

Same textbooks, kltck away

NCERT Class 12 Maths

Solutions

Chapter - 4

Determinants

Exercise 4.4

Note. Minor $\left(\mathrm{M}_{i j}\right)$ and Cofactor $\left(\mathrm{A}_{i j}\right)$ of an element $a_{i j}$ of a determinant Δ are defined not for the value of the element but for $(\boldsymbol{i}, \boldsymbol{j})$ th position of the element.
Def. 1. Minor $\mathbf{M}_{i j}$ of an element $a_{i j}$ of a determinant Δ is the determinant obtained by omitting its i th row and j th column in which element $a_{i j}$ lies.

Def. 2. Cofactor $\mathrm{A}_{i j}$ of an element $a_{i j}$ of Δ is defined as
$\mathrm{A}_{i j}=(-1)^{i+j} \mathrm{M}_{i j}$ where $\mathrm{M}_{i j}$ is the minor of $a_{i j}$.

1. Write minors and cofactors of the elements of the following determinants:
(i) $\left|\begin{array}{rr}\mathbf{2} & -\mathbf{4} \\ \mathbf{0} & \mathbf{3}\end{array}\right|$
(ii) $\left|\begin{array}{ll}\boldsymbol{a} & \boldsymbol{c} \\ \boldsymbol{b} & \boldsymbol{d}\end{array}\right|$

Sol.
(i) Let $\Delta=\left|\begin{array}{rr}2 & -4 \\ 0 & 3\end{array}\right|$
$\begin{aligned} & \mathrm{M}_{11}=\text { Minor of } a_{11} \\ & \mathrm{~A}_{11}=(-1)^{1+1} \mathrm{M}_{11} \\ &=(-1)^{1+1}(3)=(-1)^{2} 3=3\end{aligned}$
(Omit first row and first column of Δ)
$\mathrm{M}_{12}=$ Minor of $a_{12}=|0|=0$
$\mathrm{A}_{12}=(-1)^{1+2} \mathrm{M}_{12}=(-1)^{1+2}(0)=(-1)^{3} \cdot 0=0$
$\mathrm{M}_{21}=$ Minor of $a_{21}=|-4|=-4$,
$\mathrm{A}_{21}=(-1)^{2+1} \mathrm{M}_{21}=(-1)^{2+1}(-4)=(-1)^{3}(-4)=4$
$\mathrm{M}_{22}=$ Minor of $a_{22}=|2|=2$,
$\mathrm{A}_{22}=(-1)^{2+2} \mathrm{M}_{22}=(-1)^{2+2} 2=(-1)^{4} 2=2$
(ii) Let $\Delta=\left|\begin{array}{ll}a & c \\ b & d\end{array}\right|$

$$
\begin{aligned}
& \mathrm{M}_{11}=\text { Minor of } a_{11}=|d|=d \text {, } \\
& \mathrm{A}_{11}=(-1)^{1+1} d=(-1)^{2} d=d \\
& \mathrm{M}_{12}=\text { Minor of } a_{12}=|b|=b \text {, } \\
& \mathrm{A}_{12}=(-1)^{1+2} \mathrm{M}_{12}=(-1)^{3} b=-b \\
& \mathrm{M}_{21}=\text { Minor of } a_{21}=|c|=c \text {, } \\
& \mathrm{A}_{21}=(-1)^{2+1} c \quad=(-1)^{3} c=-c \\
& \mathrm{M}_{22}=\text { Minor of } a_{22}=|a|=a \text {, } \\
& \mathrm{A}_{22}=(-1)^{2+2} a=(-1)^{4} a=a \text {. }
\end{aligned}
$$

2. Write Minors and Cofactors of the elements of the following determinants:
(i) $\left|\begin{array}{lll}\mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1}\end{array}\right|$
(ii) $\left|\begin{array}{rrr}\mathbf{1} & \mathbf{0} & \mathbf{4} \\ \mathbf{3} & 5 & -\mathbf{1} \\ \mathbf{0} & \mathbf{1} & \mathbf{2}\end{array}\right|$

Sol. (i) Let $\Delta=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|$
$\therefore \quad \mathrm{M}_{11}=$ Minor of $a_{11}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1-0=1$
$\mathrm{A}_{11}=(-1)^{1+1} \mathrm{M}_{11}=(-1)^{2} 1=1$
$\mathrm{M}_{12}=$ Minor of $a_{12}=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|=0-0=0$
(Omitting first row and second column of Δ)
(ii) Let $\Delta=\left|\begin{array}{rrr}1 & 0 & 4 \\ 3 & 5 & -1 \\ 0 & 1 & 2\end{array}\right|$
$\mathrm{M}_{11}=$ Minor of $a_{11}=\left|\begin{array}{rr}5 & -1 \\ 1 & 2\end{array}\right|=10-(-1)=10+1=11$,

$$
\mathrm{A}_{11}=(-1)^{1+1} \mathrm{M}_{11}=(-1)^{2} 11=11
$$

$$
\mathrm{M}_{12}=\text { Minor of } a_{12}=\left|\begin{array}{rr}
3 & -1 \\
0 & 2
\end{array}\right|=6-0=6
$$

$$
\mathrm{A}_{12}=(-1)^{1+2} \mathrm{M}_{12}=(-1)^{3} 6=-6
$$

$$
\mathrm{M}_{13}=\text { Minor of } a_{13}=\left|\begin{array}{ll}
3 & 5 \\
0 & 1
\end{array}\right|=3-0=3
$$

$$
\mathrm{A}_{13}=(-1)^{1+3} \mathrm{M}_{13}=(-1)^{4} 3=3
$$

$$
\begin{aligned}
& \mathrm{A}_{12}=(-1)^{1+2} \mathrm{M}_{12}=(-1)^{3} 0=0 \\
& \mathrm{M}_{13}=\text { Minor of } a_{13}=\left|\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right|=0-0=0 \text {, } \\
& \mathrm{A}_{13}=(-1)^{1+3} \mathrm{M}_{13}=(-1)^{4} 0=0 \\
& \mathrm{M}_{21}=\text { Minor of } a_{21}=\left|\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right|=0-0=0 \text {, } \\
& \mathrm{A}_{21}=(-1)^{2+1} \mathrm{M}_{21}=(-1)^{3} 0=0 \\
& \mathrm{M}_{22}=\text { Minor of } a_{22}=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1-0=1 \text {, } \\
& \mathrm{A}_{22}=(-1)^{2+2} \mathrm{M}_{22}=(-1)^{4} 1=1 \\
& \mathbf{M}_{23} \text { = Minor of } a_{23}=\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|=0-0=0, \\
& \mathrm{~A}_{23}=(-1)^{2+3} \mathrm{M}_{23}=(-1)^{5} 0=0 \\
& \mathrm{M}_{31}=\text { Minor of } a_{31}=\left|\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right|=0-0=0, \\
& \mathrm{~A}_{31}=(-1)^{3+1} \mathrm{M}_{31}=(-1)^{4} 0=0 \\
& \mathrm{M}_{32}=\text { Minor of } a_{32}=\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right|=0-0=0 \text {, } \\
& \mathrm{A}_{32}=(-1)^{3+2} \mathrm{M}_{32}=(-1)^{5} 0=0 \\
& \mathrm{M}_{33}=\text { Minor of } a_{33}=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|=1-0=1 \text {, } \\
& \mathrm{A}_{33}=(-1)^{3+3} \mathrm{M}_{33}=(-1)^{6} 1=1 \text {. }
\end{aligned}
$$

$\mathrm{M}_{21}=$ Minor of $a_{21}=\left|\begin{array}{ll}0 & 4 \\ 1 & 2\end{array}\right|=0-4=-4$, $\mathrm{A}_{21}=(-1)^{2+1} \mathrm{M}_{21}=(-1)^{3}(-4)=4$
$\mathrm{M}_{22}=$ Minor of $a_{22}=\left|\begin{array}{ll}1 & 4 \\ 0 & 2\end{array}\right|=2-0=2$,
$\mathrm{A}_{22}=(-1)^{2+2} \mathrm{M}_{22}=(-1)^{4} 2=2$
$\mathrm{M}_{23}=$ Minor of $a_{23}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1-0=1$,
$\mathrm{A}_{23}=(-1)^{2+3} \mathrm{M}_{23}=(-1)^{5} 1=-1$
$\mathrm{M}_{31}=$ Minor of $a_{31}=\left|\begin{array}{rr}0 & 4 \\ 5 & -1\end{array}\right|=0-20=-20$,
$\mathrm{A}_{31}=(-1)^{3+1} \mathrm{M}_{31}=(-1)^{4}(-20)=-20$
$\mathrm{M}_{32}=$ Minor of $a_{32}=\left|\begin{array}{rr}1 & 4 \\ 3 & -1\end{array}\right|=-1-12=-13$,
$\mathrm{A}_{32}=(-1)^{3+2} \mathrm{M}_{32}=(-1)^{5}(-13)=13$
$M_{33}=$ Minor of $a_{33}=\left|\begin{array}{ll}1 & 0 \\ 3 & 5\end{array}\right|=5-0=5$,
$\mathrm{A}_{33}=(-1)^{3+3} \mathrm{M}_{33}=(-1)^{6} 5=5$.

Note. Two Most Important Results

1. Sum of the products of the elements of any row or column of a determinant Δ with their corresponding factors is $=\Delta$. i.e., $\Delta=a_{11} \mathbf{A}_{11}+a_{12} \mathbf{A}_{12}+a_{13} \mathbf{A}_{13}$ etc.
2. Sum of the products of the elements of any row or column of a determinant Δ with the cofactors of any other row or column of Δ is zero.
For example, $\boldsymbol{a}_{11} \mathbf{A}_{21}+\boldsymbol{a}_{12} \mathbf{A}_{22}+\boldsymbol{a}_{13} \mathbf{A}_{23}=\mathbf{0}$.
3. Using Cofactors of elements of second row, evaluate

$$
\Delta=\left|\begin{array}{lll}
5 & 3 & 8 \\
2 & 0 & 1 \\
1 & 2 & 3
\end{array}\right|
$$

Sol. $\Delta=\left|\begin{array}{lll}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{array}\right|$
Elements of second row of Δ are $a_{21}=2, a_{22}=0, a_{23}=1$

$$
\mathrm{A}_{21}=\text { Cofactor of } a_{21}=(-1)^{2+1}\left|\begin{array}{ll}
3 & 8 \\
2 & 3
\end{array}\right|\left(\because \mathrm{A}_{i j}=(-1)^{i+j} \mathrm{M}_{i j}\right]
$$

(determinant obtained by omitting second row and first column of Δ)

$$
=(-1)^{3}(9-16)=-(-7)=7
$$

$\mathrm{A}_{22}=$ Cofactor of $a_{22}=(-1)^{2+2}\left|\begin{array}{ll}5 & 8 \\ 1 & 3\end{array}\right|=(-1)^{4}(15-8)=7$
$\mathrm{A}_{23}=$ Cofactor $a_{23}=(-1)^{2+3}\left|\begin{array}{ll}5 & 3 \\ 1 & 2\end{array}\right| \quad=(-1)^{5}(10-3)=-7$
Now by Result I of Note after the solution of Q. No. 2,

$$
\begin{aligned}
\Delta & =\boldsymbol{a}_{21} \mathbf{A}_{21}+\boldsymbol{a}_{22} \mathbf{A}_{22}+\boldsymbol{a}_{23} \mathbf{A}_{23} \\
& =2(7)+0(7)+1(-7)=14-7=7
\end{aligned}
$$

Remark. The above method of finding the value of Δ is equivalent to expanding Δ along second row.
4. Using Cofactors of elements of third column, evaluate

$$
\Delta=\left|\begin{array}{lll}
1 & x & y z \\
1 & y & z x \\
1 & z & x y
\end{array}\right|
$$

Sol. $\Delta=\left|\begin{array}{lll}1 & x & y z \\ 1 & y & z x \\ 1 & z & x y\end{array}\right|$
Here elements of third column of Δ are

$$
a_{13}=y z, a_{23}=z x, a_{33}=x y
$$

$$
\begin{aligned}
\mathrm{A}_{13} & =\text { Cofactor of } a_{13}=(-1)^{1+3} \\
& =(-1)^{4}(z-y)=z-y
\end{aligned}
$$

(determinant obtained by omitting first row and third column of Δ) $\mathrm{A}_{23}=$ Cofactor of $a_{23}=(-1)^{2+3}\left|\begin{array}{ll}1 & x \\ 1 & z\end{array}\right|=(-1)^{5}(z-x)=-(z-x)$
$\mathrm{A}_{33}=$ Cofactor of $a_{33}=(-1)^{3+3}\left|\begin{array}{ll}1 & x \\ 1 & y\end{array}\right|=(-1)^{6}(y-x)=y-x$
Now by Result I of Note after the solution of Q. NO. 2,

$$
\begin{aligned}
\Delta & =\boldsymbol{a}_{13} \mathbf{A}_{13}+\boldsymbol{a}_{23} \mathbf{A}_{23}+\boldsymbol{a}_{33} \mathbf{A}_{33} \\
& =y z(z-y)+z x[-(z-x)]+x y(y-x) \\
& =y z^{2}-y^{2} z-z^{2} x+z x^{2}+x y^{2}-x^{2} y \\
& =\left(y z^{2}-y^{2} z\right)+\left(x y^{2}-x z^{2}\right)+\left(z x^{2}-x^{2} y\right) \\
& =y z(z-y)+x\left(y^{2}-z^{2}\right)-x^{2}(y-z) \\
& =-y z(y-z)+x(y+z)(y-z)-x^{2}(y-z) \\
& =(y-z)\left[-y z+x y+x z-x^{2}\right] \\
& =(y-z)[-y(z-x)+x(z-x)] \\
& =(y-z)(z-x)(-y+x)=(x-y)(y-z)(z-x)
\end{aligned}
$$

Remark. The above method of finding the value of Δ is equivalent to expanding Δ along third column.
5. If $\Delta=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|$ and $A_{i j}$ is Cofactor of $a_{i j}$, then value of Δ is given by
(A) $a_{11} \mathrm{~A}_{31}+a_{12} \mathrm{~A}_{32}+a_{13} \mathrm{~A}_{33}$
(B) $a_{11} \mathrm{~A}_{11}+a_{12} \mathrm{~A}_{21}+a_{13} \mathrm{~A}_{31}$
(C) $a_{21} \mathrm{~A}_{11}+a_{22} \mathrm{~A}_{12}+a_{23} \mathrm{~A}_{13}$
(D) $a_{11} \mathrm{~A}_{11}+a_{21} \mathrm{~A}_{21}+a_{31} \mathrm{~A}_{31}$.

Sol. Option (D) is correct answer as given in Result I of Note after solution of Q. No. 2 and used in the solution of Q. No. 3 and 4 above.
Remark. The values of expressions given in options (A) and (C) are each equal to zero as given in Result II of Note after solution of Q. No. 2.

