
Exercise 4.4 
Note. Minor (Mij) and Cofactor (Aij) of an element aij of a
determinant ∆ are defined not for the value of the element but
for (i, j)th position of the element.
Def. 1. Minor Mij of an element aij of a determinant ∆ is the
determinant obtained by omitting its ith row and jth column in
which element aij lies.
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Def. 2. Cofactor Aij of an element aij of ∆ is defined as
Aij = (– 1)i + j Mij where Mij is the minor of aij.

1. Write minors and cofactors of the elements of the following
determinants:

(i) 
2 – 4
0 3

(ii) 
a c
b d

Sol. (i) Let ∆ =
2 4
0 3

−

M11 = Minor of a11 = | 3 | = 3;
A11 = (– 1)1 + 1 M11 = (– 1)1 + 1 (3) = (– 1)2 3 = 3

(Omit first row and first column of ∆)
M12 = Minor of a12 = | 0 | = 0
A12 = (– 1)1 + 2 M12 = (– 1)1 + 2 (0) = (– 1)3 . 0 = 0
M21 = Minor of a21 = | – 4 | = – 4,
A21 = (– 1)2 + 1 M21 = (– 1)2 + 1 (– 4) = (– 1)3(– 4) = 4

M22  = Minor of a22 = | 2 | = 2,
A22 = (– 1)2 + 2 M22 = (– 1)2 + 2 2 = (– 1)4 2 = 2

(ii) Let ∆ = 
a c
b d

M11 = Minor of a11 = | d | = d,
A11 = (– 1)1 + 1 d = (– 1)2 d = d
M12 = Minor of a12 = | b | = b,
A12 = (– 1)1 + 2 M12 = (– 1)3 b = – b
M21 = Minor of a21 = | c | = c,
A21 = (– 1)2 + 1 c = (– 1)3 c = – c
M22 = Minor of a22 = | a | = a,
A22 = (– 1)2 + 2 a = (– 1)4 a = a.

2. Write Minors and Cofactors of the elements of the
following  determinants:

(i) 
1 0 0
0 1 0
0 0 1

(ii) 

1 0 4
3 5 – 1
0 1 2

Sol. (i) Let ∆ =
1 0 0
0 1 0
0 0 1

∴ M11 = Minor of a11 =
1 0
0 1

 = 1 – 0 = 1

A11 = (– 1)1 + 1 M11 = (– 1)2 1 = 1

M12 = Minor of a12 = 
0 0
0 1

 = 0 – 0 = 0

(Omitting first row and second column of ∆)



A12 = (– 1)1 + 2 M12 = (– 1)3 0 = 0

M13 = Minor of a13 = 
0 1
0 0

 = 0 – 0 = 0,

A13 = (– 1)1 + 3 M13 = (– 1)4 0 = 0

M21 = Minor of a21 = 
0 0
0 1

 = 0 – 0 = 0,

A21 = (– 1)2 + 1 M21 = (– 1)3 0 = 0

M22 = Minor of a22 = 
1 0
0 1

 = 1 – 0 = 1,

A22 = (– 1)2 + 2 M22 = (– 1)4 1 = 1

M23 = Minor of a23 = 1 0
0 0

 = 0 – 0 = 0,

A23 = (– 1)2 + 3 M23 = (– 1)5 0 = 0

M31 = Minor of a31 = 
0 0
1 0

 = 0 – 0 = 0,

A31 = (– 1)3 + 1 M31 = (– 1)4 0 = 0

M32 = Minor of a32 = 
1 0
0 0

 = 0 – 0 = 0,

A32 = (– 1)3 + 2 M32 = (– 1)5 0 = 0

M33 = Minor of a33 = 
1 0
0 1

 = 1 – 0 = 1,

A33 = (– 1)3 + 3 M33 = (– 1)6 1 = 1.

(ii) Let ∆ =
1 0 4
3 5 1
0 1 2

−

M11 = Minor of a11 = 
5 1
1 2

−
 = 10 – (– 1)  = 10 + 1 = 11,

A11 = (– 1)1 + 1 M11 = (– 1)2 11 = 11

M12 = Minor of a12 = 
3 1
0 2

−
 = 6 – 0 = 6,

A12 = (– 1)1 + 2 M12 = (– 1)3 6 = – 6

M13 = Minor of a13 = 
3 5
0 1

= 3 – 0 = 3,

A13 = (– 1)1 + 3 M13 = (– 1)4 3 = 3



M21 = Minor of a21 = 
0 4
1 2

 = 0 – 4 = – 4,

A21 = (– 1)2 + 1 M21 = (– 1)3 (– 4) = 4

M22 = Minor of a22 = 
1 4
0 2

 = 2 – 0 = 2,

A22 = (– 1)2 + 2 M22 = (– 1)4 2 = 2

M23 = Minor of a23 = 
1 0
0 1

 = 1 – 0 = 1,

A23 = (– 1)2 + 3 M23 = (– 1)5 1 = – 1

M31 = Minor of a31 = 
0 4
5 1−

 = 0 – 20 = – 20,

A31 = (– 1)3 + 1 M31 = (– 1)4 (– 20) = – 20

M32 = Minor of a32 = 
1 4
3 1−

 = – 1 – 12 = – 13,

A32 = (– 1)3 + 2 M32 = (– 1)5 (– 13) = 13

M33 = Minor of a33 = 1 0
3 5

 = 5 – 0 = 5,

A33 = (– 1)3 + 3 M33 = (– 1)6 5 = 5.
Note. Two Most Important Results
1. Sum of the products of the elements of any row or column

of a determinant ∆ with their corresponding factors is = ∆.
i.e., ∆∆∆∆∆ = a11A11 + a12A12 + a13A13 etc.

2. Sum of the products of the elements of any row or column
of a determinant ∆ with the cofactors of any other row or
column of ∆ is zero.
For example, a11A21 + a12A22 + a13A23 = 0.

3. Using Cofactors of elements of second row, evaluate

∆∆∆∆∆ =
5 3 8
2 0 1
1 2 3

.

Sol. ∆ = 

5 3 8
2 0 1
1 2 3

Elements of second row of ∆ are a21 = 2, a22 = 0, a23 = 1

A21 = Cofactor of a21 = (– 1)2 + 1 
3 8
2 3 (... Aij = (– 1)i + j Mij]

↓ ↓
(determinant obtained by omitting second row and first column of ∆)

= (– 1)3 (9 – 16) = – (– 7) = 7



A22 = Cofactor of a22 = (– 1)2 + 2 
5 8
1 3   = (– 1)4 (15 – 8) = 7

 A23 = Cofactor a23 = (– 1)2 + 3 
5 3
1 2    = (– 1)5 (10 – 3) = – 7

Now by Result I of Note after the solution of Q. No. 2,
∆∆∆∆∆ = a21 A21 + a22A22 + a23A23

 = 2(7) + 0(7) + 1(– 7) = 14 – 7 = 7.
Remark. The above method of finding the value of ∆ is equivalent
to expanding ∆ along second row.

4. Using Cofactors of elements of third column, evaluate

∆∆∆∆∆ =
1
1
1

x yz
y zx
z xy

.

Sol. ∆ = 
1
1
1

x yz
y zx
z xy

Here elements of third column of ∆ are
 a13 = yz, a23 = zx, a33 = xy

A13 = Cofactor of a13 = (– 1)1 + 3 
1
1

y
z

= (– 1)4 (z – y) = z – y
↓

(determinant obtained by omitting first row and third column of ∆)

A23 = Cofactor of a23 = (– 1)2 + 3
1
1

x
z  = (– 1)5 (z – x) = – (z – x)

A33 = Cofactor of a33 = (– 1)3 + 3 
1
1

x
y = (– 1)6 (y – x) = y – x

Now by Result I of Note after the solution of Q. NO. 2,
∆∆∆∆∆ = a13A13 + a23A23 + a33A33

= yz(z – y) + zx[– (z – x)] + xy( y – x)
= yz2 – y2z – z2x + zx2 + xy2 – x2y
= (yz2 – y2z) + (xy2 – xz2) + (zx2 – x2y)
= yz(z – y) + x( y2 – z2) – x2( y – z)
= – yz(y – z) + x( y + z)( y – z) – x2( y – z)
= ( y – z) [– yz + xy + xz – x2]
= ( y – z)[– y(z – x) + x(z – x)]
= ( y – z) (z – x)(– y + x) = (x – y)( y – z)(z – x)

Remark. The above method of finding the value of ∆ is equivalent
to expanding ∆ along third column.



5. If ∆∆∆∆∆ =
11 12 13

21 22 23

31 32 33

a a a
a a a
a a a

 and Aij is Cofactor of aij, then value

of ∆∆∆∆∆ is given by
(A) a11A31 + a12A32 + a13A33
(B) a11A11 + a12A21 + a13A31
(C) a21A11 + a22A12 + a23A13
(D) a11A11 + a21A21 + a31A31.

Sol. Option (D) is correct answer as given in Result I of Note after
solution of Q. No. 2 and used in the solution of Q. No. 3 and 4
above.
Remark. The values of expressions given in options (A) and
(C) are each equal to zero as given in Result II of Note after
solution of Q. No. 2.




