - 24) = - 20,
A₂₁ = - (9 - 4) = - 5,
A₂₃ = - (8 - 18) = 10,
A₃₂ = - (24 - 4) = - 20,
A₃₂ = - (24 - 4) = - 20,
A₃₃ = + (16 - 6) = 10
 \therefore adj. A =
$$\begin{bmatrix} 0 & 30 & -20 \\ -5 & 0 & 10 \\ 10 & -20 & 10 \end{bmatrix}' = \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix}$$

Putting values of X, A⁻¹ and B in (*i*), we have
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{50} \begin{bmatrix} 0 & -5 & 10 \\ 30 & 0 & -20 \\ -20 & 10 & 10 \end{bmatrix} \begin{bmatrix} 60 \\ 90 \\ 70 \end{bmatrix}$$

 $= \frac{1}{50} \begin{bmatrix} -450 + 700 \\ 1800 - 1400 \\ -1200 + 900 + 700 \end{bmatrix} = \frac{1}{50} \begin{bmatrix} 250 \\ 400 \\ 400 \\ 400 \end{bmatrix}$
or
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \\ 8 \end{bmatrix}$$

⇒ x = 5, y = 8, z = 8. ∴ The cost of onion, wheat and rice are respectively ₹ 5, ₹ 8 and ₹ 8 per kg.

